Skip to main content

Genetics and Biosynthesis of Lipid A

  • Chapter
  • First Online:
Bacterial Lipopolysaccharides

Abstract

The defining feature of Gram-negative bacteria is the presence of an outer membrane, which comprises the outermost surface of the cell envelope and is, therefore, in constant contact with the surrounding environment. The Gram-negative outer membrane is unique as compared to most biological membranes in that it is an asymmetric bilayer composed of a phospholipid inner leaflet and a lipopolysaccharide (LPS) outer leaflet as opposed to a symmetrical phospholipid bilayer (Fig. 6.1). The presence of LPS in the outer leaflet confers unique properties to the membrane including an efficient permeability barrier that affords Gram-negative bacteria additional protection from their surrounding environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  CAS  Google Scholar 

  2. Anderson MS, Raetz CR (1987) Biosynthesis of lipid A precursors in Escherichia coli. A cytoplasmic acyltransferase that converts UDP-N-acetylglucosamine to UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine. J Biol Chem 262:5159–5169

    CAS  Google Scholar 

  3. Wyckoff TJ, Lin S, Cotter RJ, Dotson GD, Raetz CR (1998) Hydrocarbon rulers in UDP-N-acetylglucosamine acyltransferases. J Biol Chem 273:32369–32372

    Article  CAS  Google Scholar 

  4. Sweet CR, Lin S, Cotter RJ, Raetz CR (2001) A Chlamydia trachomatis UDP-N-acetylglucosamine acyltransferase selective for myristoyl-acyl carrier protein. Expression in Escherichia coli and formation of hybrid lipid A species. J Biol Chem 276:19565–19574

    Article  CAS  Google Scholar 

  5. Odegaard TJ, Kaltashov IA, Cotter RJ, Steeghs L, van der Ley P, Khan S, Maskell DJ, Raetz CR (1997) Shortened hydroxyacyl chains on lipid A of Escherichia coli cells expressing a foreign UDP-N-acetylglucosamine O-acyltransferase. J Biol Chem 272:19688–19696

    Article  CAS  Google Scholar 

  6. Sweet CR, Preston A, Toland E, Ramirez SM, Cotter RJ, Maskell DJ, Raetz CR (2002) Relaxed acyl chain specificity of Bordetella UDP-N-acetylglucosamine acyltransferases. J Biol Chem 277:18281–18290

    Article  CAS  Google Scholar 

  7. Bainbridge BW, Karimi-Naser L, Reife R, Blethen F, Ernst RK, Darveau RP (2008) Acyl chain specificity of the acyltransferases LpxA and LpxD and substrate availability contribute to lipid A fatty acid heterogeneity in Porphyromonas gingivalis. J Bacteriol 190:4549–4558

    Article  CAS  Google Scholar 

  8. Sweet CR, Ribeiro AA, Raetz CR (2004) Oxidation and transamination of the 3″-position of UDP-N-acetylglucosamine by enzymes from Acidithiobacillus ferrooxidans. Role in the formation of lipid A molecules with four amide-linked acyl chains. J Biol Chem 279:25400–25410

    Article  CAS  Google Scholar 

  9. Sweet CR, Williams AH, Karbarz MJ, Werts C, Kalb SR, Cotter RJ, Raetz CR (2004) Enzymatic synthesis of lipid A molecules with four amide-linked acyl chains. LpxA acyltransferases selective for an analog of UDP-N-acetylglucosamine in which an amine replaces the 3″-hydroxyl group. J Biol Chem 279:25411–25419

    Article  CAS  Google Scholar 

  10. van Mourik A, Steeghs L, van Laar J, Meiring HD, Hamstra HJ, van Putten JP, Wosten MM (2010) Altered linkage of hydroxyacyl chains in lipid A of Campylobacter jejuni reduces TLR4 activation and antimicrobial resistance. J Biol Chem 285:15828–15836

    Article  CAS  Google Scholar 

  11. Raetz CR, Roderick SL (1995) A left-handed parallel β helix in the structure of UDP-N-acetylglucosamine acyltransferase. Science 270:997–1000

    Article  CAS  Google Scholar 

  12. Ulaganathan V, Buetow L, Hunter WN (2007) Nucleotide substrate recognition by UDP-N-acetylglucosamine acyltransferase (LpxA) in the first step of lipid A biosynthesis. J Mol Biol 369:305–312

    Article  CAS  Google Scholar 

  13. Williams AH, Raetz CR (2007) Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase. Proc Natl Acad Sci USA 104:13543–13550

    Article  CAS  Google Scholar 

  14. Anderson MS, Bull HG, Galloway SM, Kelly TM, Mohan S, Radika K, Raetz CR (1993) UDP-N-acetylglucosamine acyltransferase of Escherichia coli. The first step of endotoxin biosynthesis is thermodynamically unfavorable. J Biol Chem 268:19858–19865

    CAS  Google Scholar 

  15. Anderson MS, Robertson AD, Macher I, Raetz CR (1988) Biosynthesis of lipid A in Escherichia coli: identification of UDP-3-O-[(R)-3-hydroxymyristoyl]-α-d-glucosamine as a precursor of UDP-N2, O3-bis[(R)-3-hydroxymyristoyl]-α-d-glucosamine. Biochemistry 27:1908–1917

