Advertisement

Observer-Based Adaptive Fuzzy Control of Nonlinear Time-Delay Systems

  • Shabnam PourdehiEmail author
  • Dena Karimipour
  • Navid Noroozi
  • Faridoon Shabani
Chapter
  • 433 Downloads

Abstract

The control of uncertain nonlinear systems is of practical importance since many real world systems exhibit nonlinear dynamic behavior. To make the issue even more difficult, in many practical cases, the mathematical model is poorly known or uncertain. Therefore, in modeling and analysis of such systems, one needs to handle unknown nonlinearities and/or uncertain parameters. One of the most useful techniques applied to uncertain nonlinear systems are adaptive control methods which are able to compensate the lack of precise knowledge of the system [7, 31, 13, 26, 1].

Keywords

Chaotic System Fuzzy Logic System Chaos Synchronization Uncertain Nonlinear System Adaptive Fuzzy Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chiang, C.C., Yang, C.C.: Robust Adaptive Fuzzy Sliding Mode Control for a Class of Uncertain Nonlinear Systems with Unknown Dead-Zone. In: 2006 IEEE International Conference on Fuzzy Systems, pp. 492—497. IEEE Press, Vancouver (2006)Google Scholar
  2. 2.
    Grzybowski, J.M.V., Rafikov, M., Balthazar, J.M.: Synchronization of the unified chaotic system and application in secure communication, Commun. Nonlinear Sci Numer. Simul. 14, 2793–2806 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Hale, J.K., Lunel, S.M.V.: Introduction to functional DiPerential equations. Springer, New York (1993)Google Scholar
  4. 4.
    Hardy, G., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge, U.K (1989)Google Scholar
  5. 5.
    Hua, C., Feng, G., Guan, X.: Robust controller design of a class of nonlinear time delay systems via backstepping method. Automatica 44, 567–573 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hua, C., Guan, X., Duan, G.: Variable structure adaptive fuzzy control for a class of nonlinear time-delay systems. Fuzzy Sets Syst. 148, 453–468 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Hua, C., Li, F., Guan, X.: Observer-based adaptive control for uncertain time-delay systems. Inform. Sci. 176, 201–214 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hyun, C.H., Park, C.W., Kim, J.H., Park, M.: Synchronization and secure communication of chaotic systems via robust adaptive high-gain fuzzy observer. Chaos Solitons Fractals 40, 2200–2209 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Jafarov, E.M., Tasaltin, R.: Robust sliding-mode control for the uncertain MIMO aircraft model F-18. IEEE Trans. Aerosp. Electron. Syst. 36, 1127–1141 (2000)CrossRefGoogle Scholar
  10. 10.
    Khalil, H.K.: Nonlinear systems. Prentice Hall, Englewood Cliffs, NJ (2003)Google Scholar
  11. 11.
    Kim, J.H., Park, Ch.W., Kim, E., Park, M.: Fuzzy adaptive synchronization of uncertain chaotic systems. Phys. Lett. A 334, 295–305 (2005)Google Scholar
  12. 12.
    Kolmanovskii, V.B., Myshkis, A.D.: Introduction to the theory and applications of functional Differential equations. Kluwer Academic Publishers, Dordrecht (1999)zbMATHGoogle Scholar
  13. 13.
    Labiod, S., Boucherit, M.S., Guerra, T.M.: Adaptive fuzzy control of a class of MIMO nonlinear systems. Fuzzy Sets Syst. 151, 59–77 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Lee, W.K., Hyun, Ch.H., Lee, H., Kim, E., Park, M.: Model reference adaptive synchronization of T–S fuzzy discrete chaotic systems using output tracking control. Chaos Solitons Fractals 34, 1590–1598 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Lin, J.Sh., Yan, J.J., Liao, T.L.: Chaotic synchronization via adaptive sliding mode observers subject to input nonlinearity. Chaos Solitons Fractals 24, 371–381 (2005)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Liu, T.S., Lee, W.S.: A repetitive learning method based on sliding mode for robot control. J. Dyn. Syst. Meas. Contr. 122, 40–48 (2000)CrossRefGoogle Scholar
  17. 17.
    Mamdani, E.H.: Applications of fuzzy algorithms for simple dynamic plants. Proc. IEE 121(12), 1585–1588 (1974)Google Scholar
  18. 18.
    Noroozi, N., Roopaei, M., Zolghadri, J.M.: Adaptive fuzzy sliding mode control schemes for uncertain systems. Commun. Nonlinear Sci. Numer. Simul. 14, 3978–3992 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Okuno, H., Takeshita, M., Kanari, Y.: OGY Control by Asymptotically Transition Method in Power System. In: 2002 Society of the Instrument and Control Engineers (SICE) Annual Conference, vol. 5, pp. 3163–3168, Osaka (2002)Google Scholar
  20. 20.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 999–1196 (1990)Google Scholar
