Skip to main content

The Molecular Basis of Lipid A and Toll-Like Receptor 4 Interactions

  • Chapter
  • First Online:

Abstract

In 1989 Charles Janeway proposed the concept of ‘Immune recognition’. He suggested that ‘a critical issue for future study is the analysis of microbial signals that induce second signalling capacity in antigen-presenting cells, and the receptors on antigen presenting cells that detect these microbial signals. … I term these receptors pattern recognition receptors (PRRs)’ [1]. From the early 1990s genetic studies in Drosophila and vertebrates led to the identification of the membrane associated Toll and Toll-like receptors (TLRs), the canonical PRRs predicted by Janeway. This was followed by the identification of different families of cytosolic PRRs including Retinoic acid-Inducible Gene-Like Receptors, Nucleotide Oligomerisation Domain-like receptors and Absent in melanoma-like receptors all of which play a role in pathogen recognition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13

    Article  CAS  Google Scholar 

  2. O’Neill LA, Bryant CE, Doyle SL (2009) Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev 61:177–197

    Article  Google Scholar 

  3. Loppnow H, Durrbaum I, Brade H, Dinarello CA, Kusumoto S, Rietschel ET, Flad HD (1990) Lipid A, the immunostimulatory principle of lipopolysaccharides? Adv Exp Med Biol 256:561–566

    CAS  Google Scholar 

  4. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  CAS  Google Scholar 

  5. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  CAS  Google Scholar 

  6. Raetz CR, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem 76:295–329

    Article  CAS  Google Scholar 

  7. Erwin AL, Munford RS (1990) Deacylation of structurally diverse lipopolysaccharides by human acyloxyacyl hydrolase. J Biol Chem 265:16444–16449

    CAS  Google Scholar 

  8. Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ (1990) Structure and function of lipopolysaccharide binding protein. Science 249:1429–1431

    Article  CAS  Google Scholar 

  9. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431–1433

    Article  CAS  Google Scholar 

  10. Gioannini TL, Teghanemt A, Zhang D, Coussens NP, Dockstader W, Ramaswamy S, Weiss JP (2004) Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc Natl Acad Sci USA 101:4186–4191

    Article  CAS  Google Scholar 

  11. Haziot A, Ferrero E, Kontgen F, Hijiya N, Yamamoto S, Silver J, Stewart CL, Goyert SM (1996) Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14-deficient mice. Immunity 4:407–414

    Article  CAS  Google Scholar 

  12. Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D (1999) Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 189:615–625

    Article  CAS  Google Scholar 

  13. Vogel SN, Johnson D, Perera PY, Medvedev A, Lariviere L, Qureshi ST, Malo D (1999) Cutting edge: functional characterization of the effect of the C3H/HeJ defect in mice that lack an Lps n gene: in vivo evidence for a dominant negative mutation. J Immunol 162:5666–5670

    CAS  Google Scholar 

  14. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  CAS  Google Scholar 

  15. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777–1782

    Article  CAS  Google Scholar 

  16. Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, Kitamura T, Kosugi A, Kimoto M, Miyake K (2002) Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3:667–672

    CAS  Google Scholar 

  17. Gay NJ, Gangloff M (2008) Structure of toll-like receptors. Handb Exp Pharmacol 183:181–200

    Article  CAS  Google Scholar 

  18. Alder MN, Rogozin IB, Iyer LM, Glazko GV, Cooper MD, Pancer Z (2005) Diversity and function of adaptive immune receptors in a jawless vertebrate. Science 310:1970–1973

    Article  CAS  Google Scholar 

  19. Gay NJ, Gangloff M, Weber AN (2006) Toll-like receptors as molecular switches. Nat Rev Immunol 6:693–698

    Article  CAS  Google Scholar 

  20. Inohara N, Nunez G (2002) ML – a conserved domain involved in innate immunity and lipid metabolism. Trends Biochem Sci 27:219–221

    Article  CAS  Google Scholar 

  21. Gangloff M, Gay NJ (2004) MD-2: the Toll ‘gatekeeper’ in endotoxin signalling. Trends Biochem Sci 29:294–300

    Article  CAS  Google Scholar 

  22. Gruber A, Mancek M, Wagner H, Kirschning CJ, Jerala R (2004) Structural model of MD-2 and functional role of its basic amino acid clusters involved in cellular lipopolysaccharide recognition. J Biol Chem 279:28475–28482

