Skip to main content

Genetics, Biosynthesis and Assembly of O-Antigen

  • Chapter
  • First Online:

Abstract

Lipopolysaccharide (LPS), a major component of the outer leaflet of the Gram-negative bacterial outer membrane [1], consists of lipid A, core oligosaccharide (OS), and O-specific polysaccharide or O-antigen [1,2]. LPS is a surface molecule unique to Gram-negative bacteria that plays a key role as an elicitor of innate immune responses, ranging from localized inflammation to disseminated sepsis [3]. The O-antigen, which is the most surface-exposed LPS moiety, also contributes to pathogenicity by protecting invading bacteria from bactericidal host responses [2]. A detailed understanding of the biosynthesis of the LPS O-antigen may contribute to identifying new means to curtail infections by interfering with its assembly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nikaido H (1996) Outer membrane. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, pp 29–47

    Google Scholar 

  2. Whitfield C, Valvano MA (1993) Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria. Adv Microb Physiol 35:135–246

    CAS  Google Scholar 

  3. Opal SM (2007) The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis. Int J Med Microbiol 297:365–377

    CAS  Google Scholar 

  4. Bugg TD, Brandish PE (1994) From peptidoglycan to glycoproteins: common features of lipid-linked oligosaccharide biosynthesis. FEMS Microbiol Lett 119:255–262

    CAS  Google Scholar 

  5. Burda P, Aebi M (1999) The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta 1426:239–257

    CAS  Google Scholar 

  6. Helenius J, Aebi M (2002) Transmembrane movement of dolichol linked carbohydrates during N-glycoprotein biosynthesis in the endoplasmic reticulum. Semin Cell Dev Biol 13:171–178

    CAS  Google Scholar 

  7. Helenius J, Ng DT, Marolda CL, Walter P, Valvano MA, Aebi M (2002) Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature 415:447–450

    CAS  Google Scholar 

  8. Valvano MA (2003) Export of O-specific lipopolysaccharide. Front Biosci 8:s452–s471

    CAS  Google Scholar 

  9. Raetz CRH, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    CAS  Google Scholar 

  10. Samuel G, Reeves P (2003) Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 338:2503–2519

    CAS  Google Scholar 

  11. Jansson P-E (1999) The chemistry of O-polysaccharide chains in bacterial lipopolysaccharides. In: Brade H, Opal SM, Vogel SN, Morrison DC (eds) Endotoxin in health and disease. Marcel Dekker, New York, pp 155–178

    Google Scholar 

  12. Pluschke G, Mercer A, Kusecek B, Pohl A, Achtman M (1983) Induction of bacteremia in newborn rats by Escherichia coli K1 is correlated with only certain O (lipopolysaccharide) antigen types. Infect Immun 39:599–608

    CAS  Google Scholar 

  13. Pluschke G, Achtman M (1984) Degree of antibody-independent activation of the classical complement pathway by K1 Escherichia coli differs with O-antigen type and correlates with virulence of meningitis in newborns. Infect Immun 43:684–692

    CAS  Google Scholar 

  14. Joiner KA (1988) Complement evasion by bacteria and parasites. Annu Rev Microbiol 42:201–230

    CAS  Google Scholar 

  15. Heinrichs DE, Valvano MA, Whitfield C (1999) Biosynthesis and genetics of lipopolysaccharide core. In: Brade H, Opal SM, Vogel SN, Morrison DC (eds) Endotoxin in health and disease. Marcel Dekker, New York, pp 305–330

    Google Scholar 

  16. Heinrichs DE, Yethon JA, Whitfield C (1998) Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol Microbiol 30:221–232

    CAS  Google Scholar 

  17. Fernandez F, Rush JS, Toke DA, Han G, Quinn JE, Carman GM, Choi J-Y, Voelker DR, Aebi M, Waechter CJ (2001) The CWH8 gene encodes a dolichyl pyrophosphate phosphatase with a luminally oriented active site in the endoplasmic reticulum of Saccharomyces cerevisiae. J Biol Chem 276:41455–41464

    CAS  Google Scholar 

  18. El Ghachi M, Bouhss A, Blanot D, Mengin-Lecreulx D (2004) The bacA gene of Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. J Biol Chem 279:30106–30113

    CAS  Google Scholar 

  19. El Ghachi M, Derbise A, Bouhss A, Mengin-Lecreulx D (2005) Identification of multiple genes encoding membrane proteins with undecaprenyl pyrophosphate phosphatase (UppP) activity in Escherichia coli. J Biol Chem 280:18689–18695

    CAS  Google Scholar 

  20. Valvano MA (2008) Undecaprenyl phosphate recycling comes out of age. Mol Microbiol 67:232–235

    CAS  Google Scholar 

  21. Touze T, Tran AX, Hankins JV, Mengin-Lecreulx D, Trent MS (2008) Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. Mol Microbiol 67:264–277

    CAS  Google Scholar 

  22. Rick PD, Silver RP (1996) Enterobacterial common antigen and capsular polysaccharides. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, pp 104–122

    Google Scholar 

  23. Bouhss A, Trunkfield AE, Bugg TDH, Mengin-Lecreulx D (2008) The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol Rev 32:208–233

    CAS  Google Scholar 

  24. Swoboda JG, Campbell J, Meredith TC, Walker S (2010) Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem 11:35–45

    CAS  Google Scholar 

  25. Erbel PJ, Barr K, Gao N, Gerwig GJ, Rick PD, Gardner KH (2003) Identification and biosynthesis of cyclic enterobacterial common antigen in Escherichia coli. J Bacteriol 185:1995–2004

    CAS  Google Scholar 

  26. Kajimura J, Rahman A, Rick PD (2005) Assembly of cyclic enterobacterial common antigen in Escherichia coli K-12. J Bacteriol 187:6917–6927

    CAS  Google Scholar 

  27. Rick PD, Hubbard GL, Kitaoka M, Nagaki H, Kinoshita T, Dowd S, Simplaceanu V, Ho C (1998) Characterization of the lipid-carrier involved in the synthesis of enterobacterial common antigen (ECA) and identification of a novel phosphoglyceride in a mutant of Salmonella typhimurium defective in ECA synthesis. Glycobiology 8:557–567

    CAS  Google Scholar 

  28. Higgins CF (1994) Flip-flop: the transmembrane translocation of lipids. Cell 79:393–395

    CAS  Google Scholar 

  29. Alexander DC, Valvano MA (1994) Role of the rfe gene in the biosynthesis of the Escherichia coli O7-specific lipopolysaccharide and other O-specific polysaccharides containing N-acetylglucosamine. J Bacteriol 176:7079–7084

    CAS  Google Scholar 

  30. Rush JS, Rick PD, Waechter CJ (1997) Polyisoprenyl phosphate specificity of UDP-GlcNAc:undecaprenyl phosphate N-acetylglucosaminyl 1-P transferase from E. coli. Glycobiology 7:315–322

    CAS  Google Scholar 

  31. Lehrman MA (1994) A family of UDP-GlcNAc/MurNAc: polyisoprenol-P GlcNAc/MurNAc-1-P transferases. Glycobiology 4:768–771

