Random Graphs and Network Models

  • Katharina A. ZweigEmail author
Part of the Lecture Notes in Social Networks book series (LNSN)


One of the most important concepts in network analysis is to understand the structure of a given graph with respect to a set of suitably randomized graphs, a so-called random graph model. Structures which are found to be significantly different from those expected in the random graph model require a new random graph model which exemplifies how the structure might emerge in the complex network. In this chapter the most common random graph models are introduced: the classic Erdős-Rényi model, the small-world model by Watts and Strogatz, and the preferential attachment model by Barabási and Albert.


  1. 1.
    Amaral LAN, Scala A, Barthélémy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci 97:11149–11152CrossRefGoogle Scholar
  2. 2.
    Barabási A-L (2009) Scale-free networks: a decade and beyond. Science 325:412–413MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barabási A-L, Jeong H, Albert R (1999) The diameter of the world wide web. Nature 401:130CrossRefGoogle Scholar
  5. 5.
    Barrat A, Weigt M (2000) On the properties of small-world networks. Eur Phys J B 13:547–560CrossRefGoogle Scholar
  6. 6.
    Barthélémy M, Nunes Amaral LA (1999) Small-world networks: evidence for a crossover picture. Am Phys Soc 82(15):3180–3183Google Scholar
  7. 7.
    Bollobás B (2001) Random graphs. Cambridge studies in advanced mathematics, vol 73, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  8. 8.
    Bollobás B (2004) Extremal graph theory, dover edn. Dover Publications Inc., Mineola (USA)zbMATHGoogle Scholar
  9. 9.
    Bollobás B, Riordan OM (2003) Handbook of graphs and networks. In: Bornholdt S, Schuster H-G (eds) Mathematical results on scale-free random graphs. Springer, Heidelberg, pp 1–34Google Scholar
  10. 10.
    Bonacich P (2004) The invasion of the physicists. Soc Netw 26:258–288Google Scholar
  11. 11.
    Buchanan M (2002) Nexus: small worlds and the groundbreaking science of networks. W.W. Norton & Company, New YorkGoogle Scholar
  12. 12.
    Callaway DS, Hopcroft JE, Kleinberg JM, Newman MEJ, Strogatz SH (2001) Are randomly grown graphs really random? Phys Rev E 604(4):1902Google Scholar
  13. 13.
    Chung F, Linyuan L (2006) Complex graphs and networks. American Mathematical Society, USACrossRefzbMATHGoogle Scholar
  14. 14.
    Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev Mod Phys 51(4):661–703MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    da Fontoura Costa L, Rodrigues FA, Travieso G, Villas Boas PR (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56:167–242CrossRefGoogle Scholar
  16. 16.
    Dorogovtsev SN, Mendes JFF (2003) Evolution of networks. Oxford University PressGoogle Scholar
  17. 17.
    Dorogovtsev SN (2010) Lectures on complex networks. Oxford University Press, New YorkCrossRefzbMATHGoogle Scholar
  18. 18.
    Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the internet topology. Comput Commun Rev 29:251–262CrossRefzbMATHGoogle Scholar
  19. 19.
    Gilbert EN (1959) Random graphs. Ann Math Statist 30:1141–1144CrossRefGoogle Scholar
  20. 20.
    Gladwell M (1999) The six degrees of Lois Weisberg. New Yorker January:52–63Google Scholar
  21. 21.
    Kleinberg J (2000) Navigation in a small world. Nature 406:845CrossRefGoogle Scholar
  22. 22.
    Kleinberg J (2000) The small-world phenomenon: an algorithmic perspective. In: Proceedings of the 32nd ACM symposium on theory of computing, pp 163–170Google Scholar
  23. 23.
    Krapivsky PL, Redner S, Leyvraz F (2000) Connectivity of growing random networks. Phys Rev Lett 85:4629–4632CrossRefGoogle Scholar
  24. 24.
    Krauth W (2006) Statistical mechanics: algorithms and computations. Oxford University Press, New YorkzbMATHGoogle Scholar
  25. 25.
    Lehmann KA, Post HD, Kaufmann M (2006) Hybrid graphs as a framework for the small-world effect. Phys Rev E 73:056108CrossRefGoogle Scholar
  26. 26.
    Lusher D, Koskinen J, Robins G (eds) (2013) Exponential random graph models for social networks: theory, methods, and applications. Cambridge University Press, New YorkGoogle Scholar
  27. 27.
    Newman M (2000) Models of the small world: a review. J Stat Phys 101:819–841CrossRefzbMATHGoogle Scholar
  28. 28.
    Newman ME (2010) Networks: an introduction. Oxford University Press, New YorkCrossRefzbMATHGoogle Scholar
  29. 29.
    Newman MEJ, Watts DJ (1999) Renormalization group analysis of the small-world network model. Phys Lett A 263:341–346MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Newman MEJ, Watts DJ, Strogatz SH (2002) Random graph models of social networks. Proc Natl Acad Sci USA 99:2566–2572CrossRefzbMATHGoogle Scholar
  31. 31.
  32. 32.
    Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1553CrossRefGoogle Scholar
  33. 33.
    Robins G (2011) The SAGE handbook of social network analysis. Exponential random graph models for social networks. SAGE Publications Ltd., London, pp 484–500Google Scholar
  34. 34.
    Scholtes I. Analysis of non-markovian temporal networks—an educational tutorial using the free python module pyTempNets.
  35. 35.
    Scholtes I, Wider N, Pfitzner R, Garas A, Tessone CJ, Schweitzer F (2014) Causality-driven slow-down and speed-up of diffusion in non-markovian temporal networks. Nat Commun 5:5024CrossRefGoogle Scholar
  36. 36.
    Scott J, Carrington PJ (eds) (2011) The SAGE handbook of social network analysis. SAGE Publications Ltd., LondonGoogle Scholar
  37. 37.
    Simon HA (1955) On a class of skew distribution functions. Biometrika 42(3–4):425–440MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Solé RV, Pastor-Satorras R, Smith E, Kepler TB (2002) A model of large-scale proteome evolution. Adv Complex Syst 5:43–54CrossRefzbMATHGoogle Scholar
  39. 39.
    Solomonoff R, Rapoport A (1951) Connectivity of random nets. Bull Math Biophys 13:107–117MathSciNetCrossRefGoogle Scholar
  40. 40.
    van Duijn MAJ, Huisman M (2011) The SAGE handbook of social network analysis. Statistical models for ties and actors. SAGE Publications Ltd., London, pp 459–483Google Scholar
  41. 41.
    Vázquez A, Flammini A, Maritan A, Vespignani A (2002) Modeling of protein interaction networks. ComPlexUs 1:38–44Google Scholar
  42. 42.
    Watts DJ (1999) Small worlds—the dynamics of networks between order and randomness. Princeton studies in complexity, Princeton University PressGoogle Scholar
  43. 43.
    Watts DJ (2003) Six degrees–the science of a connected age. W.W. Norton & Company, New YorkGoogle Scholar
  44. 44.
    Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2016

Authors and Affiliations

  1. 1.TU Kaiserslautern, FB Computer ScienceGraph Theory and Analysis of Complex NetworksKaiserslauternGermany

Personalised recommendations