Skip to main content

Pathways for the Biosynthesis of NDP Sugars

  • Chapter
  • First Online:
Bacterial Lipopolysaccharides

Abstract

Bacterial lipopolysaccharide (LPS) is an important surface structure of Gramnegative bacteria for maintaining the integrity of the outer membrane. It is also a virulence factor in many bacteria, particularly those that are pathogens of plants and animals. Structurally, the LPS can be divided into three domains, lipid A, core oligosaccharide and O-polysaccharide (or O-antigen). Its polysaccharide constituents contain a great variety of sugars including neutral sugars, charged sugars that are acidic or amino substituted (see Chap. 3). Substitutions and enzymatic modifications of the basic sugar structure also lead to interesting deoxy or dideoxy sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Numbers in parentheses refer to the corresponding structures depicted in the figures.

References

  1. Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J (1999) Essentials of glycobiology. Cold Spring Harbor, New York

    Google Scholar 

  2. Thibodeaux CJ, Melancon CE III, Liu HW (2008) Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem Int Ed Engl 47:9814–9859

    CAS  Google Scholar 

  3. Leloir LF (1951) The enzymatic transformation of uridine diphosphate glucose into a galactose derivative. Arch Biochem 33:186–190

    CAS  Google Scholar 

  4. Lu M, Kleckner N (1994) Molecular cloning and characterization of the pgm gene encoding phosphoglucomutase of Escherichia coli. J Bacteriol 176:5847–5851

    CAS  Google Scholar 

  5. Coyne MJ Jr, Russell KS, Coyle CL, Goldberg JB (1994) The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core. J Bacteriol 176:3500–3507

    CAS  Google Scholar 

  6. Kooistra O, Bedoux G, Brecker L, Lindner B, Sanchez Carballo P, Haras D, Zähringer U (2003) Structure of a highly phosphorylated lipopolysaccharide core in the Delta algC mutants derived from Pseudomonas aeruginosa wild-type strains PAO1 (serogroup O5) and PAC1R (serogroup O3). Carbohydr Res 338:2667–2677

    CAS  Google Scholar 

  7. Weissborn AC, Liu Q, Rumley MK, Kennedy EP (1994) UTP:α-d-glucose-1-phosphate uridylyltransferase of Escherichia coli: isolation and DNA sequence of the galU gene and purification of the enzyme. J Bacteriol 176:2611–2618

    CAS  Google Scholar 

  8. Thoden JB, Holden HM (2007) The molecular architecture of glucose-1-phosphate uridylyltransferase. Protein Sci 16:432–440

    CAS  Google Scholar 

  9. Priebe GP, Dean CR, Zaidi T, Meluleni GJ, Coleman FT, Coutinho YS, Noto MJ, Urban TA, Pier GB, Goldberg JB (2004) The galU gene of Pseudomonas aeruginosa is required for corneal infection and efficient systemic spread following pneumonia but not for infection confined to the lung. Infect Immun 72:4224–4232

    CAS  Google Scholar 

  10. Dean CR, Goldberg JB (2002) Pseudomonas aeruginosa galU is required for a complete lipopolysaccharide core and repairs a secondary mutation in a PA103 (serogroup O11) wbpM mutant. FEMS Microbiol Lett 210:277–283

    CAS  Google Scholar 

  11. Choudhury B, Carlson RW, Goldberg JB (2005) The structure of the lipopolysaccharide from a galU mutant of Pseudomonas aeruginosa serogroup-O11. Carbohydr Res 340:2761–2772

    CAS  Google Scholar 

  12. Mollerach M, Lopez R, Garcia E (1998) Characterization of the galU gene of Streptococcus pneumoniae encoding a uridine diphosphoglucose pyrophosphorylase: a gene essential for capsular polysaccharide biosynthesis. J Exp Med 188:2047–2056

    CAS  Google Scholar 

  13. Thoden JB, Holden HM (1998) Dramatic differences in the binding of UDP-galactose and UDP-glucose to UDP-galactose 4-epimerase from Escherichia coli. Biochemistry 37:11469–11477

    CAS  Google Scholar 

  14. Thoden JB, Frey PA, Holden HM (1996) Molecular structure of the NADH/UDP-glucose abortive complex of UDP-galactose 4-epimerase from Escherichia coli: implications for the catalytic mechanism. Biochemistry 35:5137–5144

    CAS  Google Scholar 

  15. Wilson DB, Hogness DS (1964) The enzymes of the galactose eperon in Escherichia coli. I. Purification and characterization of uridine diphosphogalactose 4-epimerase. J Biol Chem 239:2469–2481

    CAS  Google Scholar 

  16. Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR (1996) Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178:4885–4893

    CAS  Google Scholar 

  17. Stenutz R, Weintraub A, Widmalm G (2006) The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol Rev 30:382–403

    CAS  Google Scholar 

  18. Perepelov AV, Babicka D, Senchenkova SN, Shashkov AS, Moll H, Rozalski A, Zähringer U, Knirel YA (2001) Structure of the O-specific polysaccharide of Proteus vulgaris O4 containing a new component of bacterial polysaccharides, 4,6-dideoxy-4-{N-[(R)-3-hydroxybutyryl]-l-alanyl}amino-d-glucose. Carbohydr Res 331:195–202

    CAS  Google Scholar 

  19. Knirel YA, Paredes L, Jansson PE, Weintraub A, Widmalm G, Albert MJ (1995) Structure of the capsular polysaccharide of Vibrio cholerae O139 synonym Bengal containing d-galactose 4,6-cyclophosphate. Eur J Biochem 232:391–396

    CAS  Google Scholar 

  20. Munoz R, Mollerach M, Lopez R, Garcia E (1999) Characterization of the type 8 capsular gene cluster of Streptococcus pneumoniae. J Bacteriol 181:6214–6219

    CAS  Google Scholar 

  21. Lindberg B, Lindqvist B, Lönngren J, Powell DA (1980) Structural studies of the capsular polysaccharide from Streptococcus pneumoniae type 1. Carbohydr Res 78:111–117

    CAS  Google Scholar 

  22. Jansson PE, Lindberg B, Anderson M, Lindquist U, Henrichsen J (1988) Structural studies of the capsular polysaccharide from Streptococcus pneumoniae type 2, a reinvestigation. Carbohydr Res 182:111–117

    CAS  Google Scholar 

  23. Cartee RT, Forsee WT, Schutzbach JS, Yother J (2000) Mechanism of type 3 capsular polysaccharide synthesis in Streptococcus pneumoniae. J Biol Chem 275:3907–3914

    CAS  Google Scholar 

  24. Gottesman S, Stout V (1991) Regulation of capsular polysaccharide synthesis in Escherichia coli K12. Mol Microbiol 5:1599–1606

    CAS  Google Scholar 

  25. Arrecubieta C, Garcia E, Lopez R (1996) Demonstration of UDP-glucose dehydrogenase activity in cell extracts of Escherichia coli expressing the pneumococcal cap3A gene required for the synthesis of type 3 capsular polysaccharide. J Bacteriol 178:2971–2974

    CAS  Google Scholar 

  26. Jiang SM, Wang L, Reeves PR (2001) Molecular characterization of Streptococcus pneumoniae type 4, 6B, 8, and 18 C capsular polysaccharide gene clusters. Infect Immun 69:1244–1255

    CAS  Google Scholar 

  27. Hung RJ, Chien HS, Lin RZ, Lin CT, Vatsyayan J, Peng HL, Chang HY (2007) Comparative analysis of two UDP-glucose dehydrogenases in Pseudomonas aeruginosa PAO1. J Biol Chem 282:17738–17748

    CAS  Google Scholar 

  28. Loutet SA, Bartholdson SJ, Govan JR, Campopiano DJ, Valvano MA (2009) Contributions of two UDP-glucose dehydrogenases to viability and polymyxin B resistance of Burkholderia cenocepacia. Microbiology 155:2029–2039

    CAS  Google Scholar 

  29. Parolis H, Parolis LA (1995) The structure of the O-specific polysaccharide from Escherichia coli O113 lipopolysaccharide. Carbohydr Res 267:263–269

    CAS  Google Scholar 

  30. Hisatsune K, Kondo S, Isshiki Y, Iguchi T, Kawamata Y, Shimada T (1993) O-antigenic lipopolysaccharide of Vibrio cholerae O139 Bengal, a new epidemic strain for recent cholera in the Indian subcontinent. Biochem Biophys Res Commun 196:1309–1315

    CAS  Google Scholar 

  31. Isshiki Y, Kondo S, Iguchi T, Sano Y, Shimada T, Hisatsune K (1996) An immunochemical study of serological cross-reaction between lipopolysaccharides from Vibrio cholerae O22 and O139. Microbiology 142:1499–1504

    CAS  Google Scholar 

  32. Carlson RW, Garci F, Noel D, Hollingsworth R (1989) The structures of the lipopolysaccharide core components from Rhizobium leguminosarum biovar phaseoli CE3 and two of its symbiotic mutants, CE109 and CE309. Carbohydr Res 195:101–110

    CAS  Google Scholar 

  33. Vinogradov E, Sidorczyk Z, Knirel YA (2002) Structure of the core part of the lipopolysaccharides from Proteus penneri strains 7, 8, 14, 15, and 21. Carbohydr Res 337:643–649

    CAS  Google Scholar 

  34. Frirdich E, Bouwman C, Vinogradov E, Whitfield C (2005) The role of galacturonic acid in outer membrane stability in Klebsiella pneumoniae. J Biol Chem 280:27604–27612

