Advertisement

From Simple Management of Defects to Knowledge Discovery to Optimize Maintenance

  • Grégory ClaudeEmail author
  • Marc Boyer
  • Gaël Durand
  • Florence Sèdes
Chapter
  • 421 Downloads

Abstract

To ensure the quality of a final product, processing and traceability of defects which occur during its industrial manufacturing process has become an essential activity. Indeed, management of information relative to defects may represent up to 80% of the final product information volume. Therefore, the processing of this mass of information provides a real value-added to, for example, understand scrapping reasons, reduce or even remove this scrapping and anticipate manufacturing issues. A parallel can be drawn with software defects and the numerous follow-up systems for bugs management activities. We can name IBM Rational Clearquest

Keywords

Preventive Maintenance Maintenance Activity Vector Space Model Solution Group Problem Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abdi, H., Williams, L.J.: Principal components analysis. Wiley Interdiscip. Rev. Comput. Stat. 2(4), 433–459 (2010)CrossRefGoogle Scholar
  2. 2.
    Ahuja, I.P.S., Khamba, J.S.: Total productive maintenance: literature review and directions. Int. J. Qual. Reliab. Manag. 25(7), 709–756 (2008)CrossRefGoogle Scholar
  3. 3.
    Alloui, I.: Conciliating property stability and system evolution through software model analysis. GDR Génie de la Programmation Logicielle 2009, pp. 224–231 (2009)Google Scholar
  4. 4.
    Alsyouf, I.: The role of maintenance in improving companies’ productivity and profitability. Int. J. Prod. Econ. 105(1), 70–78 (2007)CrossRefGoogle Scholar
  5. 5.
    Angione, P.V.: On the equivalence of boolean and weighted searching based on the convertibility of query forms. J. Am. Soc. Inform. Sci. 26(2), 112–124 (1975)CrossRefGoogle Scholar
  6. 6.
    Barros, S.: Analyse a priori des conséquences de la modification de systèmes logiciels : de la théorie à la pratique. PhD thesis, Université Paul Sabatier, Toulouse 3 (1997)Google Scholar
  7. 7.
    Cabanac, G., Chevalier, M., Chrisment, C., et al.: Social validation of collective annotations: definition and experiment. J. Am. Soc. Inform. Sci. Tech. 61(2), 271–287 (2010)Google Scholar
  8. 8.
    Candillier, L.: Contextualisation, visualisation et évaluation en apprentissage non supervisé. PhD thesis, Université Charles de Gaulle, Lille 3 (2006)Google Scholar
  9. 9.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–58 (2009)CrossRefGoogle Scholar
  10. 10.
    Deerwester, S., Dumais, S.T., Furnas, G.W., et al.: Indexing by latent semantic analysis. J. Am. Soc. Inform. Sci. 41(6), 391–407 (1990)CrossRefGoogle Scholar
  11. 11.
    Despujols, A.: Approche fonctionnelle de la maintenance. Techniques de l’Ingénieur, AG4710, 1–14 (2004)Google Scholar
  12. 12.
    Dowlatshahi, D.: The role of industrial maintenance in the maquiladora industry: an empirical analysis. Int. J. Prod. Econ. 114(1), 298–307 (2008)CrossRefGoogle Scholar
  13. 13.
    Fatudimu, I.T., Musa, A.G., Ayo, C.K., et al.: Knowledge discovery in online repositories: a text mining approach. Eur. J. Sci. Res. 22(2), 241–250 (2008)Google Scholar
  14. 14.
    Feldman, R., Fresko, M., Kinar, Y., et al.: Text mining at the term level. In: Zytkow, J.M., Quafafou, M. (eds.) PKDD, Second European Symposium. LNCS, vol. 1510, pp. 65–73. Springer, Heidelberg (1998)Google Scholar
  15. 15.
    Giess, M.D., Wild, P.J., McMahon, C.A.: The generation of faceted classification schemes for use in the organisation of engineering design documents. Int. J. Inform. Manag. 28(5), 379–390 (2008)CrossRefGoogle Scholar
  16. 16.
    Goh, Y.M., Giess, M.D., McMahon, C.A., et al.: From faceted classification to knowledge discovery of semi-structured text records. In: Abraham, A., Hassanien A.-E., Carvalho A.P. de L.F. de, Snasel V. (eds) Foundations of Computational Intelligence Volume 6. Studies in Computational Intelligence, vol. 206, pp. 151–169. Springer, Heidelberg (2009)Google Scholar
  17. 17.