  21. 21.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Roopaei, M., Zolghadri, J.M.: Synchronization of a class of chaotic systems with fully unknown parameters using adaptive sliding mode approach. Chaos 18, 043112 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Roopaei, M., Zolghadri, J.M.: Chattering-free fuzzy sliding mode control in MIMO uncertain systems. Nonlinear Anal. Theor. Methods Appl. 71, 4430–4437 (2009)zbMATHCrossRefGoogle Scholar
  24. 24.
    Salamci, M., Ozgoren, M.K., Banks, S.P.: Sliding mode control with optimal sliding surfaces for missile autopilot design. J. Guid. Contr. Dynam. 23, 719–727 (2000)CrossRefGoogle Scholar
  25. 25.
    Sastry, Sh., Bodson, M.: Adaptive Control. Prentice Hall, Englewood Cliffs, NJ (1989)zbMATHGoogle Scholar
  26. 26.
    Shahnazi, R., Pariz, N., Vahidian, K.A.: Adaptive fuzzy output feedback control for a class of uncertain nonlinear systems with unknown backlash-like hysteresis. Commun. Nonlinear Sci. Numer. Simul. 15, 2206–2221 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Slotine, J.E., Sastry, S.S.: Tracking control of non-linear systems using sliding surfaces, with application to a robot arm. Int. J. Contr. 38, 465–492 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Sun, Y., Cao, J., Feng, G.: An adaptive chaotic secure communication scheme with channel noises. Phys. Lett. A 372, 5442–5447 (2008)Google Scholar
  29. 29.
    Sun, M., Tian, L., Jia, Q.: Adaptive control and synchronization of a four-dimensional energy resources system with unknown parameters. Chaos Solitons Fractals 39, 1943–1949 (2009)zbMATHCrossRefGoogle Scholar
  30. 30.
    Ting, C.S.: An observer-based approach to controlling time-delay chaotic systems via Takagi–Sugeno fuzzy model. Inform. Sci. 177, 4314–4328 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Tong, S.H., Li, H.X., Wang, W.: Observer-based adaptive fuzzy control for SISO nonlinear systems. Fuzzy Sets Syst. 148, 355–376 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Contr. AC-22, 212–222 (1977)Google Scholar
  33. 33.
    Wang, M., Chen, B., Liu, X., Shi, P.: Adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear time-delay systems. Fuzzy Sets Syst. 159, 949–967 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Xiao, J.W., Yi, Y.: Coupled-adaptive synchronization for Chen chaotic systems with different parameters. Chaos Solitons Fractals 33, 908–913 (2007)CrossRefGoogle Scholar
  35. 35.
    Xu, J., Chen, S.: Decentralized Adaptive Controller Design for Uncertain Large-Scale Time-Delay Systems. In: 6th International Conference on Intelligent Systems Design and Applications (ISDA’06), vol. 2, pp. 173–177, China (2006)Google Scholar
  36. 36.
    Yan, J.J.: Design of robust controllers for uncertain chaotic systems with nonlinear inputs. Chaos Solitons Fractals 19, 541–547 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Yan, J.J., Chang, W.D., Hung, M.L.: An adaptive decentralized synchronization of master–slave large-scale systems with unknown signal propagation delays. Chaos Solitons Fractals 29, 506–513 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Yeh, J.P., Wu, K.L.: A simple method to synchronize chaotic systems and its application to secure communications. Math. Comput. Modell. 47, 894–902 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Yu, F.M., Chung, H.Y., Chen, Sh.Y.: Fuzzy sliding mode controller design for uncertain time-delayed systems with nonlinear input. Fuzzy Sets Syst. 140, 359–374 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Zhang, Y., Changxi, J., Utkin, V.I.: Sensorless sliding mode control of induction motors. IEEE Trans. Ind. Electron. 47, 1286–1297 (2000)CrossRefGoogle Scholar
  41. 41.
    Zhou, J.: Decentralized adaptive control for large-scale time-delay systems with dead-zone input. Automatica 44, 1790–1799 (2008)zbMATHCrossRefGoogle Scholar
  42. 42.
    Zhou, J., Wen, C.: Adaptive Backstepping Control of Uncertain Systems. In: Thoma, M., Morari, M. (eds.) LNCIS, vol. 372, pp. 83–96, Springer, Berlin (2008)Google Scholar
  43. 43.
    Zribi, M., Smaoui, N., Salim, H.: Synchronization of the unified chaotic systems using a sliding mode controller. Chaos Solitons Fractals 42, 3197–3209 (2009)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Vienna 2012

Authors and Affiliations

  • Shabnam Pourdehi
    • 1
    Email author
  • Dena Karimipour
    • 1
  • Navid Noroozi
    • 1
  • Faridoon Shabani
    • 1
  1. 1.School of Electrical and Computer EngineeringShiraz UniversityShirazIran

Personalised recommendations