    CAS  Google Scholar 

  35. Regue M, Hita B, Pique N, Izquierdo L, Merino S, Fresno S, Benedi VJ, Tomas JM (2004) A gene, uge, is essential for Klebsiella pneumoniae virulence. Infect Immun 72:54–61

    CAS  Google Scholar 

  36. Frirdich E, Whitfield C (2005) Characterization of Gla(KP), a UDP-galacturonic acid C4-epimerase from Klebsiella pneumoniae with extended substrate specificity. J Bacteriol 187:4104–4115

    CAS  Google Scholar 

  37. Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz CR, Rick PD (1996) Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4:495–503

    CAS  Google Scholar 

  38. Erbing C, Svensson S, Hammarstrom S (1975) Structural studies on the O-specific side-chains of the cell-wall lipopolysaccharide from Escherichia coli O 75. Carbohydr Res 44:259–265

    CAS  Google Scholar 

  39. Stevenson G, Neal B, Liu D, Hobbs M, Packer NH, Batley M, Redmond JW, Lindquist L, Reeves P (1994) Structure of the O antigen of Escherichia coli K-12 and the sequence of its rfb gene cluster. J Bacteriol 176:4144–4156

    CAS  Google Scholar 

  40. Knirel YA, Bystrova OV, Kocharova NA, Zähringer U, Pier GB (2006) Conserved and variable structural features in the lipopolysaccharide of Pseudomonas aeruginosa. J Endotoxin Res 12:324–336

    CAS  Google Scholar 

  41. Bystrova OV, Knirel YA, Lindner B, Kocharova NA, Kondakova AN, Zähringer U, Pier GB (2006) Structures of the core oligosaccharide and O-units in the R- and SR-type lipopolysaccharides of reference strains of Pseudomonas aeruginosa O-serogroups. FEMS Immunol Med Microbiol 46:85–99

    CAS  Google Scholar 

  42. Moreau M, Richards JC, Perry MB, Kniskern PJ (1988) Structural analysis of the specific capsular polysaccharide of Streptococcus pneumoniae type 45 (American type 72). Biochemistry 27:6820–6829

    CAS  Google Scholar 

  43. Daoust V, Carlo DJ, Zeltner JY, Perry MB (1981) Specific capsular polysaccharide of type 45 Streptococcus pneumoniae (American type 72). Infect Immun 32:1028–1033

    CAS  Google Scholar 

  44. Lutticken R, Temme N, Hahn G, Bartelheimer EW (1986) Meningitis caused by Streptococcus suis: case report and review of the literature. Infection 14:181–185

    CAS  Google Scholar 

  45. McNeil M, Daffe M, Brennan PJ (1990) Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls. J Biol Chem 265:18200–18206

    CAS  Google Scholar 

  46. Deng L, Mikusova K, Robuck KG, Scherman M, Brennan PJ, McNeil MR (1995) Recognition of multiple effects of ethambutol on metabolism of mycobacterial cell envelope. Antimicrob Agents Chemother 39:694–701

    CAS  Google Scholar 

  47. Blankenfeldt W, Asuncion M, Lam JS, Naismith JH (2000) The structural basis of the catalytic mechanism and regulation of glucose-1-phosphate thymidylyltransferase (RmlA). EMBO J 19:6652–6663

    CAS  Google Scholar 

  48. Shibaev VN (1986) Biosynthesis of bacterial polysaccharide chains composed of repeating units. Adv Carbohydr Chem Biochem 44:277–339

    CAS  Google Scholar 

  49. Koplin R, Wang G, Hotte B, Priefer UB, Puhler A (1993) A 3.9-kb DNA region of Xanthomonas campestris pv. campestris that is necessary for lipopolysaccharide production encodes a set of enzymes involved in the synthesis of dTDP-rhamnose. J Bacteriol 175:7786–7792

    CAS  Google Scholar 

  50. Melo A, Glaser L (1965) The nucleotide specificity and feedback control of thymidine diphosphate d-glucose pyrophosphorylase. J Biol Chem 240:398–405

    CAS  Google Scholar 

  51. Blankenfeldt W, Giraud MF, Leonard G, Rahim R, Creuzenet C, Lam JS, Naismith JH (2000) The purification, crystallization and preliminary structural characterization of glucose-1-phosphate thymidylyltransferase (RmlA), the first enzyme of the dTDP-l-rhamnose synthesis pathway from Pseudomonas aeruginosa. Acta Crystallogr D Biol Crystallogr 56:1501–1504

    CAS  Google Scholar 

  52. Dong C, Major LL, Srikannathasan V, Errey JC, Giraud MF, Lam JS, Graninger M, Messner P, McNeil MR, Field RA, Whitfield C, Naismith JH (2007) RmlC, a C3′ and C5′ carbohydrate epimerase, appears to operate via an intermediate with an unusual twist boat conformation. J Mol Biol 365:146–159

    CAS  Google Scholar 

  53. Allard ST, Giraud MF, Whitfield C, Graninger M, Messner P, Naismith JH (2001) The crystal structure of dTDP-d-Glucose 4,6-dehydratase (RmlB) from Salmonella enterica serovar Typhimurium, the second enzyme in the dTDP-l-rhamnose pathway. J Mol Biol 307:283–295

    CAS  Google Scholar 

  54. Giraud MF, Leonard GA, Field RA, Berlind C, Naismith JH (2000) RmlC, the third enzyme of dTDP-l-rhamnose pathway, is a new class of epimerase. Nat Struct Biol 7:398–402

    CAS  Google Scholar 

  55. Blankenfeldt W, Kerr ID, Giraud MF, McMiken HJ, Leonard G, Whitfield C, Messner P, Graninger M, Naismith JH (2002) Variation on a theme of SDR. dTDP-6-deoxy-l- lyxo-4-hexulose reductase (RmlD) shows a new Mg2+-dependent dimerization mode. Structure 10:773–786

    CAS  Google Scholar 

  56. Li Q, Reeves PR (2000) Genetic variation of dTDP-l-rhamnose pathway genes in Salmonella enterica. Microbiology 146:2291–2307

    CAS  Google Scholar 

  57. Li Q, Hobbs M, Reeves PR (2003) The variation of dTDP-l-rhamnose pathway genes in Vibrio cholerae. Microbiology 149:2463–2474

    CAS  Google Scholar 

  58. Gaugler RW, Gabriel O (1973) Biological mechanisms involved in the formation of deoxy sugars. VII. Biosynthesis of 6-deoxy-l-talose. J Biol Chem 248:6041–6049

    CAS  Google Scholar 

  59. Jann B, Shashkov A, Torgov V, Kochanowski H, Seltmann G, Jann K (1995) NMR investigation of the 6-deoxy-l-talose-containing O45, O45-related (O45rel), and O66 polysaccharides of Escherichia coli. Carbohydr Res 278:155–165

    CAS  Google Scholar 

  60. Zähringer U, Rettenmaier H, Moll H, Senchenkova SN, Knirel YA (1997) Structure of a new 6-deoxy-α-d-talan from Burkholderia (Pseudomonas) plantarii strain DSM 6535, which is different from the O-chain of the lipopolysaccharide. Carbohydr Res 300:143–151

    Google Scholar 

  61. Russa R, Urbanik-Sypniewska T, Lindstrom K, Mayer H (1995) Chemical characterization of two lipopolysaccharide species isolated from Rhizobium loti NZP2213. Arch Microbiol 163:345–351

    CAS  Google Scholar 

  62. Shibuya N, Amano K, Azuma J, Nishihara T, Kitamura Y, Noguchi T, Koga T (1991) 6-Deoxy-d-talan and 6-deoxy-l-talan. Novel serotype-specific polysaccharide antigens from Actinobacillus actinomycetemcomitans. J Biol Chem 266:16318–16323

    CAS  Google Scholar 

  63. Nakano Y, Suzuki N, Yoshida Y, Nezu T, Yamashita Y, Koga T (2000) Thymidine diphosphate-6-deoxy-l-lyxo-4-hexulose reductase synthesizing dTDP-6-deoxy-l-talose from Actinobacillus actinomycetemcomitans. J Biol Chem 275:6806–6812

    CAS  Google Scholar 

  64. Senchenkova SN, Shashkov AS, Moran AP, Helander IM, Knirel YA (1995) Structures of the O-specific polysaccharide chains of Pectinatus cerevisiiphilus and Pectinatus frisingensis lipopolysaccharides. Eur J Biochem 232:552–557

    CAS  Google Scholar 

  65. Feng L, Senchenkova SN, Yang J, Shashkov AS, Tao J, Guo H, Cheng J, Ren Y, Knirel YA, Reeves PR, Wang L (2004) Synthesis of the heteropolysaccharide O antigen of Escherichia coli O52 requires an ABC transporter: structural and genetic evidence. J Bacteriol 186:4510–4519

    CAS  Google Scholar 

  66. Winn AM, Miles CT, Wilkinson SG (1996) Structure of the O3 antigen of Stenotrophomonas (Xanthomonas or Pseudomonas) maltophilia. Carbohydr Res 282:149–156

    CAS  Google Scholar 

  67. Winn AM, Galbraith L, Temple GS, Wilkinson SG (1993) Structure of the O19 antigen of Xanthomonas maltophilia. Carbohydr Res 247:249–254

    CAS  Google Scholar 

  68. Knirel YA, Kochetkov NK (1994) The structure of lipopolysaccharides of gram-negative bacteria. III. The structure of O-antigens. Biochem Moscow 12:1325–1383