    CAS  Google Scholar 

  32. Schenk B, Fernandez F, Waechter CJ (2001) The ins(ide) and outs(ide) of dolichyl phosphate biosynthesis and recycling in the endoplasmic reticulum. Glycobiology 11:61R–70R

    CAS  Google Scholar 

  33. Mankowski T, Sasak W, Chojnacki T (1975) Hydrogenated polyprenol phosphates – exogenous lipid acceptors of glucose from UDP glucose in rat liver microsomes. Biochem Biophys Res Commun 65:1292–1297

    CAS  Google Scholar 

  34. Pennock JF, Hemming FW, Morton RA (1960) Dolichol: a naturally occurring isoprenoid alcohol. Nature 186:470–472

    CAS  Google Scholar 

  35. Anderson MS, Eveland SS, Price NP (2000) Conserved cytoplasmic motifs that distinguish sub-groups of the polyprenol phosphate:N-acetylhexosamine-1-phosphate transferase family. FEMS Microbiol Lett 191:169–175

    CAS  Google Scholar 

  36. Price NP, Momany FA (2005) Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P transferases. Glycobiology 15:29R–42R

    CAS  Google Scholar 

  37. Brandish P, Kimura K, Inukai M, Southgate R, Lonsdale J, Bugg T (1996) Modes of action of tunicamycin, liposidomycin B, and mureidomycin A: inhibition of phospho-N-acetylmuramyl-pentapeptide translocase from Escherichia coli. Antimicrob Agents Chemother 40:1640–1644

    CAS  Google Scholar 

  38. Meier-Dieter U, Starman R, Barr K, Mayer H, Rick PD (1990) Biosynthesis of enterobacterial common antigen in Escherichia coli. J Biol Chem 265:13490–13497

    CAS  Google Scholar 

  39. Klena JD, Schnaitman CA (1993) Function of the rfb gene cluster and the rfe gene in the synthesis of O-antigen by Shigella dysenteriae 1. Mol Microbiol 9:393–402

    CAS  Google Scholar 

  40. Yao Z, Valvano MA (1994) Genetic analysis of the O-specific lipopolysaccharide biosynthesis region (rfb) of Escherichia coli K-12W3110: identification of genes that confer group 6 specificity to Shigella flexneri serotypes Y and 4a. J Bacteriol 176:4133–4143

    CAS  Google Scholar 

  41. Wang L, Huskic S, Cisterne A, Rothemund D, Reeves PR (2002) The O-antigen gene cluster of Escherichia coli O55:H7 and identification of a new UDP-GlcNAc C4 epimerase gene. J Bacteriol 184:2620–2625

    CAS  Google Scholar 

  42. Zhang L, Radziejewska-Lebrecht J, Krajewska-Pietrasik D, Toivanen P, Skurnik M (1997) Molecular and chemical characterization of the lipopolysaccharide O-antigen and its role in the virulence of Yersinia enterocolitica serotype O:8. Mol Microbiol 23:63–76

    CAS  Google Scholar 

  43. Wang L, Reeves PR (1998) Organization of the Escherichia coli O157 O-antigen cluster and identification of its specific genes. Infect Immun 66:3545–3551

    CAS  Google Scholar 

  44. Rush JS, Alaimo C, Robbiani R, Wacker M, Waechter CJ (2010) A novel epimerase that converts GlcNAc-P-P-undecaprenol to GalNAc-P-P-undecaprenol in Escherichia coli O157. J Biol Chem 285:1671–1680

    CAS  Google Scholar 

  45. Ortega X, Hunt TA, Loutet S, Vinion-Dubiel AD, Datta A, Choudhury B, Goldberg JB, Carlson R, Valvano MA (2005) Reconstitution of O-specific lipopolysaccharide expression in the Burkholderia cenocepacia strain J2315 that is associated with transmissible infections in patients with cystic fibrosis. J Bacteriol 187:1324–1333

    CAS  Google Scholar 

  46. Rocchetta HL, Burrows LL, Pacan JC, Lam JS (1998) Three rhamnosyltransferases responsible for assembly of the A-band d-rhamnan polysaccharide in Pseudomonas aeruginosa: a fourth transferase, WbpL, is required for the initiation of both A-band and B-band lipopolysaccharide synthesis. Mol Microbiol 28:1103–1119

    CAS  Google Scholar 

  47. Yamashita Y, Shibata Y, Nakano Y, Tsuda H, Kido N, Ohta M, Koga T (1999) A Novel gene required for rhamnose-glucose polysaccharide synthesis in Streptococcus mutans. J Bacteriol 181:6556–6559

    CAS  Google Scholar 

  48. Bouhss A, Mengin-Lecreulx D, Le Beller D, Van Heijenoort J (1999) Topological analysis of the MraY protein catalysing the first membrane step of peptidoglycan synthesis. Mol Microbiol 34:576–585

    CAS  Google Scholar 

  49. Lehrer J, Vigeant KA, Tatar LD, Valvano MA (2007) Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide. J Bacteriol 189:2618–2628

    CAS  Google Scholar 

  50. Ashby MN, Edwards PA (1990) Elucidation of the deficiency in teo yeast coenzyme Q mutants. Characterization of the structural gene encoding hexaprenyl pyrophospohate synthetase. J Biol Chem 265:13157–13164

    CAS  Google Scholar 

  51. Tarshis LC, Yan M, Poulter CD, Sacchettini JC (1994) Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-Å resolution. Biochemistry 33:10871–10877

    CAS  Google Scholar 

  52. Lloyd AJ, Brandish PE, Gilbey AM, Bugg TD (2004) Phospho-N-acetyl-muramyl-pentapeptide translocase from Escherichia coli: catalytic role of conserved aspartic acid residues. J Bacteriol 186:1747–1757

    CAS  Google Scholar 

  53. Al-Dabbagh B, Henry X, El Ghachi M, Auger G, Blanot D, Parquet C, Mengin-Lecreulx D, Bouhss A (2008) Active site mapping of MraY, a member of the polyprenyl phosphate N-acetylhexosamine 1-phosphate transferase superfamily, catalyzing the first membrane step of peptidoglycan biosynthesis. Biochemistry 47:8919–8928

    CAS  Google Scholar 

  54. Amer AO, Valvano MA (2002) Conserved aspartic acids are essential for the enzymic activity of the WecA protein initiating the biosynthesis of O-specific lipopolysaccharide and enterobacterial common antigen in Escherichia coli. Microbiology 148:571–582

    CAS  Google Scholar 

  55. Amer AO, Valvano MA (2001) Conserved amino acid residues found in a predicted cytosolic domain of WecA (UDP-N-acetyl glucosamine:undecaprenol-phosphate N-acetylglucosamine-1-phosphate transferase) are implicated in the recognition of UDP-N-acetylglucosamine. Microbiology 147:3015–3025

    CAS  Google Scholar 

  56. Heifetz A, Keenan RW, Elbein AD (1979) Mechanism of action of tunicamycin on the UDP-GlcNAc:dolichyl phosphate GlcNAc-1-phosphate transferase. Biochemistry 18:2186–2192

