Centrality Indices

  • Katharina A. ZweigEmail author
Part of the Lecture Notes in Social Networks book series (LNSN)


Centrality indices quantify the importance of a node in a given network, which is often identified with the importance of the corresponding entity in the complex system modeled by the network. As the perceived importance is dependent on the kind of network to be analyzed, different centrality indices have been proposed over the years. This chapter gives a short overview of the most important centrality indices, a characterization of centrality indices based on graph-theory, visualization of centrality indices, and some general schemes of how centrality indices are used to analyze networks with selected examples. The main insight of the chapter is that it is necessary to carefully match a centrality index with the research question of interest to enable a meaningful interpretation of the index’ results.


Short Path Degree Centrality Central Node Betweenness Centrality Directed Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ahuja RK, Magnati TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Prentice HallGoogle Scholar
  2. 2.
    Anthonisse JM (1971) The rush in a directed graph. Technical report, Stichting Mathematisch Centrum, 2e Boerhaavestraat 49 AmsterdamGoogle Scholar
  3. 3.
    Barrat A, Barthélemy M, Vespignani A (2005) The effects of spatial constraints on the evolution of weighted complex networks. J Stat Mech: Theory Exp 5:05003CrossRefGoogle Scholar
  4. 4.
    Bavelas A (1950) Communication patterns in task-oriented groups. J Acoust Soc Am 22(6):725–736CrossRefGoogle Scholar
  5. 5.
    Bonacich P (1972) Factoring and weighting approaches to clique identification. J Math Soc 2:113–120CrossRefGoogle Scholar
  6. 6.
    Bonacich P (2004) The invasion of the physicists. Soc Netw 26:258–288Google Scholar
  7. 7.
    Bonacich P (2007) Some unique properties of eigenvector centralities. Soc Netw 29:555–564CrossRefGoogle Scholar
  8. 8.
    Borgatti SP (2005) Centrality and network flow. Soc Netw 27:55–71CrossRefGoogle Scholar
  9. 9.
    Borgatti SP (2006) Identifying sets of key players in a social network. Comput Math Organ Theory 12:21–34CrossRefzbMATHGoogle Scholar
  10. 10.
    Borgatti SP, Everett MG (2006) A graph-theoretic perspective on centrality. Soc Netw 28:466–484CrossRefGoogle Scholar
  11. 11.
    Brandes U (2001) A faster algorithm for betweenness centrality. J Math Soc 25(2):163–177CrossRefzbMATHGoogle Scholar
  12. 12.
    Brandes U (2008) On variants of shortest-path betweenness centrality and their generic computation. Soc Netw 30:136–145CrossRefGoogle Scholar
  13. 13.
    Brandes U, Erlebach T (eds) (2005) Network analysis—methodological foundations. LNCS, vol 3418. SpringerGoogle Scholar
  14. 14.
    Brandes U, Kenis P, Wagner D (2003) Communicating centrality in policy network drawings. IEEE Trans Vis Comput Graph 9:241–253CrossRefGoogle Scholar
  15. 15.
    Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stat R, Tomkins A, Wiener J (2000) Graph structure in the web. Comput Netw 33:309–320CrossRefGoogle Scholar
  16. 16.
    Coulomb S, Bauer M, Bernard D, Marsolier-Kergoat M-C (2005) Gene essentiality and the topology of protein interaction networks. Proc R Soc Lond B 272:1721–1725CrossRefGoogle Scholar
  17. 17.
    Dorn I, Lindenblatt A, Zweig KA (2012) The trilemma of network analysis. In: Proceedings of the 2012 IEEE/ACM international conference on advances in social network analysis and mining, IstanbulGoogle Scholar
  18. 18.
    Everett MG, Borgatti SP (1999) The centrality of groups and classes. J Math Soc 23(3):181–201MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Everett M, Borgatti SP (2005) Ego network betweenness. Soc Netw 27:31–38CrossRefGoogle Scholar
  20. 20.
    Everett MG, Borgatti SP (2005) Models and methods in network analysis. Extending centrality. Cambridge University Press, CambridgeGoogle Scholar
  21. 21.
    Faust K (1997) Centrality in affiliation networks. Soc Netw 19:157–191CrossRefGoogle Scholar
  22. 22.
    Freeman LC (1977) A set of measures of centrality based upon betweenness. Sociometry 40:35–41Google Scholar
  23. 23.