    Google Scholar 

  69. Amano K, Nishihara T, Shibuya N, Noguchi T, Koga T (1989) Immunochemical and structural characterization of a serotype-specific polysaccharide antigen from Actinobacillus actinomycetemcomitans Y4 (serotype b). Infect Immun 57:2942–2946

    CAS  Google Scholar 

  70. Kählig H, Kolarich D, Zayni S, Scheberl A, Kosma P, Schäffer C, Messner P (2005) N-Acetylmuramic acid as capping element of a-d-fucose-containing S-layer glycoprotein glycans from Geobacillus tepidamans GS5-97T. J Biol Chem 280:20292–20299

    Google Scholar 

  71. Yoshida Y, Nakano Y, Nezu T, Yamashita Y, Koga T (1999) A novel NDP-6-deoxyhexosyl-4-ulose reductase in the pathway for the synthesis of thymidine diphosphate-d-fucose. J Biol Chem 274:16933–16939

    CAS  Google Scholar 

  72. Wang Q, Ding P, Perepelov AV, Xu Y, Wang Y, Knirel YA, Wang L, Feng L (2008) Characterization of the dTDP-d-fucofuranose biosynthetic pathway in Escherichia coli O52. Mol Microbiol 70:1358–1367

    CAS  Google Scholar 

  73. Knirel YA, Dashunin VV, Shashkov AS, Kochetkov NK, Dmitriev BA, Hofman IL (1988) Somatic antigens of Shigella: structure of the O-specific polysaccharide chain of the Shigella dysenteriae type 7 lipopolysaccharide. Carbohydr Res 179:51–60

    CAS  Google Scholar 

  74. Parolis H, Parolis LA, Olivieri G (1997) Structural studies on the Shigella-like Escherichia coli O121 O-specific polysaccharide. Carbohydr Res 303:319–325

    CAS  Google Scholar 

  75. L’vov VL, Shashkov AS, Dmitriev BA, Kochetkov NK, Jann B, Jann K (1984) Structural studies of the O-specific side chain of the lipopolysaccharide from Escherichia coli O:7. Carbohydr Res 126:249–259

    Google Scholar 

  76. Wang Y, Xu Y, Perepelov AV, Qi Y, Knirel YA, Wang L, Feng L (2007) Biochemical characterization of dTDP-d-Qui4N and dTDP-d-Qui4NAc biosynthetic pathways in Shigella dysenteriae type 7 and Escherichia coli O7. J Bacteriol 189:8626–8635

    CAS  Google Scholar 

  77. Lüderitz O, Staub AM, Westphal O (1966) Immunochemistry of O and R antigens of Salmonella and related Enterobacteriaceae. Bacteriol Rev 30:192–255

    Google Scholar 

  78. Jansson PE, Lönngren J, Widmalm G, Leontein K, Slettengren K, Svenson SB, Wrangsell G, Dell A, Tiller PR (1985) Structural studies of the O-antigen polysaccharides of Klebsiella O5 and Escherichia coli O8. Carbohydr Res 145:59–66

    CAS  Google Scholar 

  79. Ørskov I, Ørskov F (1984) Serotyping of Klebsiella. In: Bergan T (ed) Methods in microbiology, vol 14. Academic, London, pp 143–164

    Google Scholar 

  80. Prehm P, Jann B, Jann K (1976) The O9 antigen of Escherichia coli. Structure of the polysaccharide chain. Eur J Biochem 67:53–56

    CAS  Google Scholar 

  81. Kuhlman M, Joiner K, Ezekowitz RA (1989) The human mannose-binding protein functions as an opsonin. J Exp Med 169:1733–1745

    CAS  Google Scholar 

  82. Sahly H, Ofek I, Podschun R, Brade H, He Y, Ullmann U, Crouch E (2002) Surfactant protein D binds selectively to Klebsiella pneumoniae lipopolysaccharides containing mannose-rich O-antigens. J Immunol 169:3267–3274

    CAS  Google Scholar 

  83. Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low BK, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) (1996) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington, DC

    Google Scholar 

  84. Rocchetta HL, Pacan JC, Lam JS (1998) Synthesis of the A-band polysaccharide sugar d-rhamnose requires Rmd and WbpW: identification of multiple AlgA homologues, WbpW and ORF488, in Pseudomonas aeruginosa. Mol Microbiol 29:1419–1434

    CAS  Google Scholar 

  85. Jensen SO, Reeves PR (2001) Molecular evolution of the GDP-mannose pathway genes (manB and manC) in Salmonella enterica. Microbiology 147:599–610

    CAS  Google Scholar 

  86. Byrd MS, Sadovskaya I, Vinogradov E, Lu H, Sprinkle AB, Richardson SH, Ma L, Ralston B, Parsek MR, Anderson EM, Lam JS, Wozniak DJ (2009) Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol 73:622–638

    CAS  Google Scholar 

  87. Shinabarger D, Berry A, May TB, Rothmel R, Fialho A, Chakrabarty AM (1991) Purification and characterization of phosphomannose isomerase-guanosine diphospho-d-mannose pyrophosphorylase. A bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem 266:2080–2088

    CAS  Google Scholar 

  88. Lee HJ, Chang HY, Venkatesan N, Peng HL (2008) Identification of amino acid residues important for the phosphomannose isomerase activity of PslB in Pseudomonas aeruginosa PAO1. FEBS Lett 582:3479–3483

    CAS  Google Scholar 

  89. Mulichak AM, Bonin CP, Reiter WD, Garavito RM (2002) Structure of the MUR1 GDP-mannose 4,6-dehydratase from Arabidopsis thaliana: implications for ligand binding and specificity. Biochemistry 41:15578–15589

    CAS  Google Scholar 

  90. Somoza JR, Menon S, Schmidt H, Joseph-McCarthy D, Dessen A, Stahl ML, Somers WS, Sullivan FX (2000) Structural and kinetic analysis of Escherichia coli GDP-mannose 4,6 dehydratase provides insights into the enzyme’s catalytic mechanism and regulation by GDP-fucose. Structure 8:123–135

    CAS  Google Scholar 

  91. Webb NA, Mulichak AM, Lam JS, Rocchetta HL, Garavito RM (2004) Crystal structure of a tetrameric GDP-d-mannose 4,6-dehydratase from a bacterial GDP-d-rhamnose biosynthetic pathway. Protein Sci 13:529–539

    CAS  Google Scholar 

  92. Arsenault TL, Hughes DW, MacLean DB, Szarek WA, Kropinski AMB, Lam JS (1991) Structural studies on the polysaccharide portion of “A-band” lipopolysaccharide from a mutant (AK1401) of Pseudomonas aeruginosa strain PAO1. Can J Chem 69:1273–1280

    CAS  Google Scholar 

  93. Yokota S, Kaya S, Sawada S, Kawamura T, Araki Y, Ito E (1987) Characterization of a polysaccharide component of lipopolysaccharide from Pseudomonas aeruginosa IID 1008 (ATCC 27584) as d-rhamnan. Eur J Biochem 167:203–209

    CAS  Google Scholar 

  94. Ovod V, Rudolph K, Knirel Y, Krohn K (1996) Immunochemical characterization of O polysaccharides composing the α-d-rhamnose backbone of lipopolysaccharide of Pseudomonas syringae and classification of bacteria into serogroups O1 and O2 with monoclonal antibodies. J Bacteriol 178:6459–6465

    CAS  Google Scholar 

  95. Molinaro A, Silipo A, Lanzetta R, Newman MA, Dow JM, Parrilli M (2003) Structural elucidation of the O-chain of the lipopolysaccharide from Xanthomonas campestris strain 8004. Carbohydr Res 338:277–281

    CAS  Google Scholar 

  96. Senchenkova SN, Shashkov AS, Knirel YA, McGovern JJ, Moran AP (1996) The O-specific polysaccharide chain of Campylobacter fetus serotype B lipopolysaccharide is a d-rhamnan terminated with 3-O-methyl-d-rhamnose (d-acofriose). Eur J Biochem 239:434–438

    CAS  Google Scholar 

  97. Kocharova NA, Knirel YA, Widmalm G, Jansson PE, Moran AP (2000) Structure of an atypical O-antigen polysaccharide of Helicobacter pylori containing a novel monosaccharide 3-C-methyl-d-mannose. Biochemistry 39:4755–4760

    CAS  Google Scholar 

  98. Kneidinger B, Graninger M, Adam G, Puchberger M, Kosma P, Zayni S, Messner P (2001) Identification of two GDP-6-deoxy-d- lyxo-4-hexulose reductases synthesizing GDP-d-rhamnose in Aneurinibacillus thermoaerophilus L420-91T. J Biol Chem 276:5577–5583

    CAS  Google Scholar 

  99. King JD, Poon KK, Webb NA, Anderson EM, McNally DJ, Brisson JR, Messner P, Garavito RM, Lam JS (2009) The structural basis for catalytic function of GMD and RMD, two closely related enzymes from the GDP-d-rhamnose biosynthesis pathway. FEBS J 276:2686–2700

    CAS  Google Scholar 

  100. Maki M, Jarvinen N, Rabina J, Roos C, Maaheimo H, Renkonen R (2002) Functional expression of Pseudomonas aeruginosa GDP-6-deoxy-4-keto-d-mannose reductase which synthesizes GDP-rhamnose. Eur J Biochem 269:593–601