    Article  CAS  Google Scholar 

  16. Young K, Silver LL, Bramhill D, Cameron P, Eveland SS, Raetz CR, Hyland SA, Anderson MS (1995) The envA permeability/cell division gene of Escherichia coli encodes the second enzyme of lipid A biosynthesis. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase. J Biol Chem 270:30384–30391

    Article  CAS  Google Scholar 

  17. Onishi HR, Pelak BA, Gerckens LS, Silver LL, Kahan FM, Chen MH, Patchett AA, Galloway SM, Hyland SA, Anderson MS, Raetz CR (1996) Antibacterial agents that inhibit lipid A biosynthesis. Science 274:980–982

    Article  CAS  Google Scholar 

  18. Jackman JE, Fierke CA, Tumey LN, Pirrung M, Uchiyama T, Tahir SH, Hindsgaul O, Raetz CR (2000) Antibacterial agents that target lipid A biosynthesis in Gram-negative bacteria. Inhibition of diverse UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs. J Biol Chem 275:11002–11009

    Article  CAS  Google Scholar 

  19. Clements JM, Coignard F, Johnson I, Chandler S, Palan S, Waller A, Wijkmans J, Hunter MG (2002) Antibacterial activities and characterization of novel inhibitors of LpxC. Antimicrob Agents Chemother 46:1793–1799

    Article  CAS  Google Scholar 

  20. Kline T, Andersen NH, Harwood EA, Bowman J, Malanda A, Endsley S, Erwin AL, Doyle M, Fong S, Harris AL, Mendelsohn B, Mdluli K, Raetz CR, Stover CK, Witte PR, Yabannavar A, Zhu S (2002) Potent, novel in vitro inhibitors of the Pseudomonas aeruginosa deacetylase LpxC. J Med Chem 45:3112–3129

    Article  CAS  Google Scholar 

  21. Li X, Uchiyama T, Raetz CR, Hindsgaul O (2003) Synthesis of a carbohydrate-derived hydroxamic acid inhibitor of the bacterial enzyme (LpxC) involved in lipid A biosynthesis. Org Lett 5:539–541

    Article  CAS  Google Scholar 

  22. McClerren AL, Endsley S, Bowman JL, Andersen NH, Guan Z, Rudolph J, Raetz CR (2005) A slow, tight-binding inhibitor of the zinc-dependent deacetylase LpxC of lipid A biosynthesis with antibiotic activity comparable to ciprofloxacin. Biochemistry 44:16574–16583

    Article  CAS  Google Scholar 

  23. Pirrung MC, Tumey LN, Raetz CR, Jackman JE, Snehalatha K, McClerren AL, Fierke CA, Gantt SL, Rusche KM (2002) Inhibition of the antibacterial target UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC): isoxazoline zinc amidase inhibitors bearing diverse metal binding groups. J Med Chem 45:4359–4370

    Article  CAS  Google Scholar 

  24. Whittington DA, Rusche KM, Shin H, Fierke CA, Christianson DW (2003) Crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis. Proc Natl Acad Sci USA 100:8146–8150

    Article  CAS  Google Scholar 

  25. Coggins BE, Li X, McClerren AL, Hindsgaul O, Raetz CR, Zhou P (2003) Structure of the LpxC deacetylase with a bound substrate-analog inhibitor. Nat Struct Biol 10:645–651

    Article  CAS  Google Scholar 

  26. Mochalkin I, Knafels JD, Lightle S (2008) Crystal structure of LpxC from Pseudomonas aeruginosa complexed with the potent BB-78485 inhibitor. Protein Sci 17:450–457

    Article  CAS  Google Scholar 

  27. Barb AW, Jiang L, Raetz CR, Zhou P (2007) Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: time-dependent inhibition and specificity in ligand binding. Proc Natl Acad Sci USA 104:18433–18438

    Article  CAS  Google Scholar 

  28. Kelly TM, Stachula SA, Raetz CR, Anderson MS (1993) The firA gene of Escherichia coli encodes UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase. The third step of endotoxin biosynthesis. J Biol Chem 268:19866–19874

    CAS  Google Scholar 

  29. Bartling CM, Raetz CR (2009) Crystal structure and acyl chain selectivity of Escherichia coli LpxD, the N-acyltransferase of lipid A biosynthesis. Biochemistry 48:8672–8683

    Article  CAS  Google Scholar 

  30. Buetow L, Smith TK, Dawson A, Fyffe S, Hunter WN (2007) Structure and reactivity of LpxD, the N-acyltransferase of lipid A biosynthesis. Proc Natl Acad Sci USA 104:4321–4326

    Article  CAS  Google Scholar 

  31. Babinski KJ, Ribeiro AA, Raetz CR (2002) The Escherichia coli gene encoding the UDP-2,3-diacylglucosamine pyrophosphatase of lipid A biosynthesis. J Biol Chem 277:25937–25946

    Article  CAS  Google Scholar 

  32. Ray BL, Painter G, Raetz CR (1984) The biosynthesis of Gram-negative endotoxin. Formation of lipid A disaccharides from monosaccharide precursors in extracts of Escherichia coli. J Biol Chem 259:4852–4859

    CAS  Google Scholar 

  33. Radika K, Raetz CR (1988) Purification and properties of lipid A disaccharide synthase of Escherichia coli. J Biol Chem 263:14859–14867

    CAS  Google Scholar 

  34. Babinski KJ, Kanjilal SJ, Raetz CR (2002) Accumulation of the lipid A precursor UDP-2,3-diacylglucosamine in an Escherichia coli mutant lacking the lpxH gene. J Biol Chem 277:25947–25956