    Article  CAS  Google Scholar 

  23. Ohto U, Fukase K, Miyake K, Satow Y (2007) Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science 316:1632–1634

    Article  CAS  Google Scholar 

  24. Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ, Lee JO (2007) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist eritoran. Cell 130:906–917

    Article  CAS  Google Scholar 

  25. Jin MS, Lee JO (2008) Structures of the toll-like receptor family and its ligand complexes. Immunity 29:182–191

    Article  CAS  Google Scholar 

  26. Walsh C, Gangloff M, Monie T, Smyth T, Wei B, McKinley TJ, Maskell D, Gay N, Bryant C (2008) Elucidation of the MD-2/TLR4 interface required for signaling by lipid IVa. J Immunol 181:1245–1254

    CAS  Google Scholar 

  27. Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, Davies DR (2008) Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 320:379–381

    Article  CAS  Google Scholar 

  28. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130:1071–1082

    Article  CAS  Google Scholar 

  29. Nu AR, Va LJ, Oblak A, Pristov-Ek P, Gioannini TL, Weiss JP, Jerala R (2009) Essential roles of hydrophobic residues in both MD-2 and toll-like receptor 4 in activation by endotoxin. J Biol Chem 284:15052–15060

    Article  Google Scholar 

  30. Park BS, Song D-H, Kim H, Choi B-S, Lee H, Lee J-O (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458:1191–1195

    Article  CAS  Google Scholar 

  31. Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, Frees K, Watt JL, Schwartz DA (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25:187–191

    Article  CAS  Google Scholar 

  32. Rallabhandi P, Bell J, Boukhvalova MS, Medvedev A, Lorenz E, Arditi M, Hemming VG, Blanco JC, Segal DM, Vogel SN (2006) Analysis of TLR4 polymorphic variants: new insights into TLR4/MD-2/CD14 stoichiometry, structure, and signaling. J Immunol 177:322–332

    CAS  Google Scholar 

  33. Meng J, Lien E, Golenbock DT (2010) MD-2-mediated ionic interactions between lipid A and TLR4 are essential for receptor activation. J Biol Chem 285:8695–8702

    Article  CAS  Google Scholar 

  34. Schromm AB, Brandenburg K, Loppnow H, Moran AP, Koch MH, Rietschel ET, Seydel U (2000) Biological activities of lipopolysaccharides are determined by the shape of their lipid A portion. Eur J Biochem 267:2008–2013

    Article  CAS  Google Scholar 

  35. Cunningham MD, Seachord C, Ratcliffe K, Bainbridge B, Aruffo A, Darveau RP (1996) Helicobacter pylori and Porphyromonas gingivalis lipopolysaccharides are poorly transferred to recombinant soluble CD14. Infect Immun 64:3601–3608

    CAS  Google Scholar 

  36. Delude RL, Savedra R Jr, Zhao H, Thieringer R, Yamamoto S, Fenton MJ, Golenbock DT (1995) CD14 enhances cellular responses to endotoxin without imparting ligand-specific recognition. Proc Natl Acad Sci USA 92:9288–9292

    Article  CAS  Google Scholar 

  37. Hyytiainen H, Sjoblom S, Palomaki T, Tuikkala A, Tapio Palva E (2003) The PmrA-PmrB two-component system responding to acidic pH and iron controls virulence in the plant pathogen Erwinia carotovora ssp. carotovora. Mol Microbiol 50:795–807

    Article  Google Scholar 

  38. Ernst RK, Guina T, Miller SI (2001) Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect 3:1327–1334

    Article  CAS  Google Scholar 

  39. Kawasaki K, Ernst RK, Miller SI (2004) 3-O-Deacylation of lipid A by PagL, a PhoP/PhoQ-regulated deacylase of Salmonella typhimurium, modulates signaling through Toll-like receptor 4. J Biol Chem 279:20044–20048

    Article  CAS  Google Scholar 

  40. Telepnev MV, Klimpel GR, Haithcoat J, Knirel YA, Anisimov AP, Motin VL (2009) Tetraacylated lipopolysaccharide of Yersinia pestis can inhibit multiple Toll-like receptor-mediated signaling pathways in human dendritic cells. J Infect Dis 200:1694–1702