    CAS  Google Scholar 

  57. Heydanek MG, Struve WG, Neuhaus FC (1969) On the initial stages of peptidoglycan synthesis. III. Kinetics and uncoupling of phospho-N-acetylomuramyl-pentapeptide translocase (uridine 5′-phosphate). Biochemistry 8:1214–1221

    CAS  Google Scholar 

  58. Al-Dabbagh B, Mengin-Lecreulx D, Bouhss A (2008) Purification and characterization of the bacterial UDP-GlcNAc:undecaprenyl-phosphate GlcNAc-1-phosphate transferase WecA. J Bacteriol 190:7141–7146

    CAS  Google Scholar 

  59. Wang L, Liu D, Reeves PR (1996) C-Terminal half of Salmonella enterica WbaP (RfbP) is the galactosyl-1-phosphate transferase domain catalyzing the first step of O-antigen synthesis. J Bacteriol 178:2598–2604

    CAS  Google Scholar 

  60. Steiner K, Novotny R, Patel K, Vinogradov E, Whitfield C, Valvano MA, Messner P, Schaffer C (2007) Functional characterization of the initiation enzyme of S-layer glycoprotein glycan biosynthesis in Geobacillus stearothermophilus NRS 2004/3a. J Bacteriol 189:2590–2598

    CAS  Google Scholar 

  61. Bugert P, Geider K (1995) Molecular analysis of the ams operon required for exopolysaccharide synthesis in Erwinia amylovora. Mol Microbiol 15:917–933

    CAS  Google Scholar 

  62. Cartee RT, Forsee WT, Bender MH, Ambrose KD, Yother J (2005) CpsE from type 2 Streptococcus pneumoniae catalyzes the reversible addition of glucose-1-phosphate to a polyprenyl phosphate acceptor, initiating type 2 capsule repeat unit formation. J Bacteriol 187:7425–7433

    CAS  Google Scholar 

  63. Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR (1996) Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178:4885–4893

    CAS  Google Scholar 

  64. Saldías MS, Patel K, Marolda CL, Bittner M, Contreras I, Valvano MA (2008) Distinct functional domains of the Salmonella enterica WbaP transferase that is involved in the initiation reaction for synthesis of the O-antigen subunit. Microbiology 154:440–453

    Google Scholar 

  65. Xayarath B, Yother J (2007) Mutations blocking side chain assembly, polymerization, or transport of a Wzy-dependent Streptococcus pneumoniae capsule are lethal in the absence of suppressor mutations and can affect polymer transfer to the cell wall. J Bacteriol 189:3369–3381

    CAS  Google Scholar 

  66. Glover KJ, Weerapana E, Chen MM, Imperiali B (2006) Direct biochemical evidence for the utilization of UDP-bacillosamine by PglC, an essential glycosyl-1-phosphate transferase in the Campylobacter jejuni N-linked glycosylation pathway. Biochemistry 45:5343–5350

    CAS  Google Scholar 

  67. Power PM, Roddam LF, Dieckelmann M, Srikhanta YN, Tan YC, Berrington AW, Jennings MP (2000) Genetic characterization of pilin glycosylation in Neisseria meningitidis. Microbiology 146:967–979

    CAS  Google Scholar 

  68. Chamot-Rooke J, Rousseau B, Lanternier F, Mikaty G, Mairey E, Malosse C, Bouchoux G, Pelicic V, Camoin L, Nassif X, Duménil G (2007) Alternative Neisseria spp. type IV pilin glycosylation with a glyceramido acetamido trideoxyhexose residue. Proc Natl Acad Sci USA 104:14783–14838

    CAS  Google Scholar 

  69. Toh E, Kurtz HD Jr, Brun YV (2008) Characterization of the Caulobacter crescentus holdfast polysaccharide biosynthesis pathway reveals significant redundancy in the initiating glycosyltransferase and polymerase steps. J Bacteriol 190:7219–7231

    CAS  Google Scholar 

  70. Patel KB, Furlong SE, Valvano MA (2010) Functional analysis of the C-terminal domain of the WbaP protein that mediates initiation of O-antigen synthesis in Salmonella enterica. Glycobiology 20:1389–1401

    CAS  Google Scholar 

  71. Campbell JA, Davies GJ, Bulone V, Henrissat B (1997) A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 326:929–939

    CAS  Google Scholar 

  72. Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317

    CAS  Google Scholar 

  73. Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    CAS  Google Scholar 

  74. McGrath BC, Osborn MJ (1991) Localization of the terminal steps of O-antigen synthesis in Salmonella typhimurium. J Bacteriol 173:649–654

    CAS  Google Scholar 

  75. Mulford CA, Osborn MJ (1983) An intermediate step in translocation of lipopolysaccharide to the outer membrane of Salmonella typhimurium. Proc Natl Acad Sci USA 80:1159–1163

    CAS  Google Scholar 

  76. Whitfield C (1995) Biosynthesis of lipopolysaccharide O-antigens. Trends Microbiol 3:178–185

    CAS  Google Scholar 

  77. Marino PA, McGrath BC, Osborn MJ (1991) Energy dependence of O-antigen synthesis in Salmonella typhimurium. J Bacteriol 173:3128–3133

    CAS  Google Scholar 

  78. Keenleyside WJ, Whitfield C (1999) Genetics and biosynthesis of lipopolysaccharide O-antigens. In: Brade H, Opal SM, Vogel SN, Morrison DC (eds) Endotoxin in health and disease. Marcel Dekker, New York, pp 331–358

    Google Scholar 

  79. Whitfield C, Roberts IS (1999) Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 31:1307–1319

    CAS  Google Scholar 

  80. Bronner D, Clarke BR, Whitfield C (1994) Identification of an ATP-binding cassette transport system required for translocation of lipopolysaccharide O-antigen side-chains across the cytoplasmic membrane of Klebsiella pneumoniae serotype O1. Mol Microbiol 14:505–519

    CAS  Google Scholar 

  81. Clarke BR, Whitfield C (1992) Molecular cloning of the rfb region of Klebsiella pneumoniae serotype O1:K20: the rfb gene cluster is responsible for synthesis of the d-galactan I O-polysaccharide. J Bacteriol 174:4614–4621

    CAS  Google Scholar 

  82. Liu D, Cole RA, Reeves PR (1996) An O-antigen processing function for Wzx (RfbX): a promising candidate for O-unit flippase. J Bacteriol 178:2102–2107

    CAS  Google Scholar 

  83. Paulsen IT, Beness AM, Saier MH (1997) Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. Microbiology 143:2685–2699

    CAS  Google Scholar 

  84. Cunneen MM, Reeves PR (2008) Membrane topology of the Salmonella enterica serovar Typhimurium group B O-antigen translocase Wzx. FEMS Microbiol Lett 287:76–84

    CAS  Google Scholar 

  85. Mazur A, Marczak M, Król JE, Skorupska A (2005) Topological and transcriptional analysis of pssL gene product: a putative Wzx-like exopolysaccharide translocase in Rhizobium leguminosarum bv. trifolii TA1. Arch Microbiol 184:1–10