    Freeman LC (1979) Centrality in networks: I. conceptual clarifications. Soc Netw 1:215–239CrossRefGoogle Scholar
  24. 24.
    Goh K-I, Kahng B, Kim D (2001) Universal behavior of load distribution in scale-free networks. Phys Rev Lett 87(27):278701CrossRefGoogle Scholar
  25. 25.
    Goh K-I, Eulsik O, Jeong H, Kahng B, Kim D (2002) Classification of scale-free networks. Nature 99(20):12583–12588MathSciNetzbMATHGoogle Scholar
  26. 26.
    Guimerá R, Amaral LAN (2004) Modeling the world-wide airport network. Eur Phys J B 38:381–385Google Scholar
  27. 27.
    Guimerá R, Mossa S, Turtschi A, Amaral LAN (2005) The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc Natl Acad Sci 102:7794–7799Google Scholar
  28. 28.
    Hage P, Harary F (1995) Eccentricity and centrality in networks. Soc Netw 17:57–63CrossRefGoogle Scholar
  29. 29.
    Holme P (2003) Congestion and centrality in traffic flow on complex networks. Adv Complex Syst 6:163CrossRefzbMATHGoogle Scholar
  30. 30.
    Jacob R, Koschützki D, Lehmann KA, Peeters L, Tenfelde-Podehl D (2005) Network analysis—methodological foundations. Algorithms for centrality indices. SpringerGoogle Scholar
  31. 31.
    Jeong H, Mason SP, Barabási A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42Google Scholar
  32. 32.
    Jordan C (1869) Sur les assemblages de lignes. Journal für reine und angewandte Mathematik 70:185–190MathSciNetCrossRefGoogle Scholar
  33. 33.
    Katz L (1953) A new index derived from sociometric data analysis. Psychometrika 18:39–43CrossRefzbMATHGoogle Scholar
  34. 34.
    Koschützki D, Schreiber F (2004) Comparison of centralities for biological networks. In: Proceedings of the German conference of bioinformatics (GCB’04)Google Scholar
  35. 35.
    Koschützki D, Lehmann KA, Peeters L, Richter S, Tenfelde-Podehl D, Zlotowski O (2005) Network analysis—methodological foundations. Centrality indices. LNCS, vol 3418 of Brandes and Erlebach [13], pp 16–60Google Scholar
  36. 36.
    Koschützki D, Lehmann KA, Tenfelde-Podehl D, Zlotowski O (2005) Network analysis—methodological foundations. Advanced centrality concepts. LNCS, vol 3418 of Brandes and Erlebach [13], pp 83–110Google Scholar
  37. 37.
    Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Trans Knowl Discovery Data (TKDD) 1(1):No 2Google Scholar
  38. 38.
    Newman ME (2010) Networks: an introduction. Oxford University Press, New YorkCrossRefzbMATHGoogle Scholar
  39. 39.
    Newman MEJ (2001) Scientific collaboration networks. ii. shortest paths, weighted networks, and centrality. Phys Rev E 64:016132CrossRefGoogle Scholar
  40. 40.
    Newman MEJ (2004) Analysis of weighted networks. Phys Rev E 70(5):056131Google Scholar
  41. 41.
    Newman MEJ (2005) A measure of betweenness centrality based on random walks. Soc Netw 27:39–54Google Scholar
  42. 42.
    Pitts FR (1965) A graph theoretic approach to historical geography. Prof Geogr 17(5):15–20CrossRefGoogle Scholar
  43. 43.
    Ruhnau B (2000) Eigenvector-centrality—a node centrality? Soc Netw 22(4):357–365CrossRefGoogle Scholar
  44. 44.
    Sabidussi G (1966) The centrality index of a graph. Psychometrika 31:581–603MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Sade DS (1989) Sociometrics of macaca mulatta III: n-path centrality in grooming networks. Soc Netw 11:273–292Google Scholar
  46. 46.
    Shimbel A (1953) Structural parameters of communication networks. Bull Math Biophys 15:501–507MathSciNetCrossRefGoogle Scholar
  47. 47.
    Sudarshan Iyengar SR, Abhiram Natarajan KZ, Veni Madhavan CE (2011) A network analysis approach to understand human-wayfinding problem. In: Proceedings of the 33rd annual meeting of the cognitive science societyGoogle Scholar
  48. 48.
    Sudarshan Iyengar SR, Veni Madhavan CE, Zweig KA, Natarajan A (2012) Understanding human navigation using network analysis. TopiCS—Topics Cogn Sci 4(1):121–134Google Scholar
  49. 49.
    Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442 JuneCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2016

Authors and Affiliations

  1. 1.TU Kaiserslautern, FB Computer ScienceGraph Theory and Analysis of Complex NetworksKaiserslauternGermany

Personalised recommendations