    Article  CAS  Google Scholar 

  41. Kawahara K, Tsukano H, Watanabe H, Lindner B, Matsuura M (2002) Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun 70:4092–4098

    Article  CAS  Google Scholar 

  42. Brubaker RR (2003) Interleukin-10 and inhibition of innate immunity to Yersiniae: roles of Yops and LcrV (V antigen). Infect Immun 71:3673–3681

    Article  CAS  Google Scholar 

  43. Knirel YA, Lindner B, Vinogradov EV, Kocharova NA, Senchenkova SN, Shaikhutdinova RZ, Dentovskaya SV, Fursova NK, Bakhteeva IV, Titareva GM, Balakhonov SV, Holst O, Gremyakova TA, Pier GB, Anisimov AP (2005) Temperature-dependent variations and intraspecies diversity of the structure of the lipopolysaccharide of Yersinia pestis. Biochemistry 44:1731–1743

    Article  CAS  Google Scholar 

  44. Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060

    Article  CAS  Google Scholar 

  45. Ernst RK, Moskowitz SM, Emerson JC, Kraig GM, Adams KN, Harvey MD, Ramsey B, Speert DP, Burns JL, Miller SI (2007) Unique lipid a modifications in Pseudomonas aeruginosa isolated from the airways of patients with cystic fibrosis. J Infect Dis 196:1088–1092

    Article  CAS  Google Scholar 

  46. Lohmann KL, Vandenplas ML, Barton MH, Bryant CE, Moore JN (2007) The equine TLR4/MD-2 complex mediates recognition of lipopolysaccharide from Rhodobacter sphaeroides as an agonist. J Endotoxin Res 13:235–242

    Article  CAS  Google Scholar 

  47. Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN (2009) House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med 15:410–416

    Article  CAS  Google Scholar 

  48. Trompette A, Divanovic S, Visintin A, Blanchard C, Hegde RS, Madan R, Thorne PS, Wills-Karp M, Gioannini TL, Weiss JP, Karp CL (2009) Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457:585–588

    Article  CAS  Google Scholar 

  49. Gay NJ, Gangloff M (2007) Structure and function of Toll receptors and their ligands. Annu Rev Biochem 76:141–165

    Article  CAS  Google Scholar 

  50. Saitoh S, Akashi S, Yamada T, Tanimura N, Kobayashi M, Konno K, Matsumoto F, Fukase K, Kusumoto S, Nagai Y, Kusumoto Y, Kosugi A, Miyake K (2004) Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligomerization. Int Immunol 16:961–969

    Article  CAS  Google Scholar 

  51. Latz E, Verma A, Visintin A, Gong M, Sirois CM, Klein DC, Monks BG, McKnight CJ, Lamphier MS, Duprex WP, Espevik T, Golenbock DT (2007) Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol 8:772–779

    Article  CAS  Google Scholar 

  52. O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364

    Article  Google Scholar 

  53. Nunez Miguel R, Wong J, Westoll JF, Brooks HJ, O’Neill LA, Gay NJ, Bryant CE, Monie TP (2007) A dimer of the Toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins. PLoS ONE 2:e788

    Article  Google Scholar 

  54. Toshchakov VY, Vogel SN (2007) Cell-penetrating TIR BB loop decoy peptides a novel class of TLR signaling inhibitors and a tool to study topology of TIR-TIR interactions. Expert Opin Biol Ther 7:1035–1050

    Article  CAS  Google Scholar 

  55. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995

    Article  CAS  Google Scholar 

  56. McAleer JP, Rossi RJ, Vella AT (2009) Lipopolysaccharide potentiates effector T cell accumulation into nonlymphoid tissues through TRIF. J Immunol 182:5322–5330

    Article  CAS  Google Scholar 

  57. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11:115–122

    Article  CAS  Google Scholar 

  58. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640–643

    Article  CAS  Google Scholar 

  59. Covert MW, Leung TH, Gaston JE, Baltimore D (2005) Achieving stability of lipopolysaccharide-induced NF-κB activation. Science 309:1854–1857

    Article  CAS  Google Scholar 

  60. Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC (2007) The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 316:1628–1632