    Gurrutxaga, I., Arbelaitz, O., Martín, J.I., et al.: A stable incremental hierarchical clustering algorithm. In: 11th International Conference on Enterprise Information Systems, pp. 300–304 (2009)Google Scholar
  18. 18.
    Haziza, M., Voidrot, J.F., Minor, E., et al.: Software maintenance: an analysis of industrial needs and constraints. In: Conference on Software Maintenance, pp. 18–26 (1992)Google Scholar
  19. 19.
    He, L.L., Bai, H.T., Sun, J.G., Jin, C.Z.: A general incremental hierarchical clustering method. Comput. Meth. 1303–1307 (2006)Google Scholar
  20. 20.
    Komonen, K.: A cost model of industrial maintenance for profitability analysis and benchmarking. Int. J. Prod. Econ. 79(1), 15–31 (2002)CrossRefGoogle Scholar
  21. 21.
    Lambolez, P.-Y.: Recherche d’informations pour la maintenance logicielle. PhD thesis, Université Paul Sabatier, Toulouse 3 (1994)Google Scholar
  22. 22.
    Levner, E., Zuckerman, D., Meirovich, G.: Total quality management of a production-maintenance system: a network approach. Int. J. Prod. Econ. 56–57(1), 407–421 (1998)CrossRefGoogle Scholar
  23. 23.
    Lortal, G., Lewkowicz, M., Todirascu-Courtier, A.: Annotations: a way to capture experience. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES LNCS, vol. 4251, pp. 1131–1138. Springer, Heidelberg (2006)Google Scholar
  24. 24.
    Lortal, G., Lewkowicz, M., Todirascu-Courtier, A.: Des activités d’annotation : de la glose au document. In: Salembier, P., Zacklad, M. (eds.) Annotations dans les Documents pour l’Action, pp. 153–171, Hermes-Lavoisier, Paris (2007)Google Scholar
  25. 25.
    Nguyen, Q.H., Rayward-Smith, V.J.: Internal quality measures for clustering in metric spaces. Int. J. Bus. Intell. Data. Min. 3(1), 4–29 (2008)CrossRefGoogle Scholar
  26. 26.
    Porter, M.F.: An algorithm for suffix stripping. Program: Electronic Library and Information Systems 14(3), 130–137 (1980)CrossRefGoogle Scholar
  27. 27.
    Porter, M.F.: An algorithm for suffix stripping. Program: Electronic Library and Information Systems 40(3), 211–218 (2006)CrossRefGoogle Scholar
  28. 28.
    Prieto-Diaz, R., Freeman, P.: Classifying software for reusability. IEEE Software 4(1), 6–16 (1987)CrossRefGoogle Scholar
  29. 29.
    Raskutti, B., Leckie, C.: An evaluation of criteria for measuring the quality of clusters. In: 16th Joint Conference on Artificial Intelligence, pp. 905–910 (1999)Google Scholar
  30. 30.
    Ribert, A., Ennaji, A., Lecourtier, Y.: An incremental hierarchical clustering. In: Vision Interface Conference, pp. 586–591 (1999)Google Scholar
  31. 31.
    Robertson, S.E., Jones, K.S.: Relevance weighting of search terms. J. Am. Soc. Inform. Sci. 27(3), 129–146 (1976)CrossRefGoogle Scholar
  32. 32.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inform. Process. Manag. 24(5), 513–523 (1988)CrossRefGoogle Scholar
  33. 33.
    Salton, G., McGill, M.J.: Introduction du modern information retrieval. McGraw-Hill, New York (1983)Google Scholar
  34. 34.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Comm. ACM 18(11), 613–620 (1975)zbMATHCrossRefGoogle Scholar
  35. 35.
    Stewart, G.W.: On the early history of singular value decomposition. SIAM Rev., Society for Industrial and Applied Mathematics 35(4), 551–566 (1993)Google Scholar
  36. 36.
    Swanson, B.: The dimensions of maintenance. In: 2nd International Conference on Software Engineering, pp. 492–497. IEEE Computer Society Press (1976)Google Scholar
  37. 37.
    Waeyenbergh, G., Pintelon, L.: Maintenance concept development: a case study. Int. J. Prod. Econ. 89(3), 395–405 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Vienna 2012

Authors and Affiliations

  • Grégory Claude
    • 1
    • 2
    • 3
    Email author
  • Marc Boyer
    • 4
  • Gaël Durand
    • 2
    • 3
  • Florence Sèdes
    • 1
  1. 1.Université de Toulouse, Université Paul Sabatier, IRIT UMR 5505Toulouse cedex 9France
  2. 2.Intercim LLCEaganUSA
  3. 3.IntercimParisFrance
  4. 4.Université de Toulouse, Université Paul Sabatier, Inserm UMR 825Toulouse cedex 9France

Personalised recommendations