Literacy: When Is a Network Model Explanatory?

  • Katharina A. ZweigEmail author
Part of the Lecture Notes in Social Networks book series (LNSN)


Network analysis relies strongly on network models for several reasons: they show that a certain structure can be generated by a set of simple rules, they predict certain behaviors and functions, and they can be used as null-models. In this chapter, the question discussed is whether the classic network models are likely to be explanatory network models for complex systems like metabolic networks, the internet , or collaboration networks.


Degree Distribution Preferential Attachment Network Process Random Graph Model Preferential Attachment Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adamic LA, Lento TM, Adar E, Ng PC (2014) Information evolution in social networks. Technical report, Facebook, uploaded to arXiv as arXiv:1402.6792v1
  2. 2.
    Barabási A-L (2009) Scale-free networks: a decade and beyond. Science 325:412–413MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barabási A-L (2012) Luck or reason. Nature 489:507–508CrossRefGoogle Scholar
  4. 4.
    Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barabási A-L, Jeong H, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific collaborations. Phys A 311:590–614Google Scholar
  6. 6.
    Bianconi G, Barabási A-L (2001) Competition and multiscaling in evolving networks. Europhys Lett 54(4):436–442CrossRefGoogle Scholar
  7. 7.
    Borgatti SP (2005) Centrality and network flow. Soc Netw 27:55–71CrossRefGoogle Scholar
  8. 8.
    Chen Q, Chang H, Govindan R, Jamin S, Shenker SJ, Willinger W (2002) The origin of power laws in internet topologies revisited. In: Twenty-first annual joint conference of the IEEE computer and communications societies (INFOCOM 2002), vol 2, pp 608–617Google Scholar
  9. 9.
    Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev Mod Phys 51(4):661–703Google Scholar
  10. 10.
    de Silva E, Stumpf MPH (2005) Complex networks and simple models in biology. J R Soc Interface 2:419–430Google Scholar
  11. 11.
    Dodds PS, Watts DJ, Newman MEJ (2002) Identity and search in social networks. Science 296:1302–1305Google Scholar
  12. 12.
    Dorn I, Lindenblatt A, Zweig KA (2012) The trilemma of network analysis. In: Proceedings of the 2012 IEEE/ACM international conference on Advances in social network analysis and mining, IstanbulGoogle Scholar
  13. 13.
    Doyle JC, Alderson DL, Li L, Low S, Roughan M, Shalunov S, Tanaka R, Willinger W (2005) The “robust yet fragile” nature of the Internet. Proc Natl Acad Sci 102(41):14497–14502CrossRefGoogle Scholar
  14. 14.
    Dyson F (2004) Turning points A meeting with Enrico Fermi. Nature 427:297CrossRefGoogle Scholar
  15. 15.
    Ferrer i Cancho R, Solé RV (2001) The small world of human language. Proc R Soc Lond B 268:2261–2265Google Scholar
  16. 16.
    Friedkin NE (1983) Horizons of observability and limits of informal control in organizations. Soc Forces 62:54–77CrossRefGoogle Scholar
  17. 17.
    Hormozdiari F, Berenbrink P, Przulj N, Cenk Sahinalp S (2007) Not all scale-free networks are born equal: the role of the seed graph in PPI network evolution. Plos Comput Biol 3(7):e118Google Scholar
  18. 18.
    Jeong H, Mason SP, Barabási A-L, ZN Oltvai (2001) Lethality and centrality in protein networks. Nature 411:41–42Google Scholar
  19. 19.
    Jeong H, Neda Z, Barabási A-L (2003) Measuring preferential attachment for evolving networks. Europhys Lett 61(4):567–572CrossRefGoogle Scholar
  20. 20.
    Keller EF (2005) Revisiting “scale-free” networks. BioEssays 27:1060–1068Google Scholar
  21. 21.
    Khanin R, Wit E (2006) How scale-free are biological networks. J Comput Biol 13(3):810–818MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kleinberg J (2000) Navigation in a small world. Nature 406:845CrossRefGoogle Scholar
  23. 23.
