Advertisement

Literacy: Data Quality, Entities, and Nodes

  • Katharina A. ZweigEmail author
Chapter
Part of the Lecture Notes in Social Networks book series (LNSN)

Abstract

Chapter  5 (“Network representations of complex systems”) summarized general aspects of how to represent a set of nodes and relationships in a complex network. In this and the following chapters, various fallacies in this process are discussed, which impair the interpretability of the results. This chapter concentrates on general problems with the data on which a network representation is based and on problems regarding the chosen set of entities. The following chapter “Literacy: Relationships and relations” focuses on problems regarding the choice of a relationship represented in the network.

Keywords

Sampling Scheme Cluster Coefficient Network Representation Network Boundary Full Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barabási A-L. Network science. http://barabasilab.neu.edu/networksciencebook/
  2. 2.
    Barabási A-L, Jeong H, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific collaborations. Phys A 311:590–614Google Scholar
  3. 3.
    Bearman P, Parigi P (2004) Cloning headless frogs and other important matters: conversation topics and network structure. Soc Forces 83(2):535–557CrossRefGoogle Scholar
  4. 4.
    Brandes U, Robins G, McCranie A, Wasserman S (2013) What is network science? Netw Sci 1(1):EditorialGoogle Scholar
  5. 5.
    Burt RS (1997) A note on social capital and network content. Soc Netw 19:355–373CrossRefGoogle Scholar
  6. 6.
    Butts CT (2009) Revisiting the foundations of network analysis. Science 325(5939):414–416MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen Q, Chang H, Govindan R, Jamin S, Shenker SJ, Willinger W (2002) The origin of power laws in internet topologies revisited. In: Twenty-first annual joint conference of the IEEE computer and communications societies (INFOCOM 2002), vol 2, pp 608–617Google Scholar
  8. 8.
    Conlan AJK, Eames KTD, Gage JA, von Kirchbach JC, Ross JV, Saenz RA, Gog JR (2011) Measuring social networks in British primary schools through scientific engagement. Proc R Soc Lond B 278(1711):1467–1475CrossRefGoogle Scholar
  9. 9.
    Coulomb S, Bauer M, Bernard D, Marsolier-Kergoat M-C (2005) Gene essentiality and the topology of protein interaction networks. Proc R Soc Lond B 272:1721–1725CrossRefGoogle Scholar
  10. 10.
    De Las Rivas J, Fontanillo C (2010) Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6(6):e100807Google Scholar
  11. 11.
    Deane C, Salwiński L, Xenarios I, Eisenberg D (2002) Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol Cell Proteomics 1(5):349–356CrossRefGoogle Scholar
  12. 12.
    Dorn I, Lindenblatt A, Zweig KA (2012) The trilemma of network analysis. In: Proceedings of the 2012 IEEE/ACM international conference on advances in social network analysis and mining, IstanbulGoogle Scholar
  13. 13.
    Doyle JC, Alderson DL, Li L, Low S, Roughan M, Shalunov S, Tanaka R, Willinger W (2005) The “robust yet fragile” nature of the Internet. Proc Natl Acad Sci 102(41):14497–14502CrossRefGoogle Scholar
  14. 14.
    Goldberg DS, Roth FP (2003) Assessing experimentally derived interactions in a small world. Proc Natl Acad Sci 100(8):4372–4376MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Goldenberg J, Libai B, Muller E, Stremersch S (2010) The evolving social network of marketing scholoars. Mark Sci 29:561–567CrossRefGoogle Scholar
  16. 16.
    Grannis R (2010) Six degrees of “who cares?”. Am J Sociol 115(4):991–1017CrossRefGoogle Scholar
  17. 17.
    Horvát E-Á, Hanselmann M, Hamprecht FA, Zweig KA (2012) One plus one makes three (for social networks). PLoS ONE 7(4):e34740Google Scholar
  18. 18.
    Jeong H, Mason SP, Barabási A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42Google Scholar
  19. 19.
    Jernigan C, Mistree B (2009) gaydar: Facebook friendships expose sexual orientation. First Monday [Online] 14(10). http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/viewArticle/2611/2302
  20. 20.
    Kossinets G (2006) Effects of missing data in social networks. Soc Netw 28(3):247–268CrossRefGoogle Scholar
  21. 21.
    Krishnamurty B, Willinger W, Gill P, Arlitt M (2011) A Socratic method for validation of measurement-based network research. Comput Commun 34(1):43–53CrossRefGoogle Scholar
  22. 22.
    Laumann EO, Marsden PV, Prensky D (1992) Research methods in social network analysis. The boundary specification problem in network analysis. Transaction Publishers, New Brunswick, pp 61–88 (reprint)Google Scholar
