Skip to main content

Lipid A Structure

  • Chapter
  • First Online:

Abstract

Bacteria and Archaea account for the largest amount of biomass on earth and are major reservoirs of essential nutrients and energy. They have a simpler internal cell structure than eukaryotic cells, and in most cases they lack membrane-enclosed organelles. Archaea includes extremophilic prokaryotic organisms living in habitats that are unusual for most other organisms, such as high salinity or pressure, extreme temperatures and critic pH. Bacteria include saprophytic and pathogenic species. They are divided into Gram-negative and Gram-positive bacteria based on the Gram stain, which reflects differences in the cell envelope architecture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Silipo A, De Castro C, Lanzetta R, Parrilli M, Molinaro A (2010) Lipopolysaccharides. In: König H, Claus H, Varma A (eds) Prokaryotic cell wall compounds – structure and biochemistry. Springer, Heidelberg, pp 133–154

    Chapter  Google Scholar 

  2. Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  CAS  Google Scholar 

  3. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  CAS  Google Scholar 

  4. Holst O, Molinaro A (2009) Core oligosaccharide and lipid A components of lipopolysaccharides. In: Moran A, Brennan P, Holst O, von Itszstein M (eds) Microbial glycobiology: structures relevance and applications. Elsevier, San Diego, pp 29–56

    Google Scholar 

  5. Silipo A, Molinaro A (2010) The diversity of the core oligosaccaride in lipopolysaccharides. Subcell Biochem 53:69–99

    Article  CAS  Google Scholar 

  6. Zähringer U, Lindner B, Rietschel ET (1994) Molecular structure of lipid A, the endotoxic center of bacterial lipopolysaccharides. Adv Carbohydr Chem Biochem 50:211–276

    Article  Google Scholar 

  7. Westphal O, Lüderitz O (1954) Chemische Erforschung von Lipopolysacchariden Gram-Negativer Bakterien. Angew Chem 66:407–417

    Article  CAS  Google Scholar 

  8. Takayama K, Qureshi N, Mascagni P (1983) Complete structures of lipid A obtained from the lipopolysaccharide of the heptoseless mutant of Salmonella typhimurium. J Biol Chem 258:12801–12803

    CAS  Google Scholar 

  9. Kabanov DS, Prokhorenko IR (2010) Structural analysis of lipopolysaccharides from Gram-negative bacteria. Biochemistry (Moscow) 75:383–404

    Article  CAS  Google Scholar 

  10. Vernacchio L, Bernstein H, Pelton S, Allen C, MacDonald K, Dunn J, Duncan DD, Tsao G, LaPosta V, Eldridge J, Laussucq S, Ambrosino DM, Molrine DC (2002) Effect of monophosphoryl lipid A (MPL) on T-helper cells when administered as an adjuvant with pneumocococcal-CRM197 conjugate vaccine in healthy toddlers. Vaccine 20:3658–3667

    Article  CAS  Google Scholar 

  11. Cluff CW (2009) Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results. Adv Exp Med Biol 667:111–123

    Article  CAS  Google Scholar 

  12. Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC (2007) The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 316:1628–1632

    Article  CAS  Google Scholar 

  13. Christ WJ, Asano O, Robidoux AL, Perez M, Wang Y, Dubuc GR, Gavin WE, Hawkins LD, McGuinness PD, Mullarkey MA, Lewis MD, Kishi Y, Kawata T, Brisson JR, Rose JR, Rossignol DP, Kobayashi S, Hishinuma I, Kimura A, Asakawa N, Katayama K, Yamatsu I (1995) E5531, a pure endotoxin antagonist of high potency. Science 268:80–83

    Article  CAS  Google Scholar 

  14. Plötz BM, Lindner B, Stetter KO, Holst O (2000) Characterization of a novel lipid A containing d-galacturonic acid that replaces phosphate residues. The structure of the lipid A of the lipopolysaccharide from the hyperthermophilic bacterium Aquifex pyrophilus. J Biol Chem 275:11222–11228

    Article  Google Scholar 

  15. Qureshi N, Takayama K, Seydel U, Wang R, Cotter RJ, Agrawal PK, Bush CA, Kurtz R, Berman DT (1994) Structural analysis of the lipid A derived from the lipopolysaccharide of Brucella abortus. J Endotoxin Res 1:137–148