    Article  CAS  Google Scholar 

  35. Metzger LE IV, Raetz CR (2010) An alternative route for UDP-diacylglucosamine hydrolysis in bacterial lipid A biosynthesis. Biochemistry 49:6715–6726

    Article  CAS  Google Scholar 

  36. Garrett TA, Kadrmas JL, Raetz CR (1997) Identification of the gene encoding the Escherichia coli lipid A 4′-kinase. Facile phosphorylation of endotoxin analogs with recombinant LpxK. J Biol Chem 272:21855–21864

    Article  CAS  Google Scholar 

  37. Garrett TA, Que NL, Raetz CR (1998) Accumulation of a lipid A precursor lacking the 4′-phosphate following inactivation of the Escherichia coli lpxK gene. J Biol Chem 273:12457–12465

    Article  CAS  Google Scholar 

  38. Ray BL, Raetz CR (1987) The biosynthesis of Gram-negative endotoxin. A novel kinase in Escherichia coli membranes that incorporates the 4′-phosphate of lipid A. J Biol Chem 262:1122–1128

    CAS  Google Scholar 

  39. Brozek KA, Raetz CR (1990) Biosynthesis of lipid A in Escherichia coli. Acyl carrier protein-dependent incorporation of laurate and myristate. J Biol Chem 265:15410–15417

    CAS  Google Scholar 

  40. Brozek KA, Hosaka K, Robertson AD, Raetz CR (1989) Biosynthesis of lipopolysaccharide in Escherichia coli. Cytoplasmic enzymes that attach 3-deoxy-d-manno-octulosonic acid to lipid A. J Biol Chem 264:6956–6966

    CAS  Google Scholar 

  41. Belunis CJ, Raetz CR (1992) Biosynthesis of endotoxins. Purification and catalytic properties of 3-deoxy-d-manno-octulosonic acid transferase from Escherichia coli. J Biol Chem 267:9988–9997

    CAS  Google Scholar 

  42. Clementz T, Raetz CR (1991) A gene coding for 3-deoxy-d-manno-octulosonic-acid transferase in Escherichia coli. Identification, mapping, cloning, and sequencing. J Biol Chem 266:9687–9696

    CAS  Google Scholar 

  43. Belunis CJ, Clementz T, Carty SM, Raetz CR (1995) Inhibition of lipopolysaccharide biosynthesis and cell growth following inactivation of the kdtA gene in Escherichia coli. J Biol Chem 270:27646–27652

    Article  CAS  Google Scholar 

  44. Brabetz W, Lindner B, Brade H (2000) Comparative analyses of secondary gene products of 3-deoxy-d-manno-oct-2-ulosonic acid transferases from Chlamydiaceae in Escherichia coli K-12. Eur J Biochem 267:5458–5465

    Article  CAS  Google Scholar 

  45. Rund S, Lindner B, Brade H, Holst O (2000) Structural analysis of the lipopolysaccharide from Chlamydophila psittaci strain 6BC. Eur J Biochem 267:5717–5726

    Article  CAS  Google Scholar 

  46. Hankins JV, Trent MS (2009) Secondary acylation of Vibrio cholerae lipopolysaccharide requires phosphorylation of Kdo. J Biol Chem 284:25804–25812

    Article  CAS  Google Scholar 

  47. White KA, Kaltashov IA, Cotter RJ, Raetz CR (1997) A mono-functional 3-deoxy-d-manno-octulosonic acid (Kdo) transferase and a Kdo kinase in extracts of Haemophilus influenzae. J Biol Chem 272:16555–16563

    Article  CAS  Google Scholar 

  48. Isobe T, White KA, Allen AG, Peacock M, Raetz CR, Maskell DJ (1999) Bordetella pertussis waaA encodes a monofunctional 2-keto-3-deoxy- d-manno-octulosonic acid transferase that can complement an Escherichia coli waaA mutation. J Bacteriol 181:2648–2651

    CAS  Google Scholar 

  49. Mamat U, Schmidt H, Munoz E, Lindner B, Fukase K, Hanuszkiewicz A, Wu J, Meredith TC, Woodard RW, Hilgenfeld R, Mesters JR, Holst O (2009) WaaA of the hyperthermophilic bacterium Aquifex aeolicus is a monofunctional 3-deoxy-d-manno-oct-2-ulosonic acid transferase involved in lipopolysaccharide biosynthesis. J Biol Chem 284:22248–22262

    Article  CAS  Google Scholar 

  50. Chung HS, Raetz CR (2010) Interchangeable domains in the Kdo transferases of Escherichia coli and Haemophilus influenzae. Biochemistry 49:4126–4137

    Article  CAS  Google Scholar 

  51. White KA, Lin S, Cotter RJ, Raetz CR (1999) A Haemophilus influenzae gene that encodes a membrane bound 3-deoxy-d-manno-octulosonic acid (Kdo) kinase. Possible involvement of Kdo phosphorylation in bacterial virulence. J Biol Chem 274:31391–31400

    Article  CAS  Google Scholar 

  52. Clementz T, Bednarski JJ, Raetz CR (1996) Function of the htrB high temperature requirement gene of Escherchia coli in the acylation of lipid A: HtrB catalyzed incorporation of laurate. J Biol Chem 271:12095–12102