    CAS  Google Scholar 

  101. Perry MB, MacLean LM, Brisson JR, Wilson ME (1996) Structures of the antigenic O-polysaccharides of lipopolysaccharides produced by Actinobacillus actinomycetemcomitans serotypes a, c, d and e. Eur J Biochem 242:682–688

    CAS  Google Scholar 

  102. Maki M, Jarvinen N, Rabina J, Maaheimo H, Mattila P, Renkonen R (2003) Cloning and functional expression of a novel GDP-6-deoxy-d-talose synthetase from Actinobacillus actinomycetemcomitans. Glycobiology 13:295–303

    Google Scholar 

  103. Suzuki N, Nakano Y, Yoshida Y, Nezu T, Terada Y, Yamashita Y, Koga T (2002) Guanosine diphosphate-6-deoxy-4-keto-d-mannose reductase in the pathway for the synthesis of GDP-6-deoxy-d-talose in Actinobacillus actinomycetemcomitans. Eur J Biochem 269:5963–5971

    CAS  Google Scholar 

  104. Tonetti M, Sturla L, Bisso A, Zanardi D, Benatti U, De Flora A (1998) The metabolism of 6-deoxyhexoses in bacterial and animal cells. Biochimie 80:923–931

    CAS  Google Scholar 

  105. Becker DJ, Lowe JB (2003) Fucose: biosynthesis and biological function in mammals. Glycobiology 13:41R–53R

    CAS  Google Scholar 

  106. Whitfield C, Roberts IS (1999) Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 31:1307–1319

    CAS  Google Scholar 

  107. Carlson RW, Price NP, Stacey G (1994) The biosynthesis of rhizobial lipo-oligosaccharide nodulation signal molecules. Mol Plant Microbe Interact 7:684–695

    CAS  Google Scholar 

  108. Stacey G, Luka S, Sanjuan J, Banfalvi Z, Nieuwkoop AJ, Chun JY, Forsberg LS, Carlson R (1994) nodZ, a unique host-specific nodulation gene, is involved in the fucosylation of the lipooligosaccharide nodulation signal of Bradyrhizobium japonicum. J Bacteriol 176:620–633

    CAS  Google Scholar 

  109. Wang L, Reeves PR (1998) Organization of Escherichia coli O157 O antigen gene cluster and identification of its specific genes. Infect Immun 66:3545–3551

    CAS  Google Scholar 

  110. Zhang L, Radziejewska-Lebrecht J, Krajewska-Pietrasik D, Toivanen P, Skurnik M (1997) Molecular and chemical characterization of the lipopolysaccharide O-antigen and its role in the virulence of Yersinia enterocolitica serotype O:8. Mol Microbiol 23:63–76

    CAS  Google Scholar 

  111. Skurnik M, Zhang L (1996) Molecular genetics and biochemistry of Yersinia lipopolysaccharide. APMIS 104:849–872

    CAS  Google Scholar 

  112. Moran AP, O’Malley DT, Kosunen TU, Helander IM (1994) Biochemical characterization of Campylobacter fetus lipopolysaccharides. Infect Immun 62:3922–3929

    CAS  Google Scholar 

  113. Wang G, Ge Z, Rasko DA, Taylor DE (2000) Lewis antigens in Helicobacter pylori: biosynthesis and phase variation. Mol Microbiol 36:1187–1196

    CAS  Google Scholar 

  114. Appelmelk BJ, Vandenbroucke-Grauls CM (2000) H. pylori and Lewis antigens. Gut 47:10–11

    CAS  Google Scholar 

  115. Andrianopoulos K, Wang L, Reeves PR (1998) Identification of the fucose synthetase gene in the colanic acid gene cluster of Escherichia coli K-12. J Bacteriol 180:998–1001

    CAS  Google Scholar 

  116. Rosano C, Bisso A, Izzo G, Tonetti M, Sturla L, De Flora A, Bolognesi M (2000) Probing the catalytic mechanism of GDP-6-deoxy-4-keto-d-mannose epimerase/reductase by kinetic and crystallographic characterization of site-specific mutants. J Mol Biol 303:77–91

    CAS  Google Scholar 

  117. Wu B, Zhang Y, Wang PG (2001) Identification and characterization of GDP-d-mannose 4,6-dehydratase and GDP-l-fucose snthetase in a GDP-l-fucose biosynthetic gene cluster from Helicobacter pylori. Biochem Biophys Res Commun 285:364–371

    CAS  Google Scholar 

  118. Xiang SH, Haase AM, Reeves PR (1993) Variation of the rfb gene clusters in Salmonella enterica. J Bacteriol 175:4877–4884

    CAS  Google Scholar 

  119. Edstrom RD, Heath EC (1965) Isolation of colitose-containing oligosaccharides from the cell wall lipopolysaccharide of Escherichia coli. Biochem Biophys Res Commun 21:638–643

    CAS  Google Scholar 

  120. Lindberg B, Lindh F, Lönngren J (1981) Structural studies of the O-specific side-chain of the lipopolysaccharide from Escherichia coli O 55. Carbohydr Res 97:105–112

    CAS  Google Scholar 

  121. Cox AD, Brisson JR, Varma V, Perry M (1996) Structural analysis of the lipopolysaccharide from Vibrio cholerae O139. Carbohydr Res 290:43–58

    CAS  Google Scholar 

  122. Komandrova NA, Gorshkova RP, Zubkov VA, Ovodov IuS (1989) The structure of the O-specific polysaccharide chain of the lipopolysaccharide of Yersinia pseudotuberculosis serovar VII. Bioorg Khim 15:104–110

    CAS  Google Scholar 

  123. Muldoon J, Perepelov AV, Shashkov AS, Gorshkova RP, Nazarenko EL, Zubkov VA, Ivanova EP, Knirel YA, Savage AV (2001) Structure of a colitose-containing O-specific polysaccharide of the marine bacterium Pseudoalteromonas tetraodonis IAM 14160T. Carbohydr Res 333:41–46

    CAS  Google Scholar 

  124. Silipo A, Molinaro A, Nazarenko EL, Gorshkova RP, Ivanova EP, Lanzetta R, Parrilli M (2005) The O-chain structure from the LPS of marine halophilic bacterium Pseudoalteromonas carrageenovora-type strain IAM 12662T. Carbohydr Res 340:2693–2697

    CAS  Google Scholar 

  125. Elbein AD, Heath EC (1965) The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. II. Guanosine diphosphate C-6-deoxy-4-keto-d-mannose, an intermediate in the biosynthesis of guanosine diphosphate colitose. J Biol Chem 240:1926–1931

    CAS  Google Scholar 

  126. Cook PD, Holden HM (2008) GDP-6-deoxy-4-keto-d-mannose 3-dehydratase, accommodating a sugar substrate in the active site. J Biol Chem 283:4295–4303

    CAS  Google Scholar 

  127. Beyer N, Alam J, Hallis TM, Guo Z, Liu HW (2003) The biosynthesis of GDP-l-colitose: C-3 deoxygenation is catalyzed by a unique coenzyme B6-dependent enzyme. J Am Chem Soc 125:5584–5585

    CAS  Google Scholar 

  128. Alam J, Beyer N, Liu HW (2004) Biosynthesis of colitose: expression, purification, and mechanistic characterization of GDP-6-deoxy-4-keto-d-mannose-3-dehydrase (ColD) and GDP-l-colitose synthase (ColC). Biochemistry 43:16450–16460

    CAS  Google Scholar 

  129. Cook PD, Thoden JB, Holden HM (2006) The structure of GDP-6-deoxy-4-keto-d-mannose-3-dehydratase: a unique coenzyme B6-dependent enzyme. Protein Sci 15:2093–2106

    CAS  Google Scholar 

  130. Cook PD, Holden HM (2007) A structural study of GDP-6-deoxy-4-keto-d-mannose-3-dehydratase: caught in the act of geminal diamine formation. Biochemistry 46:14215–14224

    CAS  Google Scholar 

  131. Redmond JW (1975) 4-Amino-4,6-dideoxy-d-mannose (d-perosamine): a component of the lipopolysaccharide of Vibrio cholerae 569B (Inaba). FEBS Lett 50:147–149

    CAS  Google Scholar 

  132. Awram P, Smit J (2001) Identification of lipopolysaccharide O antigen synthesis genes required for attachment of the S-layer of Caulobacter crescentus. Microbiology 147:1451–1460

    CAS  Google Scholar 

  133. Perry MB, MacLean L, Griffith DW (1986) Structure of the O-chain polysaccharide of the phenol-phase soluble lipopolysaccharide of Escherichia coli O:157:H7. Biochem Cell Biol 64:21–28

    CAS  Google Scholar 

  134. Samuel G, Hogbin JP, Wang L, Reeves PR (2004) Relationships of the Escherichia coli O157, O111, and O55 O-antigen gene clusters with those of Salmonella enterica and Citrobacter freundii, which express identical O antigens. J Bacteriol 186:6536–6543

    CAS  Google Scholar 

  135. Bettelheim KA, Evangelidis H, Pearce JL, Sowers E, Strockbine NA (1993) Isolation of a Citrobacter freundii strain which carries the Escherichia coli O157 antigen. J Clin Microbiol 31:760–761

    CAS  Google Scholar 

  136. Stroeher UH, Karageorgos LE, Brown MH, Morona R, Manning PA (1995) A putative pathway for perosamine biosynthesis is the first function encoded within the rfb region of Vibrio cholerae O1. Gene 166:33–42