    CAS  Google Scholar 

  16. Beck S, Müller FD, Strauch E, Brecker L, Linscheid MW (2010) Chemical structure of Bacteriovorax stolpii lipid A. Lipids 45:189–198

    Article  CAS  Google Scholar 

  17. Smit J, Kaltashov IA, Cotter RJ, Vinogradov E, Perry MB, Haider H, Qureshi N (2008) Structure of a novel lipid A obtained from the lipopolysaccharide of Caulobacter crescentus. Innate Immun 14:25–37

    Article  CAS  Google Scholar 

  18. Choma A, Sowinski P (2004) Characterization of Mesorhizobium huakuii lipid A containing both d-galacturonic acid and phosphate residues. Eur J Biochem 271:1310–1322

    Article  CAS  Google Scholar 

  19. Komaniecka I, Choma A, Lindner B, Holst O (2010) The structure of a novel neutral lipid A from the lipopolysaccharide of Bradyrhizobium elkanii containing three mannose units in the backbone. Chem Eur J 16:2922–2929

    Article  CAS  Google Scholar 

  20. Zähringer U, Lindner B, Knirel YA, van den Akker WM, Hiestand R, Heine H, Dehio C (2004) Structure and biological activity of the short-chain lipopolysaccharide from Bartonella henselae ATCC 49882T. J Biol Chem 279:21046–21054

    Article  Google Scholar 

  21. Zähringer U, Knirel YA, Lindner B, Helbig JH, Sonesson A, Marre R, Rietschel ET (1995) The lipopolysaccharide of Legionella pneumophila serogroup 1 (strain Philadelphia 1): chemical structure and biological significance. Prog Clin Biol Res 392:113–139

    Google Scholar 

  22. van Mourik A, Steeghs L, van Laar J, Meiring HD, Hamstra HJ, van Putten JP, Wösten MM (2010) Altered linkage of hydroxyacyl chains in lipid A of Campylobacter jejuni reduces TLR4 activation and antimicrobial resistance. J Biol Chem 285:15828–15836

    Article  Google Scholar 

  23. Moran AP, Zähringer U, Seydel U, Scholz D, Stütz P, Rietschel ET (1991) Structural analysis of the lipid A component of Campylobacter jejuni CCUG 10936 (serotype O:2) lipopolysaccharide. Description of a lipid A containing a hybrid backbone of 2-amino-2-deoxy-d-glucose and 2,3-diamino-2,3-dideoxy-d-glucose. Eur J Biochem 198:459–469

    Article  CAS  Google Scholar 

  24. Kulshin VA, Zähringer U, Lindner B, Frasch CE, Tsai CM, Dmitriev BA, Rietschel ET (1992) Structural characterization of the lipid A component of pathogenic Neisseria meningitides. J Bacteriol 174:1793–1800

    CAS  Google Scholar 

  25. Marr N, Tirsoaga A, Blanot D, Fernandez R, Caroff M (2008) Glucosamine found as a substituent of both phosphate groups in Bordetella lipid A backbones: role of a BvgAS-activated ArnT ortholog. J Bacteriol 190:4281–4290

    Article  CAS  Google Scholar 

  26. Vinogradov E, Perry MB, Conlan JW (2002) Structural analysis of Francisella tularensis lipopolysaccharide. Eur J Biochem 269:6112–6118

    Article  CAS  Google Scholar 

  27. Wang X, Ribeiro AA, Guan Z, McGrath SC, Cotter RJ, Raetz CR (2006) Structure and biosynthesis of free lipid A molecules that replace lipopolysaccharide in Francisella tularensis subsp. novicida. Biochemistry 45:14427–14440

    Article  CAS  Google Scholar 

  28. Phillips NJ, Schilling B, McLendon MK, Apicella MA, Gibson BW (2004) Novel modification of lipid A of Francisella tularensis. Infect Immun 72:5340–5348

    Article  CAS  Google Scholar 

  29. Que-Gewirth NL, Ribeiro AA, Kalb SR, Cotter RJ, Bulach DM, Adler B, Girons IS, Werts C, Raetz CR (2004) A methylated phosphate group and four amide-linked acyl chains in Leptospira interrogans lipid A. The membrane anchor of an unusual lipopolysaccharide that activates TLR2. J Biol Chem 279:25420–25429

    Article  CAS  Google Scholar 

  30. Choma A, Komaniecka I (2008) Characterization of a novel lipid A structure isolated from Azospirillum lipoferum lipopolysaccharide. Carbohydr Res 343:799–804

