Skip to main content

Chromium–Plant-Growth-Promoting Rhizobacteria Interactions: Toxicity and Management

  • Chapter
  • First Online:

Abstract

Among heavy metals, chromium is a highly toxic nonessential metal found in different environmental settings. Chromium pollution has been reported worldwide, causes undeniable damage to microbes and plant genotypes, and is carcinogenic and genotoxic for humans. Of the two most common oxidative states, hexavalent chromium is relatively more deleterious than the less-mobile trivalent form of chromium. Chromium toxicity, however, can be reduced by employing various physicochemical and biological processes. Among biomaterials, apart from plants, use of plant-growth-promoting rhizobacteria has been found effective, inexpensive, and environmentally friendly. Plant-growth-promoting rhizobacteria alleviate the metal toxicity by adopting different strategies like biosorption and bioaccumulation, bioreduction to a less-toxic state, and chromate efflux. Some of these methods have been proposed as effective biological tools for removing chromium from contaminated locations. The interaction of chromium with plant-growth-promoting rhizobacteria and the bacterial-based management of chromium toxicity is reviewed and discussed. The detoxification of chromium by plant-growth-promoting rhizobacteria is likely to reduce the adversity of chromium to various agroecosystems and may serve as a good candidate for bacterial-based bioremediation of chromium-polluted soils.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbas-Zadeh P, Saleh-Rastin N, Asadi-Rahmani H, Khavazi K, Soltani A, Shoary-Nejati AR, Miransari M (2010) Plant growth-promoting activities of fluorescent pseudomonads isolated from the Iranian soils. Acta Physiol Plant 32:281–288

    Google Scholar 

  • Abdel-Sabour MF (2007) Chromium in receiving environment in Egypt (An overview). Electron J Environ Agric Food Chem 6:2178–2198

    CAS  Google Scholar 

  • Ahemad A, Khan MS (2011) Functional aspect of plant growth promoting rhizobacteria: recent advancements. Insight Microbiol 1:39–54

    Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    PubMed  CAS  Google Scholar 

  • Amoozegar MA, Ghasemi A, Razavi MR, Naddaf S (2007) Evaluation of hexavalent chromium reduction by chromate-resistant moderately halophile, Nesterenkonia sp. strain MF2. Process Biochem 42:1475–1479

    CAS  Google Scholar 

  • Antizar-Ladislao B (2010) Bioremediation: working with Bacteria. Elements 6:389–394

    CAS  Google Scholar 

  • Armienta-Hernändez MA, Rodriguez-Castillo R (1995) Environmental exposure to chromium compounds in the valley of Leon, Mexico. Environ Health Perspect 103:47–51

    PubMed  Google Scholar 

  • Baldi F, Vaughan AM, Olson GJ (1990) Chromium (vi) resistant yeast isolated from a sewage treatment plant receiving tannery wastes. Appl Environ Microbiol 56:913–918

    PubMed  CAS  Google Scholar 

  • Barnhart J (1997) Occurrences, uses, and properties of chromium. Regul Toxicol Pharm 26:S3–S7

    CAS  Google Scholar 

  • Belyaeva ON, Haynes RJ, Birukova OA (2005) Barley yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper. Biol Fertil Soils 41:85–94

    CAS  Google Scholar 

  • Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    PubMed  Google Scholar 

  • Camargo FAO, Okeke BC, Bento FM, Frankenberger WT (2003) In vitro reduction of hexavalent chromium by a cell free extract of Bacillus SP. ES 29 stimulated by Cu2+. Appl Microbiol Biotechnol 62:569–573

    PubMed  CAS  Google Scholar 

  • Caravelli AH, Giannuzzi K, Zaritzky NE (2008) Reduction of hexavalent chromium by Sphaerotilus natans a filamentous micro-organism present in activated sludges. J Hazard Mater 156:214–222

    PubMed  CAS  Google Scholar 

  • Cerventes C, Garcia JC, Devers S, Corona FG, Tavera HL (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25:1829–1836

    CAS  Google Scholar 

  • Chaturvedi MK (2011) Studies on chromate removal by chromium-resistant Bacillus sp. isolated from tannery effluent. J Environ Prot 2:76–82

    CAS  Google Scholar 

  • Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Chen YX (2005) Biosorption of copper (II) and zinc (II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf B Biointerfaces 46:101–107

    PubMed  CAS  Google Scholar 

  • Cheng G, Li X (2009) Bioreduction of chromium (vi) by Bacillus sp. isolated from soils of iron mineral area. Eur J Soil Biol 45:483–487