    Article  CAS  Google Scholar 

  53. Clementz T, Zhou Z, Raetz CR (1997) Function of the Escherichia coli msbB gene, a multicopy suppressor of htrB knockouts, in the acylation of lipid A. Acylation by MsbB follows laurate incorporation by HtrB. J Biol Chem 272:10353–10360

    Article  CAS  Google Scholar 

  54. Stead CM, Beasley A, Cotter RJ, Trent MS (2008) Deciphering the unusual acylation pattern of Helicobacter pylori lipid A. J Bacteriol 190:7012–7021

    Article  CAS  Google Scholar 

  55. Mohan S, Raetz CR (1994) Endotoxin biosynthesis in Pseudomonas aeruginosa: enzymatic incorporation of laurate before 3-deoxy-d-manno-octulosonate. J Bacteriol 176:6944–6951

    CAS  Google Scholar 

  56. Goldman RC, Doran CC, Kadam SK, Capobianco JO (1988) Lipid A precursor from Pseudomonas aeruginosa is completely acylated prior to addition of 3-deoxy-d-manno-octulosonate. J Biol Chem 263:5217–5223

    CAS  Google Scholar 

  57. Tzeng YL, Datta A, Kolli VK, Carlson RW, Stephens DS (2002) Endotoxin of Neisseria meningitidis composed only of intact lipid A: inactivation of the meningococcal 3-deoxy-d-manno-octulosonic acid transferase. J Bacteriol 184:2379–2388

    Article  CAS  Google Scholar 

  58. Carty SM, Sreekumar KR, Raetz CR (1999) Effect of cold shock on lipid A biosynthesis in Escherichia coli. Induction at 12°C of an acyltransferase specific for palmitoleoyl-acyl carrier protein. J Biol Chem 274:9677–9685

    Article  CAS  Google Scholar 

  59. Basu SS, Karbarz MJ, Raetz CR (2002) Expression cloning and characterization of the C28 acyltransferase of lipid A biosynthesis in Rhizobium leguminosarum. J Biol Chem 277:28959–28971

    Article  CAS  Google Scholar 

  60. Brozek KA, Carlson RW, Raetz CR (1996) A special acyl carrier protein for transferring long hydroxylated fatty acids to lipid A in Rhizobium. J Biol Chem 271:32126–32136

    Article  CAS  Google Scholar 

  61. Vedam V, Kannenberg EL, Haynes JG, Sherrier DJ, Datta A, Carlson RW (2003) A Rhizobium leguminosarum AcpXL mutant produces lipopolysaccharide lacking 27-hydroxyoctacosanoic acid. J Bacteriol 185:1841–1850

    Article  CAS  Google Scholar 

  62. Narberhaus F, Obrist M, Fuhrer F, Langklotz S (2009) Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents. Res Microbiol 160:652–659

    Article  CAS  Google Scholar 

  63. Ogura T, Inoue K, Tatsuta T, Suzaki T, Karata K, Young K, Su LH, Fierke CA, Jackman JE, Raetz CR, Coleman J, Tomoyasu T, Matsuzawa H (1999) Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol Microbiol 31:833–844

    Article  CAS  Google Scholar 

  64. Katz C, Ron EZ (2008) Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli. J Bacteriol 190:7117–7122

    Article  CAS  Google Scholar 

  65. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  CAS  Google Scholar 

  66. Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406:782–787

    Article  CAS  Google Scholar 

  67. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752

    CAS  Google Scholar 

  68. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777–1782

    Article  CAS  Google Scholar 

  69. Trent MS, Stead CM, Tran AX, Hankins JV (2006) Diversity of endotoxin and its impact on pathogenesis. J Endotoxin Res 12:205–223

    Article  CAS  Google Scholar 

  70. Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  CAS  Google Scholar 

  71. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  Google Scholar 

  72. Tran AX, Whittimore JD, Wyrick PB, McGrath SC, Cotter RJ, Trent MS (2006) The lipid A 1-phosphatase of Helicobacter pylori is required for resistance to the antimicrobial peptide polymyxin. J Bacteriol 188:4531–4541

    Article  CAS  Google Scholar 

  73. Trent MS, Ribeiro AA, Lin S, Cotter RJ, Raetz CR (2001) An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-l-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. J Biol Chem 276:43122–43131

    Article  CAS  Google Scholar 

  74. Lee H, Hsu FF, Turk J, Groisman EA (2004) The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J Bacteriol 186:4124–4133

    Article  CAS  Google Scholar 

  75. Gunn JS (2008) The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol 16:284–290

    Article  CAS  Google Scholar 

  76. Kato A, Groisman EA (2008) The PhoQ/PhoP regulatory network of Salmonella enterica. Adv Exp Med Biol 631:7–21

    Article  CAS  Google Scholar 

  77. Tran AX, Stead CM, Trent MS (2005) Remodeling of Helicobacter pylori lipopolysaccharide. J Endotoxin Res 11:161–166

    CAS  Google Scholar 

  78. Karbarz MJ, Kalb SR, Cotter RJ, Raetz CR (2003) Expression cloning and biochemical characterization of a Rhizobium leguminosarum lipid A 1-phosphatase. J Biol Chem 278:39269–39279

    Article  CAS  Google Scholar 

  79. Stukey J, Carman GM (1997) Identification of a novel phosphatase sequence motif. Protein Sci 6:469–472

    Article  CAS  Google Scholar 

  80. Wang X, Karbarz MJ, McGrath SC, Cotter RJ, Raetz CR (2004) MsbA transporter-dependent lipid A 1-dephosphorylation on the periplasmic surface of the inner membrane: topography of Francisella novicida LpxE expressed in Escherichia coli. J Biol Chem 279:49470–49478