    CAS  Google Scholar 

  137. Albermann C, Piepersberg W (2001) Expression and identification of the RfbE protein from Vibrio cholerae O1 and its use for the enzymatic synthesis of GDP-d-perosamine. Glycobiology 11:655–661

    CAS  Google Scholar 

  138. Zhao G, Liu J, Liu X, Chen M, Zhang H, Wang PG (2007) Cloning and characterization of GDP-perosamine synthetase (Per) from Escherichia coli O157:H7 and synthesis of GDP-perosamine in vitro. Biochem Biophys Res Commun 363:525–530

    CAS  Google Scholar 

  139. Cook PD, Holden HM (2008) GDP-perosamine synthase: structural analysis and production of a novel trideoxysugar. Biochemistry 47:2833–2840

    CAS  Google Scholar 

  140. Cook PD, Kubiak RL, Toomey DP, Holden HM (2009) Two site-directed mutations are required for the conversion of a sugar dehydratase into an aminotransferase. Biochemistry 48:5246–5253

    CAS  Google Scholar 

  141. Albermann C, Beuttler H (2008) Identification of the GDP-N-acetyl-d-perosamine producing enzymes from Escherichia coli O157:H7. FEBS Lett 582:479–484

    CAS  Google Scholar 

  142. Raetz CR (1987) Structure and biosynthesis of lipid A. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol 1. ASM Press, Washington, DC, pp 498–503

    Google Scholar 

  143. Kuhn HM, Meier-Dieter U, Mayer H (1988) ECA, the enterobacterial common antigen. FEMS Microbiol Rev 4:195–222

    CAS  Google Scholar 

  144. Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Wang Q, Reeves PR, Wang L (2008) Structure and genetics of Shigella O antigens. FEMS Microbiol Rev 32:627–653

    Google Scholar 

  145. Knirel YA, Perepelov AV, Kondakova AN, Senchenkova SN, Sidorczyk Z, Rozalski A, Kaca W (2011) Structure and serology of O-antigens as the basis for classification of Proteus strains. Innate Immun 17:70–96

    CAS  Google Scholar 

  146. Park JT (1987) Murein synthesis. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol 1. ASM Press, Washington, DC, pp 663–671

    Google Scholar 

  147. Holtje JV, Schwarz U (1985) Biosynthesis and growth of the murein sacculus. In: Nanninga N (ed) Molecular cytology of Escherichia coli. Academic, London, pp 77–119

    Google Scholar 

  148. Dutka-Malen S, Mazodier P, Badet B (1988) Molecular cloning and overexpression of the glucosamine synthetase gene from Escherichia coli. Biochimie 70:287–290

    CAS  Google Scholar 

  149. Mengin-Lecreulx D, van Heijenoort J (1996) Characterization of the essential gene glmM encoding phosphoglucosamine mutase in Escherichia coli. J Biol Chem 271:32–39

    CAS  Google Scholar 

  150. Mengin-Lecreulx D, van Heijenoort J (1993) Identification of the glmU gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli. J Bacteriol 175:6150–6157

    CAS  Google Scholar 

  151. Mengin-Lecreulx D, van Heijenoort J (1994) Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J 7Bacteriol 176:5788–5795

    CAS  Google Scholar 

  152. Sarvas M (1971) Mutant of Escherichia coli K-12 defective in d-glucosamine biosynthesis. J Bacteriol 105:467–471

    CAS  Google Scholar 

  153. Wu HC, Wu TC (1971) Isolation and characterization of a glucosamine-requiring mutant of Escherichia coli K-12 defective in glucosamine-6-phosphate synthetase. J Bacteriol 105:455–466

    CAS  Google Scholar 

  154. Green DW (2002) The bacterial cell wall as a source of antibacterial targets. Expert Opin Ther Targets 6:1–19

    CAS  Google Scholar 

  155. Jolly L, Ferrari P, Blanot D, Van Heijenoort J, Fassy F, Mengin-Lecreulx D (1999) Reaction mechanism of phosphoglucosamine mutase from Escherichia coli. Eur J Biochem 262:202–210

    CAS  Google Scholar 

  156. Jolly L, Pompeo F, van Heijenoort J, Fassy F, Mengin-Lecreulx D (2000) Autophosphorylation of phosphoglucosamine mutase from Escherichia coli. J Bacteriol 182:1280–1285

    CAS  Google Scholar 

  157. Segel IH (1975) Enzyme kinetics, behavior and analysis of rapid equilibrium and steady state enzyme systems. Wiley, New York

    Google Scholar 

  158. De Reuse H, Labigne A, Mengin-Lecreulx D (1997) The Helicobacter pylori ureC gene codes for a phosphoglucosamine mutase. J Bacteriol 179:3488–3493

    Google Scholar 

  159. Tavares IM, Jolly L, Pompeo F, Leitao JH, Fialho AM, Sa-Correia I, Mengin-Lecreulx D (2000) Identification of the Pseudomonas aeruginosa glmM gene, encoding phosphoglucosamine mutase. J Bacteriol 182:4453–4457

    CAS  Google Scholar 

  160. Shimazu K, Takahashi Y, Uchikawa Y, Shimazu Y, Yajima A, Takashima E, Aoba T, Konishi K (2008) Identification of the Streptococcus gordonii glmM gene encoding phosphoglucosamine mutase and its role in bacterial cell morphology, biofilm formation, and sensitivity to antibiotics. FEMS Immunol Med Microbiol 53:166–177

    CAS  Google Scholar 

  161. Jolly L, Wu S, van Heijenoort J, de Lencastre H, Mengin-Lecreulx D, Tomasz A (1997) The femR315 gene from Staphylococcus aureus, the interruption of which results in reduced methicillin resistance, encodes a phosphoglucosamine mutase. J Bacteriol 179:5321–5325

    CAS  Google Scholar 

  162. Verma SK, Jaiswal M, Kumar N, Parikh A, Nandicoori VK, Prakash B (2009) Structure of N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) from Mycobacterium tuberculosis in a cubic space group. Acta Crystallogr F Struct Biol Cryst Commun 65:435–439

    Google Scholar 

  163. Zhang Z, Bulloch EM, Bunker RD, Baker EN, Squire CJ (2009) Structure and function of GlmU from Mycobacterium tuberculosis. Acta Crystallogr D Biol Crystallogr 65:275–283

    Google Scholar 

  164. Olsen LR, Roderick SL (2001) Structure of the Escherichia coli GlmU pyrophosphorylase and acetyltransferase active sites. Biochemistry 40:1913–1921

    CAS  Google Scholar 

  165. Gehring AM, Lees WJ, Mindiola DJ, Walsh CT, Brown ED (1996) Acetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli. Biochemistry 35:579–585

    CAS  Google Scholar 

  166. Olsen LR, Vetting MW, Roderick SL (2007) Structure of the E. coli bifunctional GlmU acetyltransferase active site with substrates and products. Protein Sci 16:1230–1235

    CAS  Google Scholar 

  167. Brown K, Pompeo F, Dixon S, Mengin-Lecreulx D, Cambillau C, Bourne Y (1999) Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily. EMBO J 18:4096–4107

    CAS  Google Scholar 

  168. Kostrewa D, D’Arcy A, Takacs B, Kamber M (2001) Crystal structures of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase, GlmU, in apo form at 2.33 Å resolution and in complex with UDP-N-acetylglucosamine and Mg2+ at 1.96 Å resolution. J Mol Biol 305:279–289

    CAS  Google Scholar 

  169. Mochalkin I, Lightle S, Zhu Y, Ohren JF, Spessard C, Chirgadze NY, Banotai C, Melnick M, McDowell L (2007) Characterization of substrate binding and catalysis in the potential antibacterial target N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). Protein Sci 16:2657–2666

    CAS  Google Scholar 

  170. King JD, Kocincova D, Westman EL, Lam JS (2009) Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun 15:261–312

    CAS  Google Scholar 

  171. Bhat UR, Krishnaiah BS, Carlson RW (1991) Re-examination of the structures of the lipopolysaccharide core oligosaccharides from Rhizobium leguminosarum biovar phaseoli. Carbohydr Res 220:219–227

    CAS  Google Scholar 

  172. Forsberg LS, Carlson RW (1998) The structures of the lipopolysaccharides from Rhizobium etli strains CE358 and CE359. The complete structure of the core region of R. etli lipopolysaccharides. J Biol Chem 273:2747–2757

    CAS  Google Scholar 

  173. Creuzenet C, Lam JS (2001) Topological and functional characterization of WbpM, an inner membrane UDP-GlcNAc C6 dehydratase essential for lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 41:1295–1310

    CAS  Google Scholar 

  174. DiGiandomenico A, Matewish MJ, Bisaillon A, Stehle JR, Lam JS, Castric P (2002) Glycosylation of Pseudomonas aeruginosa 1244 pilin: glycan substrate specificity. Mol Microbiol 46:519–530

    CAS  Google Scholar 

  175. Burrows LL, Urbanic RV, Lam JS (2000) Functional conservation of the polysaccharide biosynthetic protein WbpM and its homologues in Pseudomonas aeruginosa and other medically significant bacteria. Infect Immun 68:931–936

    CAS  Google Scholar 

  176. Burrows LL, Charter DF, Lam JS (1996) Molecular characterization of the Pseudomonas aeruginosa serotype O5 (PAO1) B-band lipopolysaccharide gene cluster. Mol Microbiol 22:481–495