    Article  CAS  Google Scholar 

  61. Miyake K (2007) Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 19:3–10

    Article  CAS  Google Scholar 

  62. Rallabhandi P, Awomoyi A, Thomas KE, Phalipon A, Fujimoto Y, Fukase K, Kusumoto S, Qureshi N, Sztein MB, Vogel SN (2008) Differential activation of human TLR4 by Escherichia coli and Shigella flexneri 2a lipopolysaccharide: combined effects of lipid A acylation state and TLR4 polymorphisms on signaling. J Immunol 180:1139–1147

    CAS  Google Scholar 

  63. Prohinar P, Rallabhandi P, Weiss JP, Gioannini TL (2010) Expression of functional D299G.T399I polymorphic variant of TLR4 depends more on coexpression of MD-2 than does wild-type TLR4. J Immunol 184:4362–4367

    Article  CAS  Google Scholar 

  64. Schroder NW, Schumann RR (2005) Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis 5:156–164

    Google Scholar 

  65. Ferwerda B, McCall MB, Verheijen K, Kullberg BJ, van der Ven AJ, van der Meer JW, Netea MG (2008) Functional consequences of toll-like receptor 4 polymorphisms. Mol Med 14:346–352

    Article  CAS  Google Scholar 

  66. Ferwerda B, McCall MB, Alonso S, Giamarellos-Bourboulis EJ, Mouktaroudi M, Izagirre N, Syafruddin D, Kibiki G, Cristea T, Hijmans A, Hamann L, Israel S, ElGhazali G, Troye-Blomberg M, Kumpf O, Maiga B, Dolo A, Doumbo O, Hermsen CC, Stalenhoef AF, van Crevel R, Brunner HG, Oh DY, Schumann RR, de la Rua C, Sauerwein R, Kullberg BJ, van der Ven AJ, van der Meer JW, Netea MG (2007) TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. Proc Natl Acad Sci USA 104:16645–16650

    Article  Google Scholar 

  67. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752

    CAS  Google Scholar 

  68. O’Brien AD, Rosenstreich DL, Scher I, Campbell GH, MacDermott RP, Formal SB (1980) Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J Immunol 124:20–24

    Google Scholar 

  69. Weiss DS, Raupach B, Takeda K, Akira S, Zychlinsky A (2004) Toll-like receptors are temporally involved in host defense. J Immunol 172:4463–4469

    CAS  Google Scholar 

  70. Schnare M, Rollinghoff M, Qureshi S (2006) Toll-like receptors: sentinels of host defence against bacterial infection. Int Arch Allergy Immunol 139:75–85

    Article  CAS  Google Scholar 

  71. Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, Walsh EE, Freeman MW, Golenbock DT, Anderson LJ, Finberg RW (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1:398–401

    Article  CAS  Google Scholar 

  72. Rassa JC, Meyers JL, Zhang Y, Kudaravalli R, Ross SR (2002) Murine retroviruses activate B cells via interaction with toll-like receptor 4. Proc Natl Acad Sci USA 99:2281–2286

    Article  CAS  Google Scholar 

  73. Triantafilou K, Triantafilou M (2004) Coxsackievirus B4-induced cytokine production in pancreatic cells is mediated through toll-like receptor 4. J Virol 78:11313–11320

    Article  CAS  Google Scholar 

  74. Awomoyi AA, Rallabhandi P, Pollin TI, Lorenz E, Sztein MB, Boukhvalova MS, Hemming VG, Blanco JC, Vogel SN (2007) Association of TLR4 polymorphisms with symptomatic respiratory syncytial virus infection in high-risk infants and young children. J Immunol 179:3171–3177

    CAS  Google Scholar 

  75. Mockenhaupt FP, Cramer JP, Hamann L, Stegemann MS, Eckert J, Oh NR, Otchwemah RN, Dietz E, Ehrhardt S, Schroder NW, Bienzle U, Schumann RR (2006) Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria. J Commun Dis 38:230–245

    CAS  Google Scholar 

  76. Newport MJ, Allen A, Awomoyi AA, Dunstan SJ, McKinney E, Marchant A, Sirugo G (2004) The toll-like receptor 4 Asp299Gly variant: no influence on LPS responsiveness or susceptibility to pulmonary tuberculosis in The Gambia. Tuberculosis (Edinb) 84:347–352

