Mediated Data Integration Systems Using Functional Dependencies Embedded in Ontologies

  • Abdelghani BakhtouchiEmail author
  • Chedlia Chakroun
  • Ladjel Bellatreche
  • Yamine Aït-Ameur


The exponential growth of data sources over the Internet or in enterprise intranets requires the development of data integration methodologies and solutions to facilitate data access by offering uniform interface to end users. Data integration is facing two challenges: (1) management of source heterogeneity and (2) consolidation of the query results. To deal with the problem of heterogeneity, several research efforts proposed the use of ontologies to explicit semantic of sources. This explicitation of source semantic facilitates the resolution of different conflicts identified during the integration process. Once an integration system is built (using mediator architecture) it shall support user queries, by first identifying the relevant sources for a given query and then conciliating the result. To accomplish this task, two trends emerge in the current work: (1) the supposition that different entities of sources representing the same concept have the same key. This hypothesis is not always true in real applications due to the autonomy of sources. (2) The use of statistical methods to identify similar instances. For some applications like banking and engineering, precise integration solutions are needed. In this chapter, we propose an integration methodology for sources referencing shared domain ontology (called ontology-based database sources) with mediation architecture. Our ontology is enriched by functional dependencies defined in each ontology class. The presence of these functional dependencies allows the generation of the lists of candidate keys for each class. Therefore, each source can choose its keys from these lists. This gives more autonomy of sources and allows consolidation of the results in the absence of a common identifier. Our approach is validated using a set of ontology based database sources in Postgres DBMS, where all mediator components are formally described.