    CAS  Google Scholar 

  86. Islam ST, Taylor VL, Qi M, Lam JS (2010) Membrane topology mapping of the O-antigen flippase (Wzx), polymerase (Wzy), and ligase (WaaL) from Pseudomonas aeruginosa PAO1 reveals novel domain architectures. mBio 1:e00189–10

    Google Scholar 

  87. Marolda CL, Li B, Lung M, Yang M, Hanuszkiewicz A, Rosales AR, Valvano MA (2010) Membrane topology and identification of critical amino acid residues in the Wzx O-antigen translocase from Escherichia coli O157:H4. J Bacteriol 192:6160–6171

    CAS  Google Scholar 

  88. Marolda CL, Feldman MF, Valvano MA (1999) Genetic organization of the O7-specific lipopolysaccharide biosynthesis cluster of Escherichia coli VW187 (O7:K1). Microbiology 145:2485–2496

    CAS  Google Scholar 

  89. Sorgen PL, Hu Y, Guan L, Kaback HR, Girvin ME (2002) An approach to membrane protein structure without crystals. Proc Natl Acad Sci USA 99:14037–14040

    CAS  Google Scholar 

  90. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    CAS  Google Scholar 

  91. Zhou GP, Troy FA (2005) NMR study of the preferred membrane orientation of polyisoprenols (dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure. Glycobiology 15:347–359

    CAS  Google Scholar 

  92. Zhou GP, Troy FA 2nd (2005) NMR studies on how the binding complex of polyisoprenol recognition sequence peptides and polyisoprenols can modulate membrane structure. Curr Protein Pept Sci 6:399–411

    Google Scholar 

  93. Rick PD, Barr K, Sankaran K, Kajimura J, Rush JS, Waechter CJ (2003) Evidence that the wzxE gene of Escherichia coli K-12 encodes a protein involved in the transbilayer movement of a trisaccharide-lipid intermediate in the assembly of enterobacterial common antigen. J Biol Chem 278:16534–16542

    CAS  Google Scholar 

  94. Marolda CL, Tatar LD, Alaimo C, Aebi M, Valvano MA (2006) Interplay of the wzx translocase and the corresponding polymerase and chain length regulator proteins in the translocation and periplasmic assembly of lipopolysaccharide O-antigen. J Bacteriol 188:5124–5135

    CAS  Google Scholar 

  95. Kol MA, de Kroon AI, Rijkers DT, Killian JA, de Kruijff B (2001) Membrane-spanning peptides induce phospholipid flop: a model for phospholipid translocation across the inner membrane of E. coli. Biochemistry 40:10500–10506

    CAS  Google Scholar 

  96. Kol MA, van Dalen A, de Kroon AI, de Kruijff B (2003) Translocation of phospholipids is facilitated by a subset of membrane-spanning proteins of the bacterial cytoplasmic membrane. J Biol Chem 278:24586–24593

    CAS  Google Scholar 

  97. Kol MA, van Laak AN, Rijkers DT, Killian JA, de Kroon AI, de Kruijff B (2003) Phospholipid flop induced by transmembrane peptides in model membranes is modulated by lipid composition. Biochemistry 42:231–237

    CAS  Google Scholar 

  98. Alaimo C, Catrein I, Morf L, Marolda CL, Callewaert N, Valvano MA, Feldman MF, Aebi M (2006) Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. EMBO J 25:967–976

    CAS  Google Scholar 

  99. Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren B, Aebi M (2002) N-Linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298:1790–1793

    CAS  Google Scholar 

  100. Feldman MF, Wacker M, Hernandez M, Hitchen PG, Marolda CL, Kowarik M, Morris HR, Dell A, Valvano MA, Aebi M (2005) Engineering N-linked protein glycosylation with diverse O-antigen lipopolysaccharide structures in Escherichia coli. Proc Natl Acad Sci USA 102:3016–3021

    CAS  Google Scholar 

  101. Feldman MF, Marolda CL, Monteiro MA, Perry MB, Parodi AJ, Valvano MA (1999) The activity of a putative polyisoprenol-linked sugar translocase(Wzx) involved in Escherichia coli O-antigen assembly is independent of the chemical structure of the O-repeat. J Biol Chem 274:35129–35138

    CAS  Google Scholar 

  102. Marolda CL, Vicarioli J, Valvano MA (2004) Wzx proteins involved in O-antigen biosynthesis function in association with the first sugar of the O-specific lipopolysaccharide subunit. Microbiology 150:4095–4105

    CAS  Google Scholar 

  103. Bray D, Robbins PW (1967) The direction of chain growth in Salmonella anatum O-antigen biosynthesis. Biochem Biophys Res Commun 28:334–339

    CAS  Google Scholar 

  104. Robbins PW, Bray D, Dankert BM, Wright A (1967) Direction of chain growth in polysaccharide synthesis. Science 158:1536–1542

    CAS  Google Scholar 

  105. McConnell MR, Oakes KR, Patrick AN, Mills DM (2001) Two functional O-polysaccharide polymerase wzy (rfc) genes are present in the rfb gene cluster of group E1 Salmonella enterica serovar Anatum. FEMS Microbiol Lett 199:235–240

    CAS  Google Scholar 

  106. Losick R (1969) Isolation of a trypsin-sensitive inhibitor of O-antigen synthesis involved in lysogenic conversion by bacteriophage ε15. J Mol Biol 42:237–246

    CAS  Google Scholar 

  107. Newton GJ, Daniels C, Burrows LL, Kropinski AM, Clarke AJ, Lam JS (2001) Three-component-mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3. Mol Microbiol 39:1237–1247

    CAS  Google Scholar 

  108. Collins LV, Attridge S, Hackett J (1991) Mutations at rfc or pmi attenuate Salmonella typhimurium virulence for mice. Infect Immun 59:1079–1085

    CAS  Google Scholar 

  109. Morona R, Mavris M, Fallarino A, Manning PA (1994) Characterization of the rfc region of Shigella flexneri. J Bacteriol 176:733–747

    CAS  Google Scholar 

  110. Daniels C, Vindurampulle C, Morona R (1998) Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Mol Microbiol 28:1211–1222

    CAS  Google Scholar 

  111. Woodward R, Yi W, Li L, Zhao G, Eguchi H, Sridhar PR, Guo H, Song JK, Motari E, Cai L, Kelleher P, Liu X, Han W, Zhang W, Ding Y, Li M, Wang PG (2010) In vitro bacterial polysaccharide biosynthesis: defining the functions of Wzy and Wzz. Nat Chem Biol 6:418–423

    CAS  Google Scholar 

  112. Batchelor RA, Haraguchi GE, Hull RA, Hull SI (1991) Regulation by a novel protein of the bimodal distribution of lipopolysaccharide in the outer membrane of Escherichia coli. J Bacteriol 173:5699–5704

    CAS  Google Scholar 

  113. Murray GL, Attridge SR, Morona R (2003) Regulation of Salmonella typhimurium lipopolysaccharide O-antigen chain length is required for virulence; identification of FepE as a second Wzz. Mol Microbiol 47:1395–1406

    CAS  Google Scholar 

  114. Murray GL, Attridge SR, Morona R (2005) Inducible serum resistance in Salmonella typhimurium is dependent on wzz (fepE)-regulated very long O-antigen chains. Microb Infect 7:1296–1304