    Article  CAS  Google Scholar 

  77. Lorenz E, Mira JP, Frees KL, Schwartz DA (2002) Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 162:1028–1032

    Article  CAS  Google Scholar 

  78. El-Omar EM, Ng MT, Hold GL (2008) Polymorphisms in Toll-like receptor genes and risk of cancer. Oncogene 27:244–252

    Article  CAS  Google Scholar 

  79. Satoh M, Ishikawa Y, Minami Y, Takahashi Y, Nakamura M (2008) Role of Toll like receptor signaling pathway in ischemic coronary artery disease. Front Biosci 13:6708–6715

    Article  CAS  Google Scholar 

  80. Frantz S, Ertl G, Bauersachs J (2007) Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nat Clin Pract Cardiovasc Med 4:444–454

    Article  CAS  Google Scholar 

  81. Fukata M, Abreu MT (2007) TLR4 signalling in the intestine in health and disease. Biochem Soc Trans 35:1473–1478

    Article  CAS  Google Scholar 

  82. Balistreri CR, Grimaldi MP, Chiappelli M, Licastro F, Castiglia L, Listi F, Vasto S, Lio D, Caruso C, Candore G (2008) Association between the polymorphisms of TLR4 and CD14 genes and Alzheimer’s disease. Curr Pharm Des 14:2672–2677

    Article  CAS  Google Scholar 

  83. van den Berg WB, van Lent PL, Joosten LA, Abdollahi-Roodsaz S, Koenders MI (2007) Amplifying elements of arthritis and joint destruction. Ann Rheum Dis 66(Suppl 3):iii45–iii48

    Article  Google Scholar 

  84. Anders HJ, Banas B, Schlondorff D (2004) Signaling danger: toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol 15:854–867

    Article  CAS  Google Scholar 

  85. Kim JK (2006) Fat uses a TOLL-road to connect inflammation and diabetes. Cell Metab 4:417–419

    Article  CAS  Google Scholar 

  86. Eder W, Klimecki W, Yu L, von Mutius E, Riedler J, Braun-Fahrlander C, Nowak D, Martinez FD (2004) Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol 113:482–488

    Article  CAS  Google Scholar 

  87. Roelofs MF, Wenink MH, Toonen EJ, Coenen MJ, Joosten LA, van den Berg WB, van Riel PL, Radstake TR (2008) The functional variant (Asp299Gly) of toll-like receptor 4 (TLR4) influences TLR4-mediated cytokine production in rheumatoid arthritis. J Rheumatol 35:558–561

    CAS  Google Scholar 

  88. Hamann L, Kumpf O, Muller M, Visintin A, Eckert J, Schlag PM, Schumann RR (2004) A coding mutation within the first exon of the human MD-2 gene results in decreased lipopolysaccharide-induced signaling. Genes Immun 5:283–288

    Article  CAS  Google Scholar 

  89. Vasl J, Prohinar P, Gioannini TL, Weiss JP, Jerala R (2008) Functional activity of MD-2 polymorphic variant is significantly different in soluble and TLR4-bound forms: decreased endotoxin binding by G56R MD-2 and its rescue by TLR4 ectodomain. J Immunol 180:6107–6115

    CAS  Google Scholar 

  90. Gu W, Shan YA, Zhou J, Jiang DP, Zhang L, Du DY, Wang ZG, Jiang JX (2007) Functional significance of gene polymorphisms in the promoter of myeloid differentiation-2. Ann Surg 246:151–158

    Article  Google Scholar 

  91. Martinez FD (2007) CD14, endotoxin, and asthma risk: actions and interactions. Proc Am Thorac Soc 4:221–225

    Article  CAS  Google Scholar 

  92. Wiertsema SP, Khoo SK, Baynam G, Veenhoven RH, Laing IA, Zielhuis GA, Rijkers GT, Goldblatt J, Lesouef PN, Sanders EA (2006) Association of CD14 promoter polymorphism with otitis media and pneumococcal vaccine responses. Clin Vaccine Immunol 13:892–897

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research by the authors was funded by the Horserace Betting Levy Board, the Wellcome Trust, and The Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clare E. Bryant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Hold, G.L., Bryant, C.E. (2011). The Molecular Basis of Lipid A and Toll-Like Receptor 4 Interactions. In: Knirel, Y., Valvano, M. (eds) Bacterial Lipopolysaccharides. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0733-1_12

Download citation

Publish with us

Policies and ethics