    CAS  Google Scholar 

  177. Belanger M, Burrows LL, Lam JS (1999) Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6 lipopolysaccharide. Microbiology 145:3505–3521

    CAS  Google Scholar 

  178. Schoenhofen IC, McNally DJ, Vinogradov E, Whitfield D, Young NM, Dick S, Wakarchuk WW, Brisson JR, Logan SM (2006) Functional characterization of dehydratase/aminotransferase pairs from Helicobacter and Campylobacter: enzymes distinguishing the pseudaminic acid and bacillosamine biosynthetic pathways. J Biol Chem 281:723–732

    CAS  Google Scholar 

  179. Pinta E, Duda KA, Hanuszkiewicz A, Kaczynski Z, Lindner B, Miller WL, Hyytiainen H, Vogel C, Borowski S, Kasperkiewicz K, Lam JS, Radziejewska-Lebrecht J, Skurnik M, Holst O (2009) Identification and role of a 6-deoxy-4-keto-hexosamine in the lipopolysaccharide outer core of Yersinia enterocolitica serotype O:3. Chem Eur J 15:9747–9754

    CAS  Google Scholar 

  180. Forsberg LS, Noel KD, Box J, Carlson RW (2003) Genetic locus and structural characterization of the biochemical defect in the O-antigenic polysaccharide of the symbiotically deficient Rhizobium etli mutant, CE166. Replacement of N-acetylquinovosamine with its hexosyl-4-ulose precursor. J Biol Chem 278:51347–51359

    CAS  Google Scholar 

  181. Miller WL, Lam JS (2007) Molecular biology of cell-surface polysaccharides in Pseudomonas aeruginosa: from gene to protein function. In: Cornelis P (ed) Pseudomonas: genomics and molecular biology. Horizon Scientific Press, Norfolk, pp 87–128

    Google Scholar 

  182. Radziejewska-Lebrecht J, Skurnik M, Shashkov AS, Brade L, Rozalski A, Bartodziejska B, Mayer H (1998) Immunochemical studies on R mutants of Yersinia enterocolitica O:3. Acta Biochim Pol 45:1011–1019

    CAS  Google Scholar 

  183. Sadovskaya I, Brisson JR, Khieu NH, Mutharia LM, Altman E (1998) Structural characterization of the lipopolysaccharide O-antigen and capsular polysaccharide of Vibrio ordalii serotype O:2. Eur J Biochem 253:319–327

    CAS  Google Scholar 

  184. MacLean LL, Perry MB, Crump EM, Kay WW (2003) Structural characterization of the lipopolysaccharide O-polysaccharide antigen produced by Flavobacterium columnare ATCC 43622. Eur J Biochem 270:3440–3446

    CAS  Google Scholar 

  185. Kilcoyne M, Shashkov AS, Knirel YA, Gorshkova RP, Nazarenko EL, Ivanova EP, Gorshkova NM, Senchenkova SN, Savage AV (2005) The structure of the O-polysaccharide of the Pseudoalteromonas rubra ATCC 29570T lipopolysaccharide containing a keto sugar. Carbohydr Res 340:2369–2375

    CAS  Google Scholar 

  186. Jansson PE, Lindberg B, Lindquist U (1985) Structural studies of the capsular polysaccharide from Streptococcus pneumoniae type 5. Carbohydr Res 140:101–110

    CAS  Google Scholar 

  187. Marsden BJ, Bundle DR, Perry MB (1994) Serological and structural relationships between Escherichia coli O:98 and Yersinia enterocolitica O:11,23 and O:11,24 lipopolysaccharide O-antigens. Biochem Cell Biol 72:163–168

    CAS  Google Scholar 

  188. Feng L, Senchenkova SN, Yang J, Shashkov AS, Tao J, Guo H, Zhao G, Knirel YA, Reeves P, Wang L (2004) Structural and genetic characterization of the Shigella boydii type 13 O antigen. J Bacteriol 186:383–392

    CAS  Google Scholar 

  189. Perepelov AV, Liu B, Senchenkova SN, Shashkov AS, Feng L, Knirel YA, Wang L (2010) Structure of the O-polysaccharide of Salmonella enterica O41. Carbohydr Res 345:971–973

    CAS  Google Scholar 

  190. Kasper DL, Weintraub A, Lindberg AA, Lönngren J (1983) Capsular polysaccharides and lipopolysaccharides from two Bacteroides fragilis reference strains: chemical and immunochemical characterization. J Bacteriol 153:991–997

    CAS  Google Scholar 

  191. Kneidinger B, O’Riordan K, Li J, Brisson JR, Lee JC, Lam JS (2003) Three highly conserved proteins catalyze the conversion of UDP-N-acetyl-d-glucosamine to precursors for the biosynthesis of O antigen in Pseudomonas aeruginosa O11 and capsule in Staphylococcus aureus type 5. Implications for the UDP-N-acetyl-l-fucosamine biosynthetic pathway. J Biol Chem 278:3615–3627

    CAS  Google Scholar 

  192. Vinogradov EV, Knirel’ Iu A, Lipkind GM, Shashkov AS, Kochetkov NK (1987) Antigenic bacterial polysaccharides. 23. The structure of the O-specific polysaccharide chain of Salmonella arizonae O59 lipopolysaccharide. Bioorg Khim 13:1275–1281

    CAS  Google Scholar 

  193. Moreau M, Richards JC, Fournier JM, Byrd RA, Karakawa WW, Vann WF (1990) Structure of the type 5 capsular polysaccharide of Staphylococcus aureus. Carbohydr Res 201:285–297

    CAS  Google Scholar 

  194. Fournier JM, Vann WF, Karakawa WW (1984) Purification and characterization of Staphylococcus aureus type 8 capsular polysaccharide. Infect Immun 45:87–93

    CAS  Google Scholar 

  195. Jones C, Currie F, Forster MJ (1991) N.m.r. and conformational analysis of the capsular polysaccharide from Streptococcus pneumoniae type 4. Carbohydr Res 221:95–121

    CAS  Google Scholar 

  196. Mulrooney EF, Poon KK, McNally DJ, Brisson JR, Lam JS (2005) Biosynthesis of UDP-N-acetyl-l-fucosamine, a precursor to the biosynthesis of lipopolysaccharide in Pseudomonas aeruginosa serotype O11. J Biol Chem 280:19535–19542

    CAS  Google Scholar 

  197. Kneidinger B, Larocque S, Brisson JR, Cadotte N, Lam JS (2003) Biosynthesis of 2-acetamido-2,6-dideoxy-l-hexoses in bacteria follows a pattern distinct from those of the pathways of 6-deoxy-l-hexoses. Biochem J 371:989–995

    CAS  Google Scholar 

  198. McNally DJ, Schoenhofen IC, Mulrooney EF, Whitfield DM, Vinogradov E, Lam JS, Logan SM, Brisson JR (2006) Identification of labile UDP-ketosugars in Helicobacter pylori, Campylobacter jejuni and Pseudomonas aeruginosa: key metabolites used to make glycan virulence factors. Chembiochem 7:1865–1868

    CAS  Google Scholar 

  199. Ishiyama N, Creuzenet C, Miller WL, Demendi M, Anderson EM, Harauz G, Lam JS, Berghuis AM (2006) Structural studies of FlaA1 from Helicobacter pylori reveal the mechanism for inverting 4,6-dehydratase activity. J Biol Chem 281:24489–24495

    CAS  Google Scholar 

  200. Morrison JP, Schoenhofen IC, Tanner ME (2008) Mechanistic studies on PseB of pseudaminic acid biosynthesis: a UDP-N-acetylglucosamine 5-inverting 4,6-dehydratase. Bioorg Chem 36:312–320

    CAS  Google Scholar 

  201. Bystrova OV, Lindner B, Moll H, Kocharova NA, Knirel YA, Zähringer U, Pier GB (2003) Structure of the lipopolysaccharide of Pseudomonas aeruginosa O-12 with a randomly O-acetylated core region. Carbohydr Res 338:1895–1905

    CAS  Google Scholar 

  202. Feng L, Senchenkova SN, Tao J, Shashkov AS, Liu B, Shevelev SD, Reeves PR, Xu J, Knirel YA, Wang L (2005) Structural and genetic characterization of enterohemorrhagic Escherichia coli O145 O antigen and development of an O145 serogroup-specific PCR assay. J Bacteriol 187:758–764

    CAS  Google Scholar 

  203. Gamian A, Jones C, Lipinski T, Korzeniowska-Kowal A, Ravenscroft N (2000) Structure of the sialic acid-containing O-specific polysaccharide from Salmonella enterica serovar Toucra O48 lipopolysaccharide. Eur J Biochem 267:3160–3167

    CAS  Google Scholar 

  204. King JD, Mulrooney EF, Vinogradov E, Kneidinger B, Mead K, Lam JS (2008) lfnA from Pseudomonas aeruginosa O12 and wbuX from Escherichia coli O145 encode membrane-associated proteins and are required for expression of 2,6-dideoxy-2-acetamidino-l-galactose in lipopolysaccharide O antigen. J Bacteriol 190:1671–1679

    CAS  Google Scholar 

  205. Baumann H, Jansson PE, Kenne L, Widmalm G (1991) Structural studies of the Escherichia coli O1A O-polysaccharide, using the computer program CASPER. Carbohydr Res 211:183–190

    CAS  Google Scholar 

  206. Gupta DS, Shashkov AS, Jann B, Jann K (1992) Structures of the O1B and O1C lipopolysaccharide antigens of Escherichia coli. J Bacteriol 174:7963–7970