    CAS  Google Scholar 

  115. Murray GL, Attridge SR, Morona R (2006) Altering the length of the lipopolysaccharide O-antigen has an impact on the interaction of Salmonella enterica serovar Typhimurium with macrophages and complement. J Bacteriol 188:2735–2739

    CAS  Google Scholar 

  116. Bengoechea JA, Zhang L, Toivanen P, Skurnik M (2002) Regulatory network of lipopolysaccharide O-antigen biosynthesis in Yersinia enterocolitica includes cell envelope-dependent signals. Mol Microbiol 44:1045–1062

    CAS  Google Scholar 

  117. Hoare A, Bittner M, Carter J, Alvarez S, Zaldívar M, Bravo D, Valvano MA, Contreras I (2006) The outer core lipopolysaccharide of Salmonella enterica serovar Typhi is required for bacterial entry into epithelial cells. Infect Immun 74:1555–1564

    CAS  Google Scholar 

  118. Jimenez N, Canals R, Salo MT, Vilches S, Merino S, Tomas JM (2008) The Aeromonas hydrophila wb* O34 gene cluster: genetics and temperature regulation. J Bacteriol 190:4198–4209

    CAS  Google Scholar 

  119. Kintz E, Scarff JM, DiGiandomenico A, Goldberg JB (2008) Lipopolysaccharide O-antigen chain length regulation in Pseudomonas aeruginosa serogroup O11 strain PA103. J Bacteriol 190:2709–2716

    CAS  Google Scholar 

  120. Morona R, Van Den Bosch L, Daniels C (2000) Evaluation of Wzz/MPA1/MPA2 proteins based on the presence of coiled-coil regions. Microbiology 146:1–4

    CAS  Google Scholar 

  121. Vincent C, Doublet P, Grangeasse C, Vaganay E, Cozzone AJ, Duclos B (1999) Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb. J Bacteriol 181:3472–3477

    CAS  Google Scholar 

  122. Ilan O, Bloch Y, Frankel G, Ullrich H, Geider K, Rosenshine I (1999) Protein tyrosine kinases in bacterial pathogens are associated with virulence and production of exopolysaccharide. EMBO J 18:3241–3248

    CAS  Google Scholar 

  123. Cozzone AJ, Grangeasse C, Doublet P, Duclos B (2004) Protein phosphorylation on tyrosine in bacteria. Arch Microbiol 181:171–181

    CAS  Google Scholar 

  124. Doublet P, Grangeasse C, Obadia B, Vaganay E, Cozzone AJ (2002) Structural organization of the protein-tyrosine autokinase Wzc within Escherichia coli cells. J Biol Chem 277:37339–37348

    CAS  Google Scholar 

  125. Doublet P, Vincent C, Grangeasse C, Cozzone AJ, Duclos B (1999) On the binding of ATP to the autophosphorylating protein, Ptk, of the bacterium Acinetobacter johnsonii. FEBS Lett 445:137–143

    CAS  Google Scholar 

  126. Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68

    CAS  Google Scholar 

  127. Rocchetta HL, Burrows LL, Lam JS (1999) Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 63:523–553

    CAS  Google Scholar 

  128. Stevenson G, Kessler A, Reeves PR (1995) A plasmid-borne O-antigen chain length determinant and its relationship to other chain length determinants. FEMS Microbiol Lett 125:23–30

    CAS  Google Scholar 

  129. Bastin DA, Stevenson G, Brown PK, Haase A, Reeves PR (1993) Repeat unit polysaccharides of bacteria: a model for polymerization resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length. Mol Microbiol 7:725–734

    CAS  Google Scholar 

  130. Morona R, van den Bosch L, Manning PA (1995) Molecular, genetic, and topological characterization of O-antigen chain length regulation in Shigella flexneri. J Bacteriol 177:1059–1068

    CAS  Google Scholar 

  131. Daniels C, Griffiths C, Cowles B, Lam JS (2002) Pseudomonas aeruginosa O-antigen chain length is determined before ligation to lipid A core. Environ Microbiol 4:883–897

    CAS  Google Scholar 

  132. Daniels C, Morona R (1999) Analysis of Shigella flexneri Wzz (Rol) function by mutagenesis and cross-linking: Wzz is able to oligomerize. Mol Microbiol 34:181–194

    CAS  Google Scholar 

  133. Franco AV, Liu D, Reeves PR (1998) The Wzz (Cld) protein in Escherichia coli: amino acid sequence variation determines O-antigen chain length specificity. J Bacteriol 180:2670–2675

    CAS  Google Scholar 

  134. Marolda CL, Haggerty ER, Lung M, Valvano MA (2008) Functional analysis of predicted coiled coil regions in the Escherichia coli K-12 O-antigen polysaccharide chain length determinant Wzz. J Bacteriol 190:2128–2137

    CAS  Google Scholar 

  135. Tocilj A, Munger C, Proteau A, Morona R, Purins L, Ajamian E, Wagner J, Papadopoulos M, Van Den Bosch L, Rubinstein JL, Fethiere J, Matte A, Cygler M (2008) Bacterial polysaccharide co-polymerases share a common framework for control of polymer length. Nat Struct Mol Biol 15:130–138

    CAS  Google Scholar 

  136. Lukomski S, Hull RA, Hull SI (1996) Identification of the O-antigen polymerase (rfc) gene in Escherichia coli O4 by insertional mutagenesis using a nonpolar chloramphenicol resistance cassette. J Bacteriol 178:240–247

    CAS  Google Scholar 

  137. Larue K, Kimber MS, Ford RC, Whitfield C (2009) Biochemical and structural analysis of bacterial O-antigen chain length regulator proteins reveals a conserved quaternary structure. J Biol Chem 284:7395–7403

    CAS  Google Scholar 

  138. Bechet E, Gruszczyk J, Terreux R, Gueguen-Chaignon V, Vigouroux A, Obadia B, Cozzone AJ, Nessler S, Grangeasse C (2010) Identification of structural and molecular determinants of the tyrosine-kinase Wzc and implications in capsular polysaccharide export. Mol Microbiol 77:1315–1325

    CAS  Google Scholar 

  139. Whitfield C, Naismith J (2008) Periplasmic export machines for outer membrane assembly. Curr Opin Struct Biol 18:1–9

    Google Scholar 

  140. Papadopoulos M, Morona R (2010) Mutagenesis and chemical cross-linking suggest that Wzz dimer stability and oligomerisation affect lipopolysaccharide O-antigen modal chain length control. J Bacteriol 192:3385–3393

    CAS  Google Scholar 

  141. Bengoechea JA, Pinta E, Salminen T, Oertelt C, Holst O, Radziejewska-Lebrecht J, Piotrowska-Seget Z, Venho R, Skurnik M (2002) Functional characterization of Gne (UDP-N-acetylglucosamine-4-epimerase), Wzz (chain length determinant), and Wzy (O-antigen polymerase) of Yersinia enterocolitica serotype O:8. J Bacteriol 184:4277–4287

    CAS  Google Scholar 

  142. Gaspar JA, Thomas JA, Marolda CL, Valvano MA (2000) Surface expression of O-specific lipopolysaccharide in Escherichia coli requires the function of the TolA protein. Mol Microbiol 38:262–275