    Kleinberg J (2000) The small-world phenomenon: an algorithmic perspective. In: Proceedings of the 32nd ACM symposium on theory of computing, pp 163–170Google Scholar
  24. 24.
    Kleinberg J (2001) Small–world phenomena and the dynamics of information. In: Proceedings of the 13th advances in neural information processing systemsGoogle Scholar
  25. 25.
    Krapivsky PL, Redner S, Leyvraz F (2000) Connectivity of growing random networks. Phys Rev Lett 85:4629–4632CrossRefGoogle Scholar
  26. 26.
    Krishnamurty B, Willinger W, Gill P, Arlitt M (2011) A Socratic method for validation of measurement-based network research. Comput Commun 34(1):43–53CrossRefGoogle Scholar
  27. 27.
    Lappe M, Holm L (2004) Unravelling protein interaction networks with near-optimal efficiency. Nat Biotechnol 22:98–103CrossRefGoogle Scholar
  28. 28.
    Lehmann KA, Post HD, Kaufmann M (2006) Hybrid graphs as a framework for the small-world effect. Phys Rev E 73:056108CrossRefGoogle Scholar
  29. 29.
    Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws, shrinking diameters, and possible explanations. In: Proceedings of the 11th ACM SIGKDDGoogle Scholar
  30. 30.
    Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Trans Knowl Discovery Data (TKDD) 1(1):No 2Google Scholar
  31. 31.
    Li L, Alderson D, Doyle JC, Willinger W (2006) Towards a theory of scale-free graphs: definition, properties, and implications. Internet Math 2(4):431–523MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Lima-Mendez G, van Helden J (2009) The powerful law of the power law and other myths in network biology. Mol BioSyst 5:1482–1493CrossRefGoogle Scholar
  33. 33.
    Mayer J, Khairy K, Howard J (2010) Drawing an elephant with four complex parameters. Am J Phys 78(6):648–649CrossRefGoogle Scholar
  34. 34.
    Newman MEJ, Watts DJ (1999) Renormalization group analysis of the small-world network model. Phys Lett A 263:341–346Google Scholar
  35. 35.
    Simon HA (1955) On a class of skew distribution functions. Biometrika 42(3–4):425–440MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Solé RV, Pastor-Satorras R, Smith E, Kepler TB (2002) A model of large-scale proteome evolution. Adv Complex Syst 5:43–54CrossRefzbMATHGoogle Scholar
  37. 37.
    Stumpf MPH, Ingram PJ, Nouvel I, Wiuf C (2005) Transactions on computational system biology III. Statistical model selection methods applied to biological networks. LNBI, vol 3737. Springer, Berlin, pp 65–77Google Scholar
  38. 38.
    Sudarshan Iyengar SR, Veni Madhavan CE, Zweig KA, Natarajan A (2012) Understanding human navigation using network analysis. TopiCS—Topics Cogn Sci 4(1):121–134Google Scholar
  39. 39.
    Tanaka R (2005) Scale-rich metabolic networks. Phys Rev Lett 94:168101CrossRefGoogle Scholar
  40. 40.
    Vázquez A, Flammini A, Maritan A, Vespignani A (2002) Modeling of protein interaction networks. ComPlexUs 1:38–44CrossRefGoogle Scholar
  41. 41.
    Walsh T (1999) Search in a small world. In: Proceedings of the sixteenth international joint conference on artificial intelligence, IJCAI 99, pp 1172–1177Google Scholar
  42. 42.
    Watts DJ (2010) Everything is obvious—once you know the answer. Crown Publishing Group, New YorkGoogle Scholar
  43. 43.
    Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442CrossRefGoogle Scholar
  44. 44.
    Weisberg M (2013) Simulation and similarity: using models to understand the world. Oxford University PressGoogle Scholar
  45. 45.
    Zweig KA (2015) Towards a theoretical framework for analyzing complex linguistic networks. Are word-adjacency networks networks? Springer, HeidelbergGoogle Scholar
  46. 46.
    Zweig KA, Zimmermann K (2008) Wanderer between the worlds—self-organized network stability in attack and random failure scenarios. In: Proceedings of the 2nd IEEE SASOGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2016

Authors and Affiliations

  1. 1.TU Kaiserslautern, FB Computer ScienceGraph Theory and Analysis of Complex NetworksKaiserslauternGermany

Personalised recommendations