    CAS  Google Scholar 

  207. Perry MB, MacLean LL, Brisson JR (1993) The characterization of the O-antigen of Escherichia coli O64:K99 lipopolysaccharide. Carbohydr Res 248:277–284

    CAS  Google Scholar 

  208. Wang Z, Vinogradov E, Larocque S, Harrison BA, Li J, Altman E (2005) Structural and serological characterization of the O-chain polysaccharide of Aeromonas salmonicida strains A449, 80204 and 80204-1. Carbohydr Res 340:693–700

    CAS  Google Scholar 

  209. Keenleyside WJ, Perry M, Maclean L, Poppe C, Whitfield C (1994) A plasmid-encoded rfbO:54 gene cluster is required for biosynthesis of the O:54 antigen in Salmonella enterica serovar Borreze. Mol Microbiol 11:437–448

    CAS  Google Scholar 

  210. Mäkela PH, Mayer H (1976) Enterobacterial common antigen. Bacteriol Rev 40:591–632

    Google Scholar 

  211. Rick PD, Silver RP (1996) Enterobacterial common antigen and capsular polysaccharides. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low BK, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington, DC, pp 104–122

    Google Scholar 

  212. Karakawa WW, Fournier JM, Vann WF, Arbeit R, Schneerson R, Robbins JB (1985) Method for the serological typing of the capsular polysaccharides of Staphylococcus aureus. J Clin Microbiol 22:445–447

    CAS  Google Scholar 

  213. Morona JK, Morona R, Paton JC (1997) Characterization of the locus encoding the Streptococcus pneumoniae type 19 F capsular polysaccharide biosynthetic pathway. Mol Microbiol 23:751–763

    CAS  Google Scholar 

  214. Lew HC, Nikaido H, Makela PH (1978) Biosynthesis of uridine diphosphate N-acetylmannosaminuronic acid in rff mutants of Salmonella tryphimurium. J Bacteriol 136:227–233

    CAS  Google Scholar 

  215. Kawamura T, Ichihara N, Ishimoto N, Ito E (1975) Biosynthesis of uridine diphosphate N-acetyl-d-mannosaminuronic acid from uridine diphosphate N-acetyl-d-glucosamine in Escherichia coli: separation of enzymes responsible for epimerization and dehydrogenation. Biochem Biophys Res Commun 66:1506–1512

    CAS  Google Scholar 

  216. Kawamura T, Ishimoto N, Ito E (1979) Enzymatic synthesis of uridine diphosphate N-acetyl-d-mannosaminuronic acid. J Biol Chem 254:8457–8465

    CAS  Google Scholar 

  217. Kawamura T, Ishimoto N, Ito E (1982) UDP-N-acetyl-d-glucosamine 2′-epimerase from Escherichia coli. Meth Enzymol 83:515–519

    CAS  Google Scholar 

  218. Kawamura T, Kimura M, Yamamori S, Ito E (1978) Enzymatic formation of uridine diphosphate N-acetyl-d-mannosamine. J Biol Chem 253:3595–3601

    CAS  Google Scholar 

  219. Kiser KB, Lee JC (1998) Staphylococcus aureus cap5O and cap5P genes functionally complement mutations affecting enterobacterial common-antigen biosynthesis in Escherichia coli. J Bacteriol 180:403–406

    CAS  Google Scholar 

  220. Portoles M, Kiser KB, Bhasin N, Chan KH, Lee JC (2001) Staphylococcus aureus Cap5O has UDP-ManNAc dehydrogenase activity and is essential for capsule expression. Infect Immun 69:917–923

    CAS  Google Scholar 

  221. Meier-Dieter U, Starman R, Barr K, Mayer H, Rick PD (1990) Biosynthesis of enterobacterial common antigen in Escherichia coli. Biochemical characterization of Tn10 insertion mutants defective in enterobacterial common antigen synthesis. J Biol Chem 265:13490–13497

    CAS  Google Scholar 

  222. Kiser KB, Bhasin N, Deng L, Lee JC (1999) Staphylococcus aureus cap5P encodes a UDP-N-acetylglucosamine 2-epimerase with functional redundancy. J Bacteriol 181:4818–4824

    CAS  Google Scholar 

  223. Andersson M, Carlin N, Leontein K, Lindquist U, Slettengren K (1989) Structural studies of the O-antigenic polysaccharide of Escherichia coli O86, which possesses blood-group B activity. Carbohydr Res 185:211–223

    CAS  Google Scholar 

  224. Linnerborg M, Weintraub A, Widmalm G (1997) Structural studies of the O-antigen polysaccharide from Escherichia coli O138. Eur J Biochem 247:567–571

    CAS  Google Scholar 

  225. Haseley SR, Holst O, Brade H (1997) Structural and serological characterisation of the O-antigenic polysaccharide of the lipopolysaccharide from Acinetobacter haemolyticus strain ATCC 17906. Eur J Biochem 244:761–766

    CAS  Google Scholar 

  226. Kondakova AN, Kolodziejska K, Zych K, Senchenkova SN, Shashkov AS, Knirel YA, Sidorczyk Z (2003) Structure of the N-acetyl-l-rhamnosamine-containing O-polysaccharide of Proteus vulgaris TG 155 from a new Proteus serogroup, O55. Carbohydr Res 338:1999–2004

    CAS  Google Scholar 

  227. Wang Z, Larocque S, Vinogradov E, Brisson JR, Dacanay A, Greenwell M, Brown LL, Li J, Altman E (2004) Structural studies of the capsular polysaccharide and lipopolysaccharide O-antigen of Aeromonas salmonicida strain 80204-1 produced under in vitro and in vivo growth conditions. Eur J Biochem 271:4507–4516

    CAS  Google Scholar 

  228. Veremeichenko SN, Zdorovenko GM (2000) The distinctive features of the structure of the Pseudomonas fluorescens IMV 247 (biovar II) lipopolysaccharide. Mikrobiologiia 69:362–369

    CAS  Google Scholar 

  229. Knirel YA (1990) Polysaccharide antigens of Pseudomonas aeruginosa. Crit Rev Microbiol 17:273–304

    CAS  Google Scholar 

  230. Creuzenet C, Belanger M, Wakarchuk WW, Lam JS (2000) Expression, purification, and biochemical characterization of WbpP, a new UDP-GlcNAc C4 epimerase from Pseudomonas aeruginosa serotype O6. J Biol Chem 275:19060–19067

    CAS  Google Scholar 

  231. Zhao X, Creuzenet C, Belanger M, Egbosimba E, Li J, Lam JS (2000) WbpO, a UDP-N-acetyl-d-galactosamine dehydrogenase from Pseudomonas aeruginosa serotype O6. J Biol Chem 275:33252–33259

    CAS  Google Scholar 

  232. Miller WL, Matewish MJ, McNally DJ, Ishiyama N, Anderson EM, Brewer D, Brisson JR, Berghuis AM, Lam JS (2008) Flagellin glycosylation in Pseudomonas aeruginosa PAK requires the O-antigen biosynthesis enzyme WbpO. J Biol Chem 283:3507–3518

    CAS  Google Scholar 

  233. Kowal P, Wang PG (2002) New UDP-GlcNAc C4 epimerase involved in the biosynthesis of 2-acetamino-2-deoxy-l-altruronic acid in the O-antigen repeating units of Plesiomonas shigelloides O17. Biochemistry 41:15410–15414

    CAS  Google Scholar 

  234. Wang L, Huskic S, Cisterne A, Rothemund D, Reeves PR (2002) The O-antigen gene cluster of Escherichia coli O55:H7 and identification of a new UDP-GlcNAc C4 epimerase gene. J Bacteriol 184:2620–2625

    CAS  Google Scholar 

  235. Guo H, Li L, Wang PG (2006) Biochemical characterization of UDP-GlcNAc/Glc 4-epimerase from Escherichia coli O86:B7. Biochemistry 45:13760–13768

    CAS  Google Scholar 

  236. Rush JS, Alaimo C, Robbiani R, Wacker M, Waechter CJ (2010) A novel epimerase that converts GlcNAc-P-P-undecaprenol to GalNAc-P-P-undecaprenol in Escherichia coli O157. J Biol Chem 285:1671–1680

    CAS  Google Scholar 

  237. Caroff M, Brisson JR, Martin A, Karibian D (2000) Structure of the Bordetella pertussis 1414 endotoxin. FEBS Lett 477:8–14

    CAS  Google Scholar 

  238. Wenzel CQ, Daniels C, Keates RA, Brewer D, Lam JS (2005) Evidence that WbpD is an N-acetyltransferase belonging to the hexapeptide acyltransferase superfamily and an important protein for O-antigen biosynthesis in Pseudomonas aeruginosa PAO1. Mol Microbiol 57:1288–1303

    CAS  Google Scholar 

  239. Preston A, Thomas R, Maskell DJ (2002) Mutational analysis of the Bordetella pertussis wlb LPS biosynthesis locus. Microb Pathog 33:91–95

    CAS  Google Scholar 

  240. Allen A, Maskell D (1996) The identification, cloning and mutagenesis of a genetic locus required for lipopolysaccharide biosynthesis in Bordetella pertussis. Mol Microbiol 19:37–52

    CAS  Google Scholar 

  241. Miller WL, Wenzel CQ, Daniels C, Larocque S, Brisson JR, Lam JS (2004) Biochemical characterization of WbpA, a UDP-N-acetyl-d-glucosamine 6-dehydrogenase involved in O-antigen biosynthesis in Pseudomonas aeruginosa PAO1. J Biol Chem 279:37551–37558