Ontology-based Database (OBDB) Key Candidate OntoDB Ontology Mediation CustomerName 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abiteboul, S., Duschka, O.: Complexity of answering queries using materialized views. In: Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), Seattle, WA (1998)Google Scholar
  2. 2.
    Abiteboul, S., CityplaceHull, R., Vianu, V., Wesley, A.: Foundations of Databases Addison Wesley Publishers, ISBN 0-201-53771-0 (1995)Google Scholar
  3. 3.
    Bellatreche, L., Ameur, Y.A., Chakroun, C.: A Design Methodology of Ontology based Database Applications. Logic Journal of the IGPL. 18(2), (2010)Google Scholar
  4. 4.
    Bellatreche, L., Xuan, D.N., Pierra, G., Dehainsala, H.: Contribution of ontology-based data modeling to automatic integration of electronic catalogues within engineering databases. Comput. Ind. J. 57(8-9), 711–724 (2006)CrossRefGoogle Scholar
  5. 5.
    Berger, S., Bry, F., Furche, T., Linse, B., Schroeder, B.: Beyond XML and RDF: The Versatile Web Query Language Xcerpt. In: Proceedings of WWW’06, pp. 1053–1054 (2006)Google Scholar
  6. 6.
    Bernstein, P.: Applying Model Management to Classical Meta Data Problems. In: Proceedings of the 2003 CIDR Conference (2003)Google Scholar
  7. 7.
    Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1), 1–41 (2008)CrossRefGoogle Scholar
  8. 8.
    Calbimonte, J., Porto, F.: Functional Dependencies in OWL A-BOX. XXIV Simpósio Brasileiro de Banco de Dados, 05-09 de Outubro, CityplaceFortaleza, Cearé, Brasil, Anais. (SBBD 2009), pp. 16–30 (2009)Google Scholar
  9. 9.
    Calvanese, D., Giacomo, G., Lenzerini, M.: Identification constraints and functional dependencies in description logics. In: Proceedings of IJCAI, pp. 155–160 (2001)Google Scholar
  10. 10.
    Castano, S., Antonellis, V., Vimercati, S.D.C.: Global Viewing of Heterogeneous Data Sources. IEEE Trans. Knowl. Data Eng. 13(2), 277–297 (2001)CrossRefGoogle Scholar
  11. 11.
    Chawathe, S.S. et al: The TSIMMIS Project: Integration of Heterogeneous Information Sources. in proceedings of the 10th Meeting of the Information Processing Society of Japan, pp. 7–18 (1994)Google Scholar
  12. 12.
    Dong, X., Naumann, F.: Data Fusion – Resolving Data Conflicts for Integration. VLDB ’09 (2009)Google Scholar
  13. 13.
    Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems. (3rd edn.), Addison Wesley (2000)Google Scholar
  14. 14.
    Fagin, R.: Functional dependencies in a relational data base and propositional logic. IBM J. Res. Dev. 21(6), 543–544 (1977)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Frías, L., Queralt, A., Olivé, A.: EU-Rent car rentals specification. Technical report, Departament de Llenguatges i Sistemes Informatics (2003)Google Scholar
  16. 16.
    Fuxman, A., Fazli, E., Miller, R.J.: Conquer: Efficient management of inconsistent databases. In: Proceedings of SIGMOD, pp. 155–166, Baltimore, MD (2005)Google Scholar
  17. 17.
    Goasdoué, F., Lattés, V., Rousset, M.C.: The Use of CARIN Language and Algorithms for Information Integration: The PICSEL System. Int. J. Cooper. Inform. Syst. (IJCIS). 9(4), 383–401 (2000)Google Scholar
  18. 18.
    Goh, C., Bressan, S., Madnick, E., Siegel, M.D.: Context Interchange: New Features and Formalisms for the Intelligent Integration of Information. ACM Trans. Inform. Syst. 17(3), 270–293 (1999)CrossRefGoogle Scholar
  19. 19.
    Hakimpour, F., Geppert, A.: Global Schema Generation Using Formal Ontologies. In: Proceedings of 21th International Conference on Conceptual Modeling (ER’02), pp. 307–321 (2002)Google Scholar
  20. 20.
    Halevy, A.Y., et al.: Entreprise information integration: successes, challenges and controversies. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 778–787 (2005)Google Scholar
  21. 21.
    Halevy, A.Y., Ives, Z.G., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The Piazza Peer Data Management System. IEEE Transactions on Knowledge and Data Engineering (2003)Google Scholar
  22. 22.
    Hong, J., Liu, W., Bell, D.A., Bai, Q.: Answering Queries Using Views in the Presence of Functional Dependencies. BNCOD, pp. 70–81 (2005)Google Scholar
  23. 23.
    City Hull, R., Zhou, G.: A Framework for Supporting Data Integration Using the Materialized and Virtual Approaches. In: Proceedings of ACM SIGMOD ’96, Montreal, Canada (1996)Google Scholar
  24. 24.
    Inmon, B., Wiley, J.: ed. Using the Data Warehouse (1999)Google Scholar
  25. 25.