    CAS  Google Scholar 

  143. Stenberg F, Chovanec P, Maslen SL, Robinson CV, Ilag L, von Heijne G, Daley DO (2005) Protein complexes of the Escherichia coli cell envelope. J Biol Chem 280:34409–34419

    CAS  Google Scholar 

  144. Kulpa CF Jr, Leive L (1976) Mode of insertion of lipopolysaccharide into the outer membrane of Escherichia coli. J Bacteriol 126:467–477

    CAS  Google Scholar 

  145. Muhlradt PF, Menzel J, Golecki JR, Speth V (1973) Outer membrane of Salmonella. Sites of export of newly synthesised lipopolysaccharide on the bacterial surface. Eur J Biochem 35:471–481

    CAS  Google Scholar 

  146. Collins RF, Beis K, Clarke BR, Ford RC, Hulley M, Naismith JH, Whitfield C (2006) Periplasmic protein-protein contacts in the inner membrane protein Wzc form a tetrameric complex required for the assembly of Escherichia coli group 1 capsules. J Biol Chem 281:2144–2150

    CAS  Google Scholar 

  147. McNulty C, Thompson J, Barrett B, Lord L, Andersen C, Roberts IS (2006) The cell surface expression of group 2 capsular polysaccharides in Escherichia coli: the role of KpsD, RhsA and a multi-protein complex at the pole of the cell. Mol Microbiol 59:907–922

    CAS  Google Scholar 

  148. Ishidate K, Creeger ES, Zrike J, Deb S, Glauner B, MacAlister TJ, Rothfield LI (1986) Isolation of differentiated membrane domains from Escherichia coli and Salmonella typhimurium, including a fraction containing attachment sites between the inner and outer membranes and the murein skeleton of the cell envelope. J Biol Chem 261:428–443

    CAS  Google Scholar 

  149. Bouveret E, Derouiche R, Rigal A, Lloubes R, Lazdunski C, Benedetti H (1995) Peptidoglycan-associated lipoprotein-TolB interaction. A possible key to explaining the formation of contact sites between the inner and outer membranes of Escherichia coli. J Biol Chem 270:11071–11077

    CAS  Google Scholar 

  150. Cascales E, Gavioli M, Sturgis JN, Lloubés R (2000) Proton motive force drives the interaction of the inner membrane TolA and outer membrane Pal proteins in Escherichia coli. Mol Microbiol 38:904–915

    CAS  Google Scholar 

  151. Guihard G, Boulanger P, Benedetti H, Lloubes R, Besnard M, Letellier L (1994) Colicin A and the Tol proteins involved in its translocation are preferentially located in the contact sites between the inner and outer membranes of Escherichia coli cells. J Biol Chem 269:5874–5880

    CAS  Google Scholar 

  152. Ng DTW, Spear ED, Walter P (2000) The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J Cell Biol 150:77–88

    CAS  Google Scholar 

  153. Sprong H, van der Sluijs P, van Meer G (2001) How proteins move lipids and lipid move proteins. Nat Rev Mol Cell Biol 2:504–513

    CAS  Google Scholar 

  154. Davidson EA, Gowda DC (2001) Glycobiology of Plasmodium falciparum. Biochimie 83:601–604

    CAS  Google Scholar 

  155. Frank CG, Sanyal S, Rush JS, Waechter CJ, Menon AK (2008) Does Rft1 flip an N-glycan lipid precursor? Nature 454:E3–E4

    CAS  Google Scholar 

  156. Zhang L, Al-Hendy A, Toivanen P, Skurnik M (1993) Genetic organization and sequence of the rfb gene cluster of Yersinia enterocolitica serotype O:3: similarities to the dTDP-l-rhamnose biosynthesis pathway of Salmonella and to the bacterial polysaccharide transport systems. Mol Microbiol 9:309–321

    CAS  Google Scholar 

  157. Smith AN, Boulnois GJ, Roberts IS (1990) Molecular analysis of the Escherichia coli K5 kps locus: identification and characterization of an inner-membrane capsular polysaccharide transport system. Mol Microbiol 4:1863–1869

    CAS  Google Scholar 

  158. Pavelka MS, Wright LF, Silver RP (1991) Identification of two genes, kpsM and kpsT, in region 3 of the polysialic acid gene cluster of Escherichia coli K1. J Bacteriol 173:4603–4610

    CAS  Google Scholar 

  159. Kroll JS, Loynds B, Brophy LN, Moxon ER (1990) The bex locus in encapsulated Haemophilus influenzae: a chromosomal region involved in capsule polysaccharide export. Mol Microbiol 4:1853–1862

    CAS  Google Scholar 

  160. Lazarevic V, Karamata D (1995) The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol Microbiol 16:345–355

    CAS  Google Scholar 

  161. Cuthbertson L, Kos V, Whitfield C (2010) ABC transporters involved in export of cell surface glycoconjugates. Microbiol Mol Biol Rev 74:341–362

    CAS  Google Scholar 

  162. Doerrler WT, Raetz CRH (2002) ATPase activity of the MsbA lipid flippase of Escherichia coli. J Biol Chem 277:36697–36705

    CAS  Google Scholar 

  163. Rick PD, Hubbard GL, Barr K (1994) Role of the rfe gene in the synthesis of the O8 antigen in Escherichia coli K-12. J Bacteriol 176:2877–2884

    CAS  Google Scholar 

  164. Süsskind M, Brade L, Brade H, Holst O (1998) Identification of a novel heptoglycan of α1→2-linked d- glycero-d- manno-heptopyranose. Chemical and antigenic structure of lipopolysaccharides from Klebsiella pneumoniae ssp. pneumoniae rough strain R20 (O1-:K20-). J Biol Chem 273:7006–7017

    Google Scholar 

  165. Kido N, Torgov VI, Sugiyama T, Uchiya K, Sugihara H, Komatsu T, Kato N, Jann K (1995) Expression of the O9 polysaccharide of Escherichia coli: sequencing of the E. coli O9 rfb gene cluster, characterization of mannosyl transferases, and evidence for an ATP-binding cassette transport system. J Bacteriol 177:2178–2187

    CAS  Google Scholar 

  166. Guan S, Clarke AJ, Whitfield C (2001) Functional analysis of the galactosyltransferases required for biosynthesis of d-galactan I, a component of the lipopolysaccharide O1 antigen of Klebsiella pneumoniae. J Bacteriol 183:3318–3327

    CAS  Google Scholar 

  167. Clarke BR, Bronner D, Keenleyside WJ, Severn WB, Richards JC, Whitfield C (1995) Role of Rfe and RfbF in the initiation of biosynthesis of d-galactan I, the lipopolysaccharide O-antigen from Klebsiella pneumoniae serotype O1. J Bacteriol 177:5411–5418

    CAS  Google Scholar 

  168. Weisgerber C, Jann K (1982) Glucosyldiphosphoundecaprenol, the mannose acceptor in the synthesis of the O9 antigen of Escherichia coli. Biosynthesis and characterization. Eur J Biochem 127:165–168