    CAS  Google Scholar 

  242. Westman EL, McNally DJ, Charchoglyan A, Brewer D, Field RA, Lam JS (2009) Characterization of WbpB, WbpE, and WbpD and reconstitution of a pathway for the biosynthesis of UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid in Pseudomonas aeruginosa. J Biol Chem 284:11854–11862

    CAS  Google Scholar 

  243. Larkin A, Imperiali B (2009) Biosynthesis of UDP-GlcNAc(3NAc)A by WbpB, WbpE, and WbpD: enzymes in the Wbp pathway responsible for O-antigen assembly in Pseudomonas aeruginosa PAO1. Biochemistry 48:5446–5455

    CAS  Google Scholar 

  244. Larkin A, Olivier NB, Imperiali B (2010) Structural analysis of WbpE from Pseudomonas aeruginosa PAO1: a nucleotide sugar aminotransferase involved in O-antigen assembly. Biochemistry 49:7227–7237

    CAS  Google Scholar 

  245. Rejzek M, Sri Kannathasan V, Wing C, Preston A, Westman EL, Lam JS, Naismith JH, Maskell DJ, Field RA (2009) Chemical synthesis of UDP-Glc-2,3-diNAcA, a key intermediate in cell surface polysaccharide biosynthesis in the human respiratory pathogens B. pertussis and P. aeruginosa. Org Biomol Chem 7:1203–1210

    CAS  Google Scholar 

  246. Westman EL, McNally DJ, Rejzek M, Miller WL, Kannathasan VS, Preston A, Maskell DJ, Field RA, Brisson JR, Lam JS (2007) Identification and biochemical characterization of two novel UDP-2,3-diacetamido-2,3-dideoxy-α-d-glucuronic acid 2-epimerases from respiratory pathogens. Biochem J 405:123–130

    CAS  Google Scholar 

  247. Westman EL, Preston A, Field RA, Lam JS (2008) Biosynthesis of a rare di-N-acetylated sugar in the lipopolysaccharides of both Pseudomonas aeruginosa and Bordetella pertussis occurs via an identical scheme despite different gene clusters. J Bacteriol 190:6060–6069

    CAS  Google Scholar 

  248. Bystrova OV, Lindner B, Moll H, Kocharova NA, Knirel YA, Zähringer U, Pier GB (2003) Structure of the biological repeating unit of the O-antigen of Pseudomonas aeruginosa immunotype 4 containing both 2-acetamido-2,6-dideoxy-d-glucose and 2-acetamido-2,6-dideoxy-d-galactose. Carbohydr Res 338:1801–1806

    CAS  Google Scholar 

  249. Rocchetta HL, Burrows LL, Lam JS (1999) Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 63:523–553

    CAS  Google Scholar 

  250. Holst O (2002) Chemical structure of the core region of lipopolysaccharides – an update. Trends Glycosci Glyc 14:87–103

    CAS  Google Scholar 

  251. Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    CAS  Google Scholar 

  252. Gronow S, Brade H (2001) Lipopolysaccharide biosynthesis: which steps do bacteria need to survive? J Endotoxin Res 7:3–23

    CAS  Google Scholar 

  253. Cosgrove DJ (1997) Assembly and enlargement of the primary cell wall in plants. Annu Rev Cell Dev Biol 13:171–201

    CAS  Google Scholar 

  254. Cipolla L, Polissi A, Airoldi C, Galliani P, Sperandeo P, Nicotra F (2009) The Kdo biosynthetic pathway toward OM biogenesis as target in antibacterial drug design and development. Curr Drug Discov Technol 6:19–33

    CAS  Google Scholar 

  255. Ghalambor MA, Heath EC (1966) The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. IV. Purification and properties of cytidine monophosphate 3-deoxy-d-manno-octulosonate synthetase. J Biol Chem 241:3216–3221

    CAS  Google Scholar 

  256. Raetz CR (1990) Biochemistry of endotoxins. Annu Rev Biochem 59:129–170

    CAS  Google Scholar 

  257. Sperandeo P, Pozzi C, Deho G, Polissi A (2006) Non-essential KDO biosynthesis and new essential cell envelope biogenesis genes in the Escherichia coli yrbG-yhbG locus. Res Microbiol 157:547–558

    CAS  Google Scholar 

  258. Meredith TC, Woodard RW (2005) Identification of GutQ from Escherichia coli as a d-arabinose 5-phosphate isomerase. J Bacteriol 187:6936–6942

    CAS  Google Scholar 

  259. Hedstrom L, Abeles R (1988) 3-Deoxy-d- manno-octulosonate-8-phosphate synthase catalyzes the C-O bond cleavage of phosphoenolpyruvate. Biochem Biophys Res Commun 157:816–820

    CAS  Google Scholar 

  260. Ray PH, Benedict CD (1980) Purification and characterization of specific 3-deoxy-d- manno-octulosonate 8-phosphate phosphatase from Escherichia coli B. J Bacteriol 142:60–68

    CAS  Google Scholar 

  261. Radaev S, Dastidar P, Patel M, Woodard RW, Gatti DL (2000) Preliminary X-ray analysis of a new crystal form of the Escherichia coli KDO8P synthase. Acta Crystallogr D Biol Crystallogr 56:516–519

    CAS  Google Scholar 

  262. Duewel HS, Radaev S, Wang J, Woodard RW, Gatti DL (2001) Substrate and metal complexes of 3-deoxy-d- manno-octulosonate-8-phosphate synthase from Aquifex aeolicus at 1.9-Å resolution. Implications for the condensation mechanism. J Biol Chem 276:8393–8402

    CAS  Google Scholar 

  263. Wu J, Woodard RW (2003) Escherichia coli YrbI is 3-deoxy-d- manno-octulosonate 8-phosphate phosphatase. J Biol Chem 278:18117–18123

    CAS  Google Scholar 

  264. Goldman RC, Kohlbrenner WE (1985) Molecular cloning of the structural gene coding for CTP:CMP-3-deoxy-manno-octulosonate cytidylyltransferase from Escherichia coli K-12. J Bacteriol 163:256–261

    CAS  Google Scholar 

  265. Eidels L, Osborn MJ (1971) Lipopolysaccharide and aldoheptose biosynthesis in transketolase mutants of Salmonella typhimurium. Proc Natl Acad Sci USA 68:1673–1677

    CAS  Google Scholar 

  266. Eidels L, Osborn MJ (1974) Phosphoheptose isomerase, first enzyme in the biosynthesis of aldoheptose in Salmonella typhimurium. J Biol Chem 249:5642–5648

    CAS  Google Scholar 

  267. Kocsis B, Kontrohr T (1984) Isolation of adenosine 5′-diphosphate-l- glycero-d- manno-heptose, the assumed substrate of heptose transferase(s), from Salmonella minnesota R595 and Shigella sonnei Re mutants. J Biol Chem 259:11858–11860

    CAS  Google Scholar 

  268. Coleman WG Jr (1983) The rfaD gene codes for ADP-l- glycero-d- manno-heptose-6-epimerase. An enzyme required for lipopolysaccharide core biosynthesis. J Biol Chem 258:1985–1990

    CAS  Google Scholar 

  269. Brooke JS, Valvano MA (1996) Biosynthesis of inner core lipopolysaccharide in enteric bacteria identification and characterization of a conserved phosphoheptose isomerase. J Biol Chem 271:3608–3614

    CAS  Google Scholar 

  270. Valvano MA, Marolda CL, Bittner M, Glaskin-Clay M, Simon TL, Klena JD (2000) The rfaE gene from Escherichia coli encodes a bifunctional protein involved in biosynthesis of the lipopolysaccharide core precursor ADP-l- glycero-d- manno-heptose. J Bacteriol 182:488–497

    CAS  Google Scholar 

  271. Kneidinger B, Marolda C, Graninger M, Zamyatina A, McArthur F, Kosma P, Valvano MA, Messner P (2002) Biosynthesis pathway of ADP-l- glycero-β-d- manno-heptose in Escherichia coli. J Bacteriol 184:363–369

    CAS  Google Scholar 

  272. Valvano MA, Messner P, Kosma P (2002) Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides. Microbiology 148:1979–1989

    CAS  Google Scholar 

  273. Mendez C, Luzhetskyy A, Bechthold A, Salas JA (2008) Deoxysugars in bioactive natural products: development of novel derivatives by altering the sugar pattern. Curr Top Med Chem 8:710–724

    CAS  Google Scholar 

  274. Salas JA, Mendez C (2007) Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol 15:219–232

    CAS  Google Scholar 

  275. Thibodeaux CJ, Melancon CE, Liu HW (2007) Unusual sugar biosynthesis and natural product glycodiversification. Nature 446:1008–1016

    CAS  Google Scholar 

Download references

Acknowledgements

Research in the Lam laboratory is supported by operating grants from the Canadian Institute of Health Research (#MOP-14687), and the Canadian Cystic Fibrosis Foundation. J.S.L. holds a Canada Research Chair in Cystic Fibrosis and Microbial Glycobiology jointly funded by the Canadian Foundation of Innovation and the Ontario Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph S. Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Hao, Y., Lam, J.S. (2011). Pathways for the Biosynthesis of NDP Sugars. In: Knirel, Y., Valvano, M. (eds) Bacterial Lipopolysaccharides. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0733-1_7

Download citation

Publish with us

Policies and ethics