    CAS  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegr 59:8–15

    CAS  Google Scholar 

  • Chirayu D, Kunal J, Datta M (2008) Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr(vi) contaminated industrial landfill. Process Biochem 43:713–721

    Google Scholar 

  • Christl I, Imseng M, Tatti E, Frommer J, Viti C, Giovannetti L, Kretzschmar R (2011) Aerobic reduction of chromium(vi)by Pseudomonas corrugata 28:Influence of metabolism and fate of reduced chromium. Geophys Res Abst 13:EGU2011-2430

    Google Scholar 

  • Costa M (2003) Potential hazards of hexavalent chromate in our drinking water. Toxicol Appl Pharm 188:1–5

    CAS  Google Scholar 

  • Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163

    PubMed  CAS  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    PubMed  CAS  Google Scholar 

  • Das AP, Mishra S (2010) Biodegradation of the metallic carcinogen hexavalent chromium Cr(vi) by an indigenously isolated bacterial strain. J Carcinog 9:6

    PubMed  Google Scholar 

  • De Filippi LJ, Lupton FS (1992) Bioremediation of soluble Cr (vi) using sulfate reducing bacteria. In: Allied signal research. National R and B conference on the control of hazardous materials, San Francisco, CA, p 138

    Google Scholar 

  • De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol. doi:10.1007/s10126-008-9083-2

  • Desai C, Jain K, Madamwar D (2008) Evaluation of in vitro Cr(vi)reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr(vi)polluted industrial landfill. Bioresour Technol 99:6059–6069

    PubMed  CAS  Google Scholar 

  • Dhal B, Thatoi H, Das N, Pandey BD (2010) Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J Chem Technol Biotechnol 85:1471–1479

    CAS  Google Scholar 

  • Dogan NM, Kantar C, Gulcan S, Dodge CJ, Yilmaz BC, Mazmanci MA (2011) Chromium(vi) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(vi) contamination. Environ Sci Technol 45:2278–2285

    PubMed  CAS  Google Scholar 

  • Donati E, Oliver C, Curutchet G (2003) Reduction of chromium (vi) by the indirect action of Thiobacillus thioparus. Braz J Chem Eng 20:69–73

    CAS  Google Scholar 

  • Eary LE, Rai D (1991) Chromate reduction by subsurface soils under acidic conditions. Soil Sci Soc Am J 55:676

    CAS  Google Scholar 

  • Elangovan R, Abhipsa S, Rohit B, Ligy P, Chandraraj K (2006) Reduction of Cr (vi) by a Bacillus sp. Biotechnol Lett 28:247–252

    PubMed  CAS  Google Scholar 

  • Faisal M, Hasnain S (2005) Bacterial Cr (vi) reduction concurrently improves sunflower (Helianthus annuus L.) growth. Biotechnol Lett 27:943–947

    PubMed  CAS  Google Scholar 

  • Faisal M, Hasnain S (2006) Growth stimulatory effect of Ochrobacterium intermedium and Bacillus cereus on Vigna radiata plants. Lett Appl Microbiol 43:461–466

    PubMed  CAS  Google Scholar 

  • Ganguli A, Tripathi AK (2002) Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl Microbiol Biotechnol 58:416–420

    PubMed  CAS  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4:219–232

    CAS  Google Scholar 

  • Gilmour C, Riedel G (2009) Biogeochemistry of trace metals and metalloids. In: Likens GE (ed) Encyclopedia of inland waters. Elsevier, Amsterdam, pp 7–15

    Google Scholar 

  • Guh H, Jayachandran K, Maurrasse F (2001) Kinetics of chromium (vi) reduction by a type strain Shewanella alga under different growth conditions. Environ Pollut 115:209–218

    Google Scholar 

  • Gupta A, Rai V, Bagdwal N, Goel R (2005) In situ characterization of mercury resistant growth promoting fluorescent Pseudomonads. Microbiol Res 160:385–388

    PubMed  CAS  Google Scholar 

  • Hallberg KB, Johnson DB (2005) Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine. Sci Total Environ 338:53–66

    PubMed  CAS  Google Scholar 

  • He Z, Gao F, Sha T, Hu Y, He C (2009) Isolation and characterization of a Cr(VI)-reduction Ochrobacterium sp. strain CSCr-3 from chromium landfill. J Hazard Mater 163:869–873

    PubMed  CAS  Google Scholar 

  • He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY, Zhu Y (2010) Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44:1–5