    CAS  Google Scholar 

  169. Kido N, Kobayashi H (2000) A single amino acid substitution in a mannosyltransferase, WbdA, converts the Escherichia coli O9 polysaccharide into O9a: generation of a new O-serotype group. J Bacteriol 182:2567–2573

    CAS  Google Scholar 

  170. Kido N, Sugiyama T, Yokochi T, Kobayashi H, Okawa Y (1998) Synthesis of Escherichia coli O9a polysaccharide requires the participation of two domains of WbdA, a mannosyltransferase encoded within the wb* gene cluster. Mol Microbiol 27:1213–1221

    CAS  Google Scholar 

  171. Whitfield C, Amor PA, Koplin R (1997) Modulation of the surface architecture of gram-negative bacteria by the action of surface polymer:lipid A-core ligase and by determinants of polymer chain length. Mol Microbiol 23:629–638

    CAS  Google Scholar 

  172. Clarke B, Cuthbertson L, Whitfield C (2004) Nonreducing terminal modifications determine the chain length of polymannose O-antigens of Escherichia coli and couple chain termination to polymer export via an ATP-binding cassette transporter. J Biol Chem 279:35709–35718

    CAS  Google Scholar 

  173. Lindberg B, Lönngren J, Nimmich W (1972) Structural studies on Klebsiella O group 5 lipopolysaccharides. Acta Chem Scand 26:2231–2236

    CAS  Google Scholar 

  174. Clarke BR, Greenfield LK, Bouwman C, Whitfield C (2009) Coordination of polymerization, chain termination, and export in assembly of the Escherichia coli lipopolysaccharide O9a antigen in an ATP-binding cassette transporter-dependent pathway. J Biol Chem 284:30662–30672

    CAS  Google Scholar 

  175. Vinogradov E, Frirdich E, MacLean LL, Perry MB, Petersen BO, Duus JØ, Whitfield C (2002) Structures of lipopolysaccharides from Klebsiella pneumoniae. Elucidation of the structure of the linkage region between core and polysaccharide O chain and identification of the residues at the non-reducing termini of the O chains. J Biol Chem 277:25070–25081

    CAS  Google Scholar 

  176. Cuthbertson L, Powers J, Whitfield C (2005) The C-terminal domain of the nucleotide-binding domain protein Wzt determines substrate specificity in the ATP-binding cassette transporter for the lipopolysaccharide O-antigens in Escherichia coli serotypes O8 and O9a. J Biol Chem 280:30310–30319

    CAS  Google Scholar 

  177. Cuthbertson L, Kimber MS, Whitfield C (2007) Substrate binding by a bacterial ABC transporter involved in polysaccharide export. Proc Natl Acad Sci USA 104:19529–19534

    CAS  Google Scholar 

  178. Whitfield C, Richards JC, Perry MB, Clarke BR, MacLean LL (1991) Expression of two structurally distinct d-galactan O-antigens in the lipopolysaccharide of Klebsiella pneumoniae serotype O1. J Bacteriol 173:1420–1431

    CAS  Google Scholar 

  179. Whitfield C, Perry MB, MacLean LL, Yu SH (1992) Structural analysis of the O-antigen side chain polysaccharides in the lipopolysaccharides of Klebsiella serotypes O2(2a), O2(2a,2b), and O2(2a,2c). J Bacteriol 174:4913–4919

    CAS  Google Scholar 

  180. Keenleyside WJ, Whitfield C (1996) A novel pathway for O-polysaccharide biosynthesis in Salmonella enterica serovar Borreze. J Biol Chem 271:28581–28592

    CAS  Google Scholar 

  181. Keenleyside WJ, Whitfield C (1995) Lateral transfer of rfb genes: a mobilizable ColE1-type plasmid carries the rfb O:54 (O:54 antigen biosynthesis) gene cluster from Salmonella enterica serovar Borreze. J Bacteriol 177:5247–5253

    CAS  Google Scholar 

  182. Keenleyside WJ, Perry M, Maclean L, Poppe C, Whitfield C (1994) A plasmid-encoded rfbO:54 gene cluster is required for biosynthesis of the O:54 antigen in Salmonella enterica serovar Borreze. Mol Microbiol 11:437–448

    CAS  Google Scholar 

  183. Keenleyside WJ, Clarke AJ, Whitfield C (2001) Identification of residues involved in catalytic activity of the inverting glycosyl transferase WbbE from Salmonella enterica serovar borreze. J Bacteriol 183:77–85

    CAS  Google Scholar 

  184. DeAngelis PL (2002) Microbial glycosaminoglycan glycosyltransferases. Glycobiology 12:9R–16R

    CAS  Google Scholar 

  185. DeAngelis PL (1999) Hyaluronan synthases: fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses. Cell Mol Life Sci 56:670–682

    CAS  Google Scholar 

  186. Forsee WT, Cartee RT, Yother J (2000) Biosynthesis of type 3 capsular polysaccharide in Streptococcus pneumoniae. Enzymatic chain release by an abortive translocation process. J Biol Chem 275:25972–25978

    CAS  Google Scholar 

  187. Remminghorst U, Rehm BH (2006) Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28:1701–1712

    CAS  Google Scholar 

  188. Itoh Y, Rice JD, Goller C, Pannuri A, Taylor J, Meisner J, Beveridge TJ, Preston JF, Romeo T (2008) Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly-β-1,6-N-acetyl- d-glucosamine. J Bacteriol 190:3670–3680

    CAS  Google Scholar 

  189. Hug I, Couturier MR, Rooker MM, Taylor DE, Stein M, Feldman MF (2010) Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein N-glycosylation. PLoS Pathog 6:e1000819

    Google Scholar 

  190. Kelly J, Jarrell H, Millar L, Tessier L, Fiori LM, Lau PC, Allan B, Szymanski CM (2006) Biosynthesis of the N-linked glycan in Campylobacter jejuni and addition onto protein through block transfer. J Bacteriol 188:2427–2434

    CAS  Google Scholar 

  191. Abeyrathne P, Daniels C, Poon KK, Matewish MJ, Lam J (2005) Functional characterization of WaaL, a ligase associated with linking O-antigen polysaccharide to the core of Pseudomonas aeruginosa lipopolysaccharide. J Bacteriol 187:3002–3012

    CAS  Google Scholar 

  192. Heinrichs DE, Yethon JA, Amor PA, Whitfield C (1998) The assembly system for the outer core portion of R1- and R4-type lipopolysaccharides of Escherichia coli. The R1 core-specific β-glucosyltransferase provides a novel attachment site for O-polysaccharides. J Biol Chem 273:29497–29505

    CAS  Google Scholar 

  193. Heinrichs DE, Monteiro MA, Perry MB, Whitfield C (1998) The assembly system for the lipopolysaccharide R2 core-type of Escherichia coli is a hybrid of those found in Escherichia coli K-12 and Salmonella enterica. Structure and function of the R2 WaaK and WaaL homologs. J Biol Chem 273:8849–8859

    CAS  Google Scholar 

  194. Schild S, Lamprecht AK, Reidl J (2005) Molecular and functional characterization of O-antigen transfer in Vibrio cholerae. J Biol Chem 280:25936–25947