    Article  CAS  Google Scholar 

  31. Ieranò T, Silipo A, Nazarenko EL, Gorshkova RP, Ivanova EP, Garozzo D, Sturiale L, Lanzetta R, Parrilli M, Molinaro A (2010) Against the rules: a marine bacterium, Loktanella rosea, possesses a unique lipopolysaccharide. Glycobiology 20:586–593

    Article  Google Scholar 

  32. Que NL, Lin S, Cotter RJ, Raetz CR (2000) Purification and mass spectrometry of six lipid A species from the bacterial endosymbiont Rhizobium etli. Demonstration of a conserved distal unit and a variable proximal portion. J Biol Chem 275:28006–28016

    CAS  Google Scholar 

  33. Muszyński A, Laus M, Kijne JW, Carlson RW (2011) Structures of the lipopolysaccharides from Rhizobium leguminosarum RBL5523 and its UDP-glucose dehydrogenase mutant (exo5). Glycobiology 21:55–68

    Article  Google Scholar 

  34. Bhat UR, Forsberg LS, Carlson RW (1994) Structure of lipid A component of Rhizobium leguminosarum bv. phaseoli lipopolysaccharide. Unique nonphosphorylated lipid A containing 2-amino-2-deoxygluconate, galacturonate, and glucosamine. J Biol Chem 269:14402–14410

    CAS  Google Scholar 

  35. Jeyaretnam B, Glushka J, Kolli VS, Carlson RW (2002) Characterization of a novel lipid-A from Rhizobium species Sin-1. A unique lipid-A structure that is devoid of phosphate and has a glycosyl backbone consisting of glucosamine and 2-aminogluconic acid. J Biol Chem 277:41802–41810

    Article  CAS  Google Scholar 

  36. Leone S, Silipo A, Nazarenko E, Lanzetta R, Parrilli M, Molinaro A (2007) Molecular structure of endotoxins from Gram-negative marine bacteria: an update. Mar Drugs 5:85–112

    Article  CAS  Google Scholar 

  37. Fregolino E, Fugazza G, Galano E, Gargiulo V, Landini P, Lanzetta R, Lindner B, Pagani L, Parrilli M, Holst O, De Castro C (2010) Complete lipooligosaccharide structure of the clinical isolate Acinetobacter baumannii, strain SMAL. Eur J Org Chem 1345–1352

    Article  Google Scholar 

  38. Silipo A, Sturiale L, Garozzo D, De Castro C, Lanzetta R, Parrilli M, Grant W, Molinaro A (2004) Structure elucidation of the highly heterogeneous lipid A from the lipopolysaccharide of the Gram-negative extremophile bacterium Halomonas magadiensis strain 21 M1. Eur J Org Chem 2263–2271

    Article  Google Scholar 

  39. Lukasiewicz J, Jachymek W, Niedziela T, Kenne L, Lugowski C (2010) Structural analysis of the lipid A isolated from Hafnia alvei 32 and PCM 1192 lipopolysaccharides. J Lipid Res 51:564–574

    Article  CAS  Google Scholar 

  40. Silipo A, Molinaro A, Sturiale L, Dow JM, Erbs G, Lanzetta R, Newman MA, Parrilli M (2005) The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J Biol Chem 280:33660–33668

    Article  CAS  Google Scholar 

  41. Salimath PV, Weckesser J, Strittmatter W, Mayer H (1983) Structural studies on the non-toxic lipid A from Rhodopseudomonas sphaeroides ATCC 17023. Eur J Biochem 136:195–200

    Article  CAS  Google Scholar 

  42. De Castro C, Molinaro A, Lanzetta R, Silipo A, Parrilli M (2008) Lipopolysaccharide structures from Agrobacterium and other Rhizobiaceae species. Carbohydr Res 343:1924–1933

    Article  Google Scholar 

  43. Silipo A, De Castro C, Lanzetta R, Molinaro A, Parrilli M (2004) Full structural characterization of the lipid A components from the Agrobacterium tumefaciens strain C58 lipopolysaccharide fraction. Glycobiology 14:805–815

    Article  CAS  Google Scholar 

  44. Raetz CH, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem 76:295–329

    Article  CAS  Google Scholar 

  45. Wollenweber HW, Schlecht S, Lüderitz O, Rietschel ET (1983) Fatty acid in lipopolysaccharides of Salmonella species grown at low temperature. Identification and position. Eur J Biochem 130:167–171