    Google Scholar 

  • He M, Li X, Liu H, Miller SJ, Wang G, Rensing C (2011) Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J Hazard Mater 185:682–688

    PubMed  CAS  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnol. Microbiol Mol Biol Rev 63:735–750

    PubMed  CAS  Google Scholar 

  • Horikoshi K (2011) Extremophiles handbook, vols 1 and 2. Springer, Berlin

    Google Scholar 

  • Ibrahim ASS, El-Tayeb MA, Elbadawi YB, Al-Salamah AA (2011) Bioreduction of Cr (vi)by potent novel chromate resistant alkaliphilic Bacillus sp. strain KSUCr5 isolated from hypersaline Soda lakes. Afr J Biotechnol 10:7207–7218

    CAS  Google Scholar 

  • Ilias M, Rafiqullah IM, Debnath BC, Mannan KSB, Hoq MM (2011) Isolation and characterization of chromium(VI)-reducing bacteria from tannery effluents. Ind J Microbiol 51:76–81

    CAS  Google Scholar 

  • Jeyasingh J, Philip L (2005) Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions. J Hazard Mater 118:113–120

    PubMed  CAS  Google Scholar 

  • Jimenez-Mejia R, Campos-Garcia J, Cervantes C (2006) Membrane topology of the chromate transporter ChrA of Pseudomonas aeruginosa. FEMS Microbiol Lett 262:178–184

    PubMed  CAS  Google Scholar 

  • Joseph B, Ranjan Patra R, Lawrence R (2007) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Prod 2:141–152

    Google Scholar 

  • Kamaludeen SP, Megharaj M, Juhasz AL, Sethunathan N, Naidu R (2003) Chromium microorganism interactions in soil: remediation implications. Rev Environ Contam Toxicol 178:93–164

    PubMed  CAS  Google Scholar 

  • Karami A, Shamsuddin ZHJ (2010) Phytoremediation of heavy metals with several efficiency enhancer methods. Afr J Biotechnol 9:3689–3698

    CAS  Google Scholar 

  • Karnachuk OV (1995) Influence of hexavalent chromium on hydrogen sulfide formation by sulfate reducing bacteria. Microbiology 64:262

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–64

    PubMed  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Google Scholar 

  • Khasim DI, Kumar NV, Hussain RC (1989) Environmental contamination of chromium in agricultural and animal products near a chromate industry. Bull Environ Contam Toxicol 43:742–746

    PubMed  CAS  Google Scholar 

  • Kiliç NK, Stensballe A, Otzen DE, Dönmez G (2010) Proteomic changes in response to chromium(vi) toxicity in Pseudomonas aeruginosa. Bioresour Technol 101:2134–2140

    PubMed  Google Scholar 

  • Kolembkiewicz I (1999) Chromium in soils and some aspects of its analysis, Lab Apparatus Res 3:9 (in Polish)

    Google Scholar 

  • Landa ER (2005) Microbial biogeochemistry of uranium mill tailings. Adv Appl Microbiol 57:113–130

    PubMed  CAS  Google Scholar 

  • Li Y, Gary KCL, Jason AS, Rose A (2007) Microbial reduction of hexavalent chromium by landfill leachate. J Hazard Mater 142:153–159

    PubMed  CAS  Google Scholar 

  • Liu YG, Xu WH, Zeng GM, Tang CF, Li CF (2004) Experimental study on reduction Cr(vi) by Pseudomonas aeruginosa. J Environ Sci 16:797–801

    CAS  Google Scholar 

  • Liu YG, Xu WH, Zeng GM, Li X, Gao H (2006) Cr(vi) reduction by Bacillus sp. isolated from chromium landfill. Process Biochem 41:1981–1986

    CAS  Google Scholar 

  • Lloyd JR (2002) Bioremediation of metals: The application of microorganisms that make and break minerals. Microbiol Today 29:67–69

    Google Scholar 

  • Losi ME, Amrhein C, Frankenberger WT (1994) Environmental biochemistry of chromium. Rev Environ Contam Toxicol 136:92

    Google Scholar 

  • Loukidou MX, Zouboulis AI, Karapantsios TD, Matis KA (2004) Equilibrium and kinetic modelling of chromium (vi) biosorption by Aeromonas caviae. Colloids Surf A 242:93–104

    CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1994) Bioremediation of metal contamination. Appl Environ Microbiol 60:726

    PubMed  CAS  Google Scholar 

  • Lu Z, An X, Zhang W (2011) Isolation and phylogenetic