    CAS  Google Scholar 

  195. Olsthoorn MM, Petersen BO, Schlecht S, Haverkamp J, Bock K, Thomas-Oates JE, Holst O (1998) Identification of a novel core type in Salmonella lipopolysaccharide. Complete structural analysis of the core region of the lipopolysaccharide from Salmonella enterica sv. Arizonae O62. J Biol Chem 273:3817–3829

    CAS  Google Scholar 

  196. Kaniuk NA, Vinogradov E, Whitfield C (2004) Investigation of the structural requirements in the lipopolysaccharide core acceptor for ligation of O-antigens in the genus Salmonella: WaaL “ligase” is not the sole determinant of acceptor specificity. J Biol Chem 279:36470–36480

    CAS  Google Scholar 

  197. Meredith TC, Mamat U, Kaczynski Z, Lindner B, Holst O, Woodard RW (2007) Modification of lipopolysaccharide with colanic acid (M-antigen) repeats in Escherichia coli. J Biol Chem 282:7790–7798

    CAS  Google Scholar 

  198. Tang G, Mintz KP (2010) Glycosylation of the collagen adhesin EmaA of Aggregatibacter actinomycetemcomitans is dependent upon the lipopolysaccharide biosynthetic pathway. J Bacteriol 192:1395–1404

    CAS  Google Scholar 

  199. Power PM, Seib KL, Jennings MP (2006) Pilin glycosylation in Neisseria meningitidis occurs by a similar pathway to wzy-dependent O-antigen biosynthesis in Escherichia coli. Biochem Biophys Res Commun 347:904–908

    CAS  Google Scholar 

  200. Faridmoayer A, Fentabil MA, Haurat MF, Yi W, Woodward R, Wang PG, Feldman MF (2008) Extreme substrate promiscuity of the Neisseria oligosaccharyl transferase involved in protein O-glycosylation. J Biol Chem 283:34596–34604

    CAS  Google Scholar 

  201. Castric P (1995) pilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. Microbiology 141:1247–1254

    CAS  Google Scholar 

  202. Novotny R, Schäffer C, Strauss J, Messner P (2004) S-layer glycan-specific loci on the chromosome of Geobacillus stearothermophilus NRS 2004/3a and dTDP-l-rhamnose biosynthesis potential of G. stearothermophilus strains. Microbiology 150:953–965

    CAS  Google Scholar 

  203. Nesper J, Kraiss A, Schild S, Blass J, Klose KE, Bockemuhl J, Reidl J (2002) Comparative and genetic analyses of the putative Vibrio cholerae lipopolysaccharide core oligosaccharide biosynthesis (wav) gene cluster. Infect Immun 70:2419–2433

    CAS  Google Scholar 

  204. Raetz CR, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 76:295–329

    CAS  Google Scholar 

  205. Abeyrathne P, Lam J (2007) WaaL of Pseudomonas aeruginosa utilizes ATP in in vitro ligation of O-antigen onto lipid A-core. Mol Microbiol 65:1345–1359

    CAS  Google Scholar 

  206. Pugsley AP (1993) The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57:50–108

    CAS  Google Scholar 

  207. Pérez JM, McGarry MA, Marolda CL, Valvano MA (2008) Functional analysis of the large periplasmic loop of the Escherichia coli K-12 WaaL O-antigen ligase. Mol Microbiol 70:1424–1440

    Google Scholar 

  208. Qutyan M, Paliotti M, Castric P (2007) PilO of Pseudomonas aeruginosa 1244: subcellular location and domain assignment. Mol Microbiol 66:1444–1458

    CAS  Google Scholar 

  209. White RH (1996) Biosynthesis of isoprenoids in bacteria. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, pp 637–641

    Google Scholar 

  210. Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574

    CAS  Google Scholar 

  211. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    CAS  Google Scholar 

  212. Kuzuyama T (2002) Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66:1619–1627

    CAS  Google Scholar 

  213. Sprenger GA, Schorken U, Wiegert T, Grolle S, de Graaf AA, Taylor SV, Begley TP, Bringer-Meyer S, Sahm H (1997) Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-d-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci USA 94:12857–12862

    CAS  Google Scholar 

  214. Lois LM, Campos N, Putra SR, Danielsen K, Rohmer M, Boronat A (1998) Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of d-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc Natl Acad Sci USA 95:2105–2110

    CAS  Google Scholar 

  215. Takahashi S, Kuzuyama T, Watanabe H, Seto H (1998) A 1-deoxy-d-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-d-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci USA 95:9879–9884

    CAS  Google Scholar 

  216. Apfel CM, Takacs B, Fountoulakis M, Stieger M, Keck W (1999) Use of genomics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression, and characterization of the essential uppS gene. J Bacteriol 181:483–492

    CAS  Google Scholar 

  217. Shimizu N, Koyama T, Ogura K (1998) Molecular cloning, expression, and purification of undecaprenyl diphosphate synthase. No sequence similarity between E- and Z-prenyl diphosphate synthases. J Biol Chem 273:19476–19481

    CAS  Google Scholar 

  218. Abeijon C, Hirschberg CB (1992) Topography of glycosylation reactions in the endoplasmic reticulum. Trends Biochem Sci 17:32–36

    CAS  Google Scholar 

  219. Rush JS, Cho SK, Jiang S, Hofmann SL, Waechter CJ (2002) Identification and characterization of a cDNA encoding a dolichyl pyrophosphate phosphatase located in the endoplasmic reticulum of mammalian cells. J Biol Chem 277:45226–45234

    CAS  Google Scholar 

  220. Stukey J, Carman GM (1997) Identification of a novel phosphatase sequence motif. Protein Sci 6:469–472

    CAS  Google Scholar 

  221. Neuwald AF (1997) An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases. Protein Sci 6:1764–1767

    CAS  Google Scholar 

  222. Ishikawa K, Mihara Y, Gondoh K, Suzuki E, Asano Y (2000) X-ray structures of a novel acid phosphatase from Escherichia blattae and its complex with the transition-state analog molybdate. EMBO J 19:2412–2423

    CAS  Google Scholar 

  223. Tatar LD, Marolda CL, Polischuk AN, van Leeuwen D, Valvano MA (2007) An Escherichia coli undecaprenyl-pyrophosphate phosphatase implicated in undecaprenyl-phosphate recycling. Microbiology 153:2518–2529

    CAS  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratory has been supported by grants from the Canadian Institutes of Health Research, Natural Sciences and Engineering Research Council, the Mizutani Foundation for Glycoscience, Cystic Fibrosis Canada, Ontario Ministry of Innovation, and the Canadian Foundation for Innovation. S.E.F. and K.B.P. hold Ontario Graduate Science and Technology scholarships. M.A.V. holds a Canada Research Chair in Infectious Diseases and Microbial Pathogenesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Valvano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Valvano, M.A., Furlong, S.E., Patel, K.B. (2011). Genetics, Biosynthesis and Assembly of O-Antigen. In: Knirel, Y., Valvano, M. (eds) Bacterial Lipopolysaccharides. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0733-1_9

Download citation

Publish with us

Policies and ethics