    Article  CAS  Google Scholar 

  81. Tran AX, Karbarz MJ, Wang X, Raetz CR, McGrath SC, Cotter RJ, Trent MS (2004) Periplasmic cleavage and modification of the 1-phosphate group of Helicobacter pylori lipid A. J Biol Chem 279:55780–55791

    Article  CAS  Google Scholar 

  82. Coats SR, Jones JW, Do CT, Braham PH, Bainbridge BW, To TT, Goodlett DR, Ernst RK, Darveau RP (2009) Human Toll-like receptor 4 responses to P. gingivalis are regulated by lipid A 1- and 4′-phosphatase activities. Cell Microbiol 11:1587–1599

    Article  CAS  Google Scholar 

  83. Que NL, Lin S, Cotter RJ, Raetz CR (2000) Purification and mass spectrometry of six lipid A species from the bacterial endosymbiont Rhizobium etli. Demonstration of a conserved distal unit and a variable proximal portion. J Biol Chem 275:28006–28016

    CAS  Google Scholar 

  84. Que NL, Ribeiro AA, Raetz CR (2000) Two-dimensional NMR spectroscopy and structures of six lipid A species from Rhizobium etli CE3. Detection of an acyloxyacyl residue in each component and origin of the aminogluconate moiety. J Biol Chem 275:28017–28027

    CAS  Google Scholar 

  85. Wang X, Ribeiro AA, Guan Z, McGrath SC, Cotter RJ, Raetz CR (2006) Structure and biosynthesis of free lipid A molecules that replace lipopolysaccharide in Francisella tularensis subsp. novicida. Biochemistry 45:14427–14440

    Article  CAS  Google Scholar 

  86. Shaffer SA, Harvey MD, Goodlett DR, Ernst RK (2007) Structural heterogeneity and environmentally regulated remodeling of Francisella tularensis subspecies novicida lipid A characterized by tandem mass spectrometry. J Am Soc Mass Spectrom 18:1080–1092

    Article  CAS  Google Scholar 

  87. Ogawa T (1993) Chemical structure of lipid A from Porphyromonas (Bacteroides) gingivalis lipopolysaccharide. FEBS Lett 332:197–201

    Article  CAS  Google Scholar 

  88. Stead CM, Zhao J, Raetz CR, Trent MS (2010) Removal of the outer Kdo from Helicobacter pylori lipopolysaccharide and its impact on the bacterial surface. Mol Microbiol 78:837–852

    Article  CAS  Google Scholar 

  89. Que-Gewirth NL, Ribeiro AA, Kalb SR, Cotter RJ, Bulach DM, Adler B, Girons IS, Werts C, Raetz CR (2004) A methylated phosphate group and four amide-linked acyl chains in leptospira interrogans lipid A. The membrane anchor of an unusual lipopolysaccharide that activates TLR2. J Biol Chem 279:25420–25429

    Article  CAS  Google Scholar 

  90. Wang X, McGrath SC, Cotter RJ, Raetz CR (2006) Expression cloning and periplasmic orientation of the Francisella novicida lipid A 4′-phosphatase LpxF. J Biol Chem 281:9321–9330

    Article  CAS  Google Scholar 

  91. Wang X, Ribeiro AA, Guan Z, Abraham SN, Raetz CR (2007) Attenuated virulence of a Francisella mutant lacking the lipid A 4′-phosphatase. Proc Natl Acad Sci USA 104:4136–4141

    Article  CAS  Google Scholar 

  92. Ingram BO, Sohlenkamp C, Geiger O, Raetz CR (2010) Altered lipid A structures and polymyxin hypersensitivity of Rhizobium etli mutants lacking the LpxE and LpxF phosphatases. Biochim Biophys Acta 1801:593–604

    Article  CAS  Google Scholar 

  93. Gunn JS, Miller SI (1996) PhoP-PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. J Bacteriol 178:6857–6864

    CAS  Google Scholar 

  94. Wosten MM, Kox LF, Chamnongpol S, Soncini FC, Groisman EA (2000) A signal transduction system that responds to extracellular iron. Cell 103:113–125

    Article  CAS  Google Scholar 

  95. Trent MS, Ribeiro AA, Doerrler WT, Lin S, Cotter RJ, Raetz CR (2001) Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: structural characterization and transfer to lipid A in the periplasm. J Biol Chem 276:43132–43144

    Article  CAS  Google Scholar 

  96. Doerrler WT, Gibbons HS, Raetz CR (2004) MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J Biol Chem 279:45102–45109

    Article  CAS  Google Scholar 

  97. Tran AX, Lester ME, Stead CM, Raetz CR, Maskell DJ, McGrath SC, Cotter RJ, Trent MS (2005) Resistance to the antimicrobial peptide polymyxin requires myristoylation of Escherichia coli and Salmonella typhimurium lipid A. J Biol Chem 280:28186–28194

    Article  CAS  Google Scholar 

  98. Gunn JS, Lim KB, Krueger J, Kim K, Guo L, Hackett M, Miller SI (1998) PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 27:1171–1182

    Article  CAS  Google Scholar 

  99. Gunn JS, Ryan SS, Van Velkinburgh JC, Ernst RK, Miller SI (2000) Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar Typhimurium. Infect Immun 68:6139–6146