    Jean, S., Aït-Ameur, Y., Pierra, G.: Querying ontology based databases. The OntoQL proposal. Software Engineering and Knowledge Engineering (SEKE’ 06), pp. 166–171 (2006)Google Scholar
  26. 26.
    Jean, S., Pierra, G., Aït-Ameur, Y.: Domain ontologies: a database-oriented analysis. Web Information Systems and Technologies (WEBIST’2006), pp. 341–351 (2006)Google Scholar
  27. 27.
    Kimball, R., Caserta, J., Wiley, J.: Ed. The Data Warehouse ETL Toolkit, Practical Techniques for Extracting, Cleaning, Conforming, and Delivering Data (2004)Google Scholar
  28. 28.
    Lawrence, R., Barker, K.: Integrating relational database schemas using a standardized dictionary. In: Proceedings of the ACM Symposium on Applied Computing (SAC), pp. 225–230 (2001)Google Scholar
  29. 29.
    Lenzerini, M. Data Integration: A Theoretical Perspective. in proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’02), pp. 233–246 (2002)Google Scholar
  30. 30.
    Levy, A.Y., Rajaraman, A., Ordille, J.J.: The World Wide Web as a Collection of Views: Query Processing in the Information Manifold’, In: Proceedings of VIEW’1996, pp. 43–55 (1996)Google Scholar
  31. 31.
    Mena, E., Vipul Kashyap, V., Illarramendi, A., Sheth, A.P.: Managing Multiple Information Sources through Ontologies: Relationship between Vocabulary Heterogeneity and Loss of Information. In: Proceedings of Third Workshop on Knowledge Representation Meets Databases (1996)Google Scholar
  32. 32.
    Motro, A., Anokhin, P., Acar, A.C.: Utility-based resolution of data inconsistencies. In: Proceedings of IQIS Workshop, pp. 35–43, CityplaceParis, country-regionFrance (2004)Google Scholar
  33. 33.
    Reynaud, C., Giraldo, G.: An Application of the Mediator Approach to Services over the Web. Special track Data Integration in Engineering, Concurrent Engineering (CE’2003), pp. 209–216 (2003)Google Scholar
  34. 34.
    Reynaud, C., Safar, B.: Construction automatique d’adaptateurs guidée par une ontologie pour l’intégration de sources et de données XML. Technique et Science Informatiques (TSI). 28, 199–228 (2009)Google Scholar
  35. 35.
    Romero, O., Calvanese, D., Abello, A., Rodriguez-Muro, M.: Discovering Functional Dependencies for Multidimensional Design. ACM 12th Int. Workshop on Data Warehousing and OLAP (2009)Google Scholar
  36. 36.
    Saïs, F., Pernelle, N., Rousset, M.C.: Réconciliation de références : une approche adaptée aux grands volumes de données. Colloque sur l’Optimisation et les Systémes d’Information (COSI), pp. 521–532 (2007)Google Scholar
  37. 37.
    Schallehn, E., Sattler, K.U., Saake, G.: Efficient similarity-based operations for data integration. Data Knowl. Eng. 48(3), 361–387 (2004)CrossRefGoogle Scholar
  38. 38.
    Toman, D., Weddell, G.E.: On keys and functional dependencies as first-class citizens in description logics. J. Automat. Reas. 40(2–3), 117–132 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Ullman, J.D.: Information Integration Using Logical Views. In: Proceedings of the International Conference on Database Theory (ICDT), Lecture Notes in Computer Science, 1186: 19–40 (1997)Google Scholar
  40. 40.
    Visser, P.R.S., Beer, M., Bench-Capon, T., Diaz, B.M., Shave, M.J.R.: Resolving Ontological Heterogeneity in the KRAFT Project. In: Proceedings of DEXA’99, pp. 668–677 (1999)Google Scholar
  41. 41.
    Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hübner, S.: Ontology-based Integration of Information – A Survey of Existing Approaches, In: Proceedings of the International Workshop on Ontologies and Information Sharing, pp. 108–117 (2001)Google Scholar
  42. 42.
    Wiederhold, G.: Mediators in the architecture of future information systems. IEEE Comput. 25(3), 38–49 (1992)Google Scholar
  43. 43.
    Xuan, D.N., Bellatreche, L., Pierra, G.: OntoDaWa, un système d’intégration à base ontologique de sources de données autonomes et évolutives. Ingénierie des Systèmes d’Information. 13(2), 97–125 (2008)CrossRefGoogle Scholar
  44. 44.
    Zhao, H., Ram, S.: Entity matching across heterogeneous data sources: An approach based on constrained cascade generalization. Data Knowl. Eng. archive (ACM). 66(3), 368–381 (2008)Google Scholar

Copyright information

© Springer Vienna 2012

Authors and Affiliations

  • Abdelghani Bakhtouchi
    • 1
    Email author
  • Chedlia Chakroun
    • 2
  • Ladjel Bellatreche
    • 2
  • Yamine Aït-Ameur
    • 2
  1. 1.National High School for Computer Science (ESI)AlgiersAlgeria
  2. 2.LISI/ENSMA – Poitiers UniversityFuturoscopeFrance

Personalised recommendations