    Article  CAS  Google Scholar 

  46. Zarrouk H, Karibian D, Bodie S, Perry MB, Richards JC, Caroff M (1997) Structural characterization of the lipids A of three Bordetella bronchiseptica strains: variability of fatty acid substitution. J Bacteriol 179:3756–3760

    CAS  Google Scholar 

  47. Diacovich L, Gorvel JP (2010) Bacterial manipulation of innate immunity to promote infection. Nat Rev Microbiol 8:117–128

    Article  CAS  Google Scholar 

  48. Montminy SW, Khan N, McGrath S, Walkowicz MJ, Sharp F, Conlon JE, Fukase K, Kusumoto S, Sweet C, Miyake K, Akira S, Cotter RJ, Goguen JD, Lien E (2006) Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol 7:1066–1073

    Article  CAS  Google Scholar 

  49. Erwin AL, Munford RS (1990) Deacylation of structurally diverse lipopolysaccharides by human acyloxyacyl hydrolase. J Biol Chem 265:16444–16449

    CAS  Google Scholar 

  50. Zhou Z, Lin S, Cotter RJ, Raetz CR (1999) Lipid A modifications characteristic of Salmonella typhimurium are induced by NH4VO3 in Escherichia coli K12. Detection of 4-amino-4-deoxy-l-arabinose, phosphoethanolamine and palmitate. J Biol Chem 274:18503–18514

    Article  CAS  Google Scholar 

  51. Zhou Z, Ribeiro AA, Raetz CR (2000) High-resolution NMR spectroscopy of lipid A molecules containing 4-amino-4-deoxy-l-arabinose and phosphoethanolamine substituents. Different attachment sites on lipid A molecules from NH4VO3-treated Escherichia coli versus kdsA mutants of Salmonella typhimurium. J Biol Chem 275:13542–13551

    Article  CAS  Google Scholar 

  52. Knirel YA, Lindner B, Vinogradov EV, Kocharova NA, Senchenkova SN, Shaikhutdinova RZ, Dentovskaya SV, Fursova NK, Bakhteeva IV, Titareva GM, Balakhonov SV, Holst O, Gremyakova TA, Pier GB, Anisimov AP (2005) Temperature-dependent variations and intraspecies diversity of the structure of the lipopolysaccharide of Yersinia pestis. Biochemistry 44:1731–1743

    Article  CAS  Google Scholar 

  53. Rebeil R, Ernst RK, Gowen BB, Miller SI, Hinnebusch BJ (2004) Variation in lipid A structure in the pathogenic Yersiniae. Mol Microbiol 52:1363–1373

    Article  CAS  Google Scholar 

  54. Zhou Z, Ribeiro AA, Lin S, Cotter RJ, Miller SI, Raetz CR (2001) Lipid A modifications in polymyxin-resistant Salmonella typhimurium: PMRA-dependent 4-amino-4-deoxy-l-arabinose, and phosphoethanolamine incorporation. J Biol Chem 276:43111–43121

    Article  CAS  Google Scholar 

  55. Lewis LA, Choudhury B, Balthazar JT, Martin LE, Ram S, Rice PA, Stephens DS, Carlson R, Shafer WM (2009) Phosphoethanolamine substitution of lipid A and resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides and complement-mediated killing by normal human serum. Infect Immun 77:1112–1120

    Article  CAS  Google Scholar 

  56. Ernst RK, Yi EC, Guo L, Lim KB, Burns JL, Hackett M, Miller SI (1999) Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286:1561–1565

    Article  CAS  Google Scholar 

  57. Ernst RK, Moskowitz SM, Emerson JC, Kraig GM, Adams KN, Harvey MD, Ramsey B, Speert DP, Burns JL, Miller SI (2007) Unique lipid A modifications in Pseudomonas aeruginosa isolated from the airways of patients with cystic fibrosis. J Infect Dis 196:1088–1092

    Article  CAS  Google Scholar 

  58. Cigana C, Curcuru L, Leone ML, Ieranò T, Lore NI, Bianconi I, Silipo A, Cozzolino F, Lanzetta R, Molinaro A, Bernardini ML, Bragonzi A (2010) Pseudomonas aeruginosa exploits lipid A and muropeptides modification as a strategy to lower innate immunity during cystic fibrosis lung infection. PLoS ONE 4:e8439