    Article  CAS  Google Scholar 

  100. Marr N, Tirsoaga A, Blanot D, Fernandez R, Caroff M (2008) Glucosamine found as a substituent of both phosphate groups in Bordetella lipid A backbones: role of a BvgAS-activated ArnT ortholog. J Bacteriol 190:4281–4290

    Article  CAS  Google Scholar 

  101. Wang X, Ribeiro AA, Guan Z, Raetz CR (2009) Identification of undecaprenyl phosphate-β-d-galactosamine in Francisella novicida and its function in lipid A modification. Biochemistry 48:1162–1172

    Article  CAS  Google Scholar 

  102. Kanistanon D, Hajjar AM, Pelletier MR, Gallagher LA, Kalhorn T, Shaffer SA, Goodlett DR, Rohmer L, Brittnacher MJ, Skerrett SJ, Ernst RK (2008) A Francisella mutant in lipid A carbohydrate modification elicits protective immunity. PLoS Pathog 4:e24

    Article  CAS  Google Scholar 

  103. Marr N, Hajjar AM, Shah NR, Novikov A, Yam CS, Caroff M, Fernandez RC (2010) Substitution of the Bordetella pertussis lipid A phosphate groups with glucosamine is required for robust NF-κB activation and release of proinflammatory cytokines in cells expressing human but not murine Toll-like receptor 4-MD-2-CD14. Infect Immun 78:2060–2069

    Article  CAS  Google Scholar 

  104. Kanjilal-Kolar S, Raetz CR (2006) Dodecaprenyl phosphate-galacturonic acid as a donor substrate for lipopolysaccharide core glycosylation in Rhizobium leguminosarum. J Biol Chem 281:12879–12887

    Article  CAS  Google Scholar 

  105. Raetz CR, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem 76:295–329

    Article  CAS  Google Scholar 

  106. Plotz BM, Lindner B, Stetter KO, Holst O (2000) Characterization of a novel lipid A containing d-galacturonic acid that replaces phosphate residues. The structure of the lipid A of the lipopolysaccharide from the hyperthermophilic bacterium Aquifex pyrophilus. J Biol Chem 275:11222–11228

    Article  CAS  Google Scholar 

  107. Trent MS, Raetz CRH (2002) Cloning of EptA, the lipid A phosphoethanolamine transferase associated with polymyxin resistance. J Endotoxin Res 8:159

    Google Scholar 

  108. Cox AD, Wright JC, Li J, Hood DW, Moxon ER, Richards JC (2003) Phosphorylation of the lipid A region of meningococcal lipopolysaccharide: identification of a family of transferases that add phosphoethanolamine to lipopolysaccharide. J Bacteriol 185:3270–3277

    Article  CAS  Google Scholar 

  109. Tzeng YL, Ambrose KD, Zughaier S, Zhou X, Miller YK, Shafer WM, Stephens DS (2005) Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 187:5387–5396

    Article  CAS  Google Scholar 

  110. Cullen TW, Trent MS (2010) A link between the assembly of flagella and lipooligosaccharide of the Gram-negative bacterium Campylobacter jejuni. Proc Natl Acad Sci USA 107:5160–5165

    Article  CAS  Google Scholar 

  111. Lewis LA, Choudhury B, Balthazar JT, Martin LE, Ram S, Rice PA, Stephens DS, Carlson R, Shafer WM (2009) Phosphoethanolamine substitution of lipid A and resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides and complement-mediated killing by normal human serum. Infect Immun 77:1112–1120

    Article  CAS  Google Scholar 

  112. Takahashi H, Carlson RW, Muszynski A, Choudhury B, Kim KS, Stephens DS, Watanabe H (2008) Modification of lipooligosaccharide with phosphoethanolamine by LptA in Neisseria meningitidis enhances meningococcal adhesion to human endothelial and epithelial cells. Infect Immun 76:5777–5789

    Article  CAS  Google Scholar 

  113. Touze T, Tran AX, Hankins JV, Mengin-Lecreulx D, Trent MS (2008) Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. Mol Microbiol 67:264–277

    Article  CAS  Google Scholar 

  114. Valvano MA (2008) Undecaprenyl phosphate recycling comes out of age. Mol Microbiol 67:232–235

    Article  CAS  Google Scholar 

  115. Bouhss A, Trunkfield AE, Bugg TD, Mengin-Lecreulx D (2008) The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol Rev 32:208–233

    Article  CAS  Google Scholar 

  116. El Ghachi M, Derbise A, Bouhss A, Mengin-Lecreulx D (2005) Identification of multiple genes encoding membrane proteins with undecaprenyl pyrophosphate phosphatase (UppP) activity in Escherichia coli. J Biol Chem 280:18689–18695

    Article  CAS  Google Scholar 

  117. Herrera CM, Hankins JV, Trent MS (2010) Activation of PmrA inhibits LpxT-dependent phosphorylation of lipid A promoting resistance to antimicrobial peptides. Mol Microbiol 76:1444–1460

    Article  CAS  Google Scholar 

  118. Boon Hinckley M, Reynolds CM, Ribeiro AA, McGrath SC, Cotter RJ, Lauw FN, Golenbock DT, Raetz CR (2005) A Leptospira interrogans enzyme with similarity to yeast Ste14p that methylates the 1-phosphate group of lipid A. J Biol Chem 280:30214–30224