  23. 23.
    Leskovec J, Faloutsos C (2006) Sampling from large graphs. In: Proceedings of the 12th ACM SIGKDD conference on knowledge discovery and data mining (KDD’06)Google Scholar
  24. 24.
    Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws, shrinking diameters, and possible explanations. In: Proceedings of the 11th ACM SIGKDDGoogle Scholar
  25. 25.
    Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Trans Knowl Discovery Data (TKDD) 1(1):No 2Google Scholar
  26. 26.
    Li L, Alderson D, Doyle JC, Willinger W (2006) Towards a theory of scale-free graphs: definition, properties, and implications. Internet Math 2(4):431–523MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inf Sci Technol 58(7):1019–1031CrossRefGoogle Scholar
  28. 28.
    Lichtenwalter RN, Dame N, Lussier JT, Chawla NV (2010) New perspectives and methods in link prediction. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data miningGoogle Scholar
  29. 29.
    Lindamood J, Heatherly R, Kantarcioglu M, Li X (2009) Inferring private information using social network data. In: Proceedings of the world wide web conference 2009 in MadridGoogle Scholar
  30. 30.
    Mackay JP, Sunde M, Lowry JA, Crossley M, Matthews JM (2007) Protein interactions: is seeing believing? TRENDS Biochem Sci 32(12):530–531CrossRefGoogle Scholar
  31. 31.
    Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G (2009) Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci 107(14):6286–6291CrossRefGoogle Scholar
  32. 32.
    Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913CrossRefGoogle Scholar
  33. 33.
    McCallum QE (2012) Bad data handbook. O’Reilly Media Inc., SebastopolGoogle Scholar
  34. 34.
    McCarty C, Killworth PD, Russell Bernard H, Johnsen EC, Shelley GA (2001) Comparing two methods for estimating network size. Hum Organ 60(1):28–39Google Scholar
  35. 35.
    Morris M (1993) Telling tails explain the discrepancy in sexual partner reports. Nature 365:437–440CrossRefGoogle Scholar
  36. 36.
    Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the web. ManuscriptGoogle Scholar
  37. 37.
    Pohjanpää AKJ, Rimpelä AH, Rimpelä M, Karvonen JS (1997) Is the strong positive correlation between smoking and use of alcohol consistent over time? A study of Finnish adolescents from 1977 to 1993. Health Educ Res Theory Pract 12(1):25–36CrossRefGoogle Scholar
  38. 38.
    Schoch D, Brandes U (2014) Centrality as a predictor of lethal proteins: performance and robustness. In: MMB & DFT 2014, Proceedings of the international workshops SOCNET 2014 and FGENET 2014, pp 11–18Google Scholar
  39. 39.
    Scholtes I, Wider N, Pfitzner R, Garas A, Tessone CJ, Schweitzer F (2014) Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks. Nat Commun 5:5024Google Scholar
  40. 40.
    Sevtsuk A (2014) Encyclopedia on social network analysis and mining. Analysis and planning of urban networks. Springer, Heidelberg, pp 25–37Google Scholar
  41. 41.
    Stumpf MPH, Wiu C (2005) Sampling properties of random graphs: the degree distribution. Phys Rev E 72:036118Google Scholar
  42. 42.
    Stumpf MPH, Wiuf C, May RM (2005) Subnets of scale-free networks are not scale-free: sampling properties of networks. PNAS 102(12):4221–4224Google Scholar
  43. 43.
    Tangmunarunkit H, Govindan R, Jamin S, Shenker S, Willinger W (2002) Network topology generators: degree based vs. structural. In: Proceedings of the SIGCOMM’02Google Scholar
  44. 44.
    Traud AL, Kelsic ED, Much PJ, Porter MA (2010) Community structure in online collegiate social networks. SIAM Rev 53(3):526–543Google Scholar
  45. 45.
    University of Oregon Route Views Project. Route views. http://www.antc.uoregon.edu/route-views/
  46. 46.
    Willinger W, Alderson D, Doyle JC (2009) Mathematics and the internet: a source of enormous confusion and great potential. Not AMS 56(5):586–599MathSciNetzbMATHGoogle Scholar
  47. 47.
    Zheleva E, Getoor L (2009) To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles. In: Proceedings of the WWW 2009, Madrid, SpainGoogle Scholar
  48. 48.
    Zheng T, Salganik MJ, Gelman A (2006) How many people do you know in prison?: using overdispension in count data to estimate social structure in networks. J Am Stat Assoc 101(474):409–423MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2016

Authors and Affiliations

  1. 1.TU Kaiserslautern, FB Computer ScienceGraph Theory and Analysis of Complex NetworksKaiserslauternGermany

Personalised recommendations