    Article  Google Scholar 

  59. De Soyza A, Silipo A, Lanzetta R, Govan JR, Molinaro A (2008) Chemical and biological features of Burkholderia cepacia complex lipopolysaccharides. Innate Immun 14:127–144

    Article  Google Scholar 

  60. Ortega XP, Cardona ST, Brown AR, Loutet SA, Flannagan RS, Campopiano DJ, Govan JR, Valvano MA (2007) A putative gene cluster for aminoarabinose biosynthesis is essential for Burkholderia cenocepacia viability. J Bacteriol 189:3639–3644

    Article  CAS  Google Scholar 

  61. Silipo A, Lanzetta R, Amoresano A, Parrilli M, Molinaro A (2002) Ammonium hydroxide hydrolysis: a valuable support in the MALDI-TOF mass spectrometry analysis of lipid A fatty acid distribution. J Lipid Res 43:2188–2195

    Article  CAS  Google Scholar 

  62. Sforza S, Silipo A, Molinaro A, Marchelli R, Parrilli M, Lanzetta R (2004) Determination of fatty acid positions in native lipid A by positive and negative electrospray ionization mass spectrometry. J Mass Spectrom 39:378–383

    Article  CAS  Google Scholar 

  63. Sturiale L, Garozzo D, Silipo A, Lanzetta R, Parrilli M, Molinaro A (2005) MALDI mass spectrometry of native bacterial lipooligosaccharides. Rapid Commun Mass Spectrom 19:1829–1834

    Article  CAS  Google Scholar 

  64. De Castro C, Parrilli M, Holst O, Molinaro A (2010) Microbe-associated molecular patterns in innate immunity: extraction and chemical analysis of Gram-negative bacterial lipopolysaccharides. Methods Enzymol 480:89–115

    Article  Google Scholar 

  65. Brandenburg K, Mayer H, Koch MH, Weckesser J, Rietschel ET, Seydel U (1993) Influence of the supramolecular structure of free lipid A on its biological activity. Eur J Biochem 218:555–563

    Article  CAS  Google Scholar 

  66. Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zähringer U, Seydel U, Di Padova F, Schreier M, Brade H (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 8:217–225

    CAS  Google Scholar 

  67. Seydel U, Oikawa M, Fukase K, Kusumoto S, Brandenburg K (2000) Intrinsic conformation of lipid A is responsible for agonistic and antagonistic activity. Eur J Biochem 267:3032–3039

    Article  CAS  Google Scholar 

  68. Fukuoka S, Brandenburg K, Müller M, Lindner B, Koch MH, Seydel U (2001) Physico-chemical analysis of lipid A fractions of lipopolysaccharide from Erwinia carotovora in relation to bioactivity. Biochim Biophys Acta 1510:185–197

    Article  CAS  Google Scholar 

  69. Oikawa M, Shintaku T, Fukuda N, Sekljic H, Fukase Y, Yoshizaki H, Fukase K, Kusumoto S (2004) NMR conformational analysis of biosynthetic precursor-type lipid A: monomolecular state and supramolecular assembly. Org Biomol Chem 2:3557–3565

    Article  CAS  Google Scholar 

  70. Wang W, Sass HJ, Zähringer U, Grzesiek S (2008) Structure and dynamics of 13C,15N-labeled lipopolysaccharides in a membrane mimetic. Angew Chem Int Ed Engl 47:9870–9874

    Article  CAS  Google Scholar 

  71. D'Errico G, Silipo A, Mangiapia G, Molinaro A, Paduano L, Lanzetta R (2009) Mesoscopic and microstructural characterization of liposomes formed by the lipooligosaccharide from Salmonella minnesota strain 595 (Re mutant). Phys Chem Chem Phys 11:2314–2322

    Article  Google Scholar 

  72. D’Errico G, Silipo A, Mangiapia G, Vitiello G, Radulescu A, Molinaro A, Lanzetta R, Paduano L (2010) Characterization of liposomes formed by lipopolysaccharides from Burkholderia cenocepacia, Burkholderia multivorans and Agrobacterium tumefaciens: from the molecular structure to the aggregate architecture. Phys Chem Chem Phys 12:13574–13585

    Article  Google Scholar 

  73. Leone S, Molinaro A, Pessione E, Mazzoli R, Giunta C, Sturiale L, Garozzo D, Lanzetta R, Parrilli M (2006) Structural elucidation of the core-lipid A backbone from the lipopolysaccharide of Acinetobacter radioresistens S13, an organic solvent tolerating Gram-negative bacterium. Carbohydr Res 341:582–590