    Article  CAS  Google Scholar 

  119. Reynolds CM, Ribeiro AA, McGrath SC, Cotter RJ, Raetz CR, Trent MS (2006) An outer membrane enzyme encoded by Salmonella typhimurium lpxR that removes the 3′-acyloxyacyl moiety of lipid A. J Biol Chem 281:21974–21987

    Article  CAS  Google Scholar 

  120. Trent MS, Pabich W, Raetz CR, Miller SI (2001) A PhoP/PhoQ-induced lipase (PagL) that catalyzes 3-O-deacylation of lipid A precursors in membranes of Salmonella typhimurium. J Biol Chem 276:9083–9092

    Article  CAS  Google Scholar 

  121. Guo L, Lim KB, Poduje CM, Daniel M, Gunn JS, Hackett M, Miller SI (1998) Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95:189–198

    Article  CAS  Google Scholar 

  122. Bishop RE, Gibbons HS, Guina T, Trent MS, Miller SI, Raetz CR (2000) Transfer of palmitate from phospholipids to lipid A in outer membranes of Gram-negative bacteria. EMBO J 19:5071–5080

    Article  CAS  Google Scholar 

  123. Brozek KA, Bulawa CE, Raetz CR (1987) Biosynthesis of lipid A precursors in Escherichia coli. A membrane-bound enzyme that transfers a palmitoyl residue from a glycerophospholipid to lipid X. J Biol Chem 262:5170–5179

    CAS  Google Scholar 

  124. Guo L, Lim KB, Gunn JS, Bainbridge B, Darveau RP, Hackett M, Miller SI (1997) Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science 276:250–253

    Article  CAS  Google Scholar 

  125. Bishop RE (2005) The lipid A palmitoyltransferase PagP: molecular mechanisms and role in bacterial pathogenesis. Mol Microbiol 57:900–912

    Article  CAS  Google Scholar 

  126. Bishop RE (2008) Structural biology of membrane-intrinsic β-barrel enzymes: sentinels of the bacterial outer membrane. Biochim Biophys Acta 1778:1881–1896

    Article  CAS  Google Scholar 

  127. Kawasaki K, Ernst RK, Miller SI (2004) Deacylation and palmitoylation of lipid A by Salmonellae outer membrane enzymes modulate host signaling through Toll-like receptor 4. J Endotoxin Res 10:439–444

    CAS  Google Scholar 

  128. Hwang PM, Choy WY, Lo EI, Chen L, Forman-Kay JD, Raetz CR, Prive GG, Bishop RE, Kay LE (2002) Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci USA 99:13560–13565

    Article  CAS  Google Scholar 

  129. Hwang PM, Bishop RE, Kay LE (2004) The integral membrane enzyme PagP alternates between two dynamically distinct states. Proc Natl Acad Sci USA 101:9618–9623

    Article  CAS  Google Scholar 

  130. Ahn VE, Lo EI, Engel CK, Chen L, Hwang PM, Kay LE, Bishop RE, Prive GG (2004) A hydrocarbon ruler measures palmitate in the enzymatic acylation of endotoxin. EMBO J 23:2931–2941

    Article  CAS  Google Scholar 

  131. Jia W, El Zoeiby A, Petruzziello TN, Jayabalasingham B, Seyedirashti S, Bishop RE (2004) Lipid trafficking controls endotoxin acylation in outer membranes of Escherichia coli. J Biol Chem 279:44966–44975

    Article  CAS  Google Scholar 

  132. Khan MA, Bishop RE (2009) Molecular mechanism for lateral lipid diffusion between the outer membrane external leaflet and a b-barrel hydrocarbon ruler. Biochemistry 48:9745–9756

    Article  CAS  Google Scholar 

  133. Robey M, O'Connell W, Cianciotto NP (2001) Identification of Legionella pneumophila rcp, a pagP-like gene that confers resistance to cationic antimicrobial peptides and promotes intracellular infection. Infect Immun 69:4276–4286

    Article  CAS  Google Scholar 

  134. Pilione MR, Pishko EJ, Preston A, Maskell DJ, Harvill ET (2004) pagP is required for resistance to antibody-mediated complement lysis during Bordetella bronchiseptica respiratory infection. Infect Immun 72:2837–2842

    Article  CAS  Google Scholar 

  135. Rebeil R, Ernst RK, Gowen BB, Miller SI, Hinnebusch BJ (2004) Variation in lipid A structure in the pathogenic yersiniae. Mol Microbiol 52:1363–1373

    Article  CAS  Google Scholar 

  136. Bishop RE, Kim SH, El Zoeiby A (2005) Role of lipid A palmitoylation in bacterial pathogenesis. J Endotoxin Res 11:174–180

    CAS  Google Scholar 

  137. Ernst RK, Yi EC, Guo L, Lim KB, Burns JL, Hackett M, Miller SI (1999) Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286:1561–1565

    Article  CAS  Google Scholar 

  138. Ernst RK, Moskowitz SM, Emerson JC, Kraig GM, Adams KN, Harvey MD, Ramsey B, Speert DP, Burns JL, Miller SI (2007) Unique lipid A modifications in Pseudomonas aeruginosa isolated from the airways of patients with cystic fibrosis. J Infect Dis 196:1088–1092

    Article  CAS  Google Scholar 

  139. Basu SS, White KA, Que NL, Raetz CR (1999) A deacylase in Rhizobium leguminosarum membranes that cleaves the 3-O-linked β-hydroxymyristoyl moiety of lipid A precursors. J Biol Chem 274:11150–11158

    Article  CAS  Google Scholar 

  140. Kawasaki K, Ernst RK, Miller SI (2005) Inhibition of Salmonella enterica serovar Typhimurium lipopolysaccharide deacylation by aminoarabinose membrane modification. J Bacteriol 187:2448–2457

    Article  CAS  Google Scholar 

  141. Manabe T, Kawasaki K (2008) Extracellular loops of lipid A 3-O-deacylase PagL are involved in recognition of aminoarabinose-based membrane modifications in Salmonella enterica serovar Typhimurium. J Bacteriol 190:5597–5606

    Article  CAS  Google Scholar 

  142. Kawasaki K, Ernst RK, Miller SI (2004) 3-O-Deacylation of lipid A by PagL, a PhoP/PhoQ-regulated deacylase of Salmonella typhimurium, modulates signaling through Toll-like receptor 4. J Biol Chem 279:20044–20048

    Article  CAS  Google Scholar 

  143. Ernst RK, Adams KN, Moskowitz SM, Kraig GM, Kawasaki K, Stead CM, Trent MS, Miller SI (2006) The Pseudomonas aeruginosa lipid A deacylase: selection for expression and loss within the cystic fibrosis airway. J Bacteriol 188:191–201

    Article  CAS  Google Scholar 

  144. Rutten L, Geurtsen J, Lambert W, Smolenaers JJ, Bonvin AM, de Haan A, van der Ley P, Egmond MR, Gros P, Tommassen J (2006) Crystal structure and catalytic mechanism of the LPS 3-O-deacylase PagL from Pseudomonas aeruginosa. Proc Natl Acad Sci USA 103:7071–7076

    Article  CAS  Google Scholar 

  145. Geurtsen J, Steeghs L, Hove JT, van der Ley P, Tommassen J (2005) Dissemination of lipid A deacylases (PagL) among Gram-negative bacteria: identification of active-site histidine and serine residues. J Biol Chem 280:8248–8259

    Article  CAS  Google Scholar 

  146. Kawano M, Manabe T, Kawasaki K (2010) Salmonella enterica serovar Typhimurium lipopolysaccharide deacylation enhances its intracellular growth within macrophages. FEBS Lett 584:207–212

    Article  CAS  Google Scholar 

  147. Gibbons HS, Lin S, Cotter RJ, Raetz CR (2000) Oxygen requirement for the biosynthesis of the S-2-hydroxymyristate moiety in Salmonella typhimurium lipid A. Function of LpxO, a new Fe2+/α-ketoglutarate-dependent dioxygenase homologue. J Biol Chem 275:32940–32949

    Article  CAS  Google Scholar 

  148. Sforza S, Silipo A, Molinaro A, Marchelli R, Parrilli M, Lanzetta R (2004) Determination of fatty acid positions in native lipid A by positive and negative electrospray ionization mass spectrometry. J Mass Spectrom 39:378–383

    Article  CAS  Google Scholar 

  149. Kulshin VA, Zähringer U, Lindner B, Jäger KE, Dmitriev BA, Rietschel ET (1991) Structural characterization of the lipid A component of Pseudomonas aeruginosa wild-type and rough mutant lipopolysaccharides. Eur J Biochem 198:697–704

    Article  CAS  Google Scholar 

  150. Kawai Y, Moribayashi A (1982) Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid. J Bacteriol 151:996–1005

    CAS  Google Scholar 

  151. Zähringer U, Knirel YA, Lindner B, Helbig JH, Sonesson A, Marre R, Rietschel ET (1995) The lipopolysaccharide of Legionella pneumophila serogroup 1 (strain Philadelphia 1): chemical structure and biological significance. Prog Clin Biol Res 392:113–139

    Google Scholar 

  152. Stead C, Tran A, Ferguson D Jr, McGrath S, Cotter R, Trent S (2005) A novel 3-deoxy-d-manno-octulosonic acid (Kdo) hydrolase that removes the outer Kdo sugar of Helicobacter pylori lipopolysaccharide. J Bacteriol 187:3374–3383

    Article  CAS  Google Scholar 

  153. Zhao J, Raetz CR (2010) A two-component Kdo hydrolase in the inner membrane of Francisella novicida. Mol Microbiol 78:820–836

    Article  CAS  Google Scholar 

  154. Reynolds CM, Kalb SR, Cotter RJ, Raetz CR (2005) A phosphoethanolamine transferase specific for the outer 3-deoxy-d-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant. J Biol Chem 280:21202–21211

    Article  CAS  Google Scholar 

  155. Kanjilal-Kolar S, Basu SS, Kanipes MI, Guan Z, Garrett TA, Raetz CR (2006) Expression cloning of three Rhizobium leguminosarum lipopolysaccharide core galacturonosyltransferases. J Biol Chem 281:12865–12878

    Article  CAS  Google Scholar 

Download references

Acknowledgement

M.S. Trent is supported by National Institutes of Health Grants AI064184 and AI076322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Stephen Trent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Stead, C.M., Pride, A.C., Trent, M.S. (2011). Genetics and Biosynthesis of Lipid A. In: Knirel, Y., Valvano, M. (eds) Bacterial Lipopolysaccharides. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0733-1_6

Download citation

Publish with us

Policies and ethics