    Article  CAS  Google Scholar 

  74. Wang Z, Li J, Altman E (2006) Structural characterization of the lipid A region of Aeromonas salmonicida subsp. salmonicida lipopolysaccharide. Carbohydr Res 341:2816–2825

    Article  CAS  Google Scholar 

  75. Liparoti V, Molinaro A, Sturiale L, Garozzo D, Nazarenko EL, Gorshkova RP, Ivanova EP, Shevcenko LS, Lanzetta R, Parrilli M (2006) Structural analysis of the deep rough lipopolysaccharide from Gram-negative bacterium Alteromonas macleodii ATCC 27126: the first finding of β-Kdo in the inner core of lipopolysaccharides. Eur J Org Chem 4710–4716

    Article  Google Scholar 

  76. Schwudke D, Linscheid M, Strauch E, Appel B, Zähringer U, Moll H, Müller M, Brecker L, Gronow S, Lindner B (2003) The obligate predatory Bdellovibrio bacteriovorus possesses a neutral lipid A containing α-d-mannoses that replace phosphate residues: similarities and differences between the lipid As and the lipopolysaccharides of the wild type strain B. bacteriovorus HD100 and its host-independent derivative HI100. J Biol Chem 278:27502–27512

    Article  CAS  Google Scholar 

  77. Rund S, Lindner B, Brade H, Holst O (1999) Structural analysis of the lipopolysaccharide from Chlamydia trachomatis serotype L2. J Biol Chem 274:16819–16824

    Article  CAS  Google Scholar 

  78. Toman R, Garidel P, Jorg A, Slaba K, Hussein A, Koch MHJ, Brandenburg K (2004) Physicochemical characterization of the endotoxins from Coxiella burnetii strain Priscilla in relation to their bioactivities. BMC Biochem 5:1

    Article  Google Scholar 

  79. Kay W, Petersen BO, Duus JØ, Perry MB, Vinogradov E (2006) Characterization of the lipopolysaccharide and β-glucan of the fish pathogen Francisella victoria. FEBS J 273:3002–3013

    Article  CAS  Google Scholar 

  80. Asai Y, Makimura Y, Kawabata A, Ogawa T (2007) Soluble CD14 discriminates slight structural differences between lipid as that lead to distinct host cell activation. J Immunol 179:7674–7683

    CAS  Google Scholar 

  81. Krasikova IN, Kapustina NV, Isakov VV, Dmitrenok AS, Dmitrenok PS, Gorshkova NM, Solov'eva TF (2004) Detailed structure of lipid A isolated from lipopolysaccharide from the marine proteobacterium Marinomonas vaga ATCC 27119. Eur J Biochem 271:2895–2904

    Article  CAS  Google Scholar 

  82. Kumada H, Haishima Y, Umemoto T, Tanamoto K-I (1995) Structural study on the free lipid A isolated from lipopolysaccharide of Porphyromonas gingivalis. J Bacteriol 177:2098–2106

    CAS  Google Scholar 

  83. Krasikova IN, Kapustina NV, Svetashev VI, Gorshkova RP, Tomshich SV, Nazarenko EL, Komandrova NA, Ivanova EP, Gorshkova NM, Romanenko LA, Mikhailov VV, Solov’eva TF (2001) Chemical characterization of lipid A from some marine proteobacteria. Biochemistry (Moscow) 66:1047–1054

    Article  CAS  Google Scholar 

  84. Schromm AB, Brandenburg K, Loppnow H, Moran AP, Koch MH, Rietschel ET, Seydel U (2000) Biological activities of lipopolysaccharides are determined by the shape of their lipid A portion. Eur J Biochem 267:2008–2013

    Article  CAS  Google Scholar 

  85. Leone S, Molinaro A, De Castro C, Baier A, Nazarenko EL, Lanzetta R, Parrilli M (2007) Absolute configuration of 8-amino-3,8-dideoxyoct-2-ulosonic acid, the chemical hallmark of lipopolysaccharides of the genus Shewanella. J Nat Prod 70:1624–1627

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Molinaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Silipo, A., Molinaro, A. (2011). Lipid A Structure. In: Knirel, Y., Valvano, M. (eds) Bacterial Lipopolysaccharides. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0733-1_1

Download citation

Publish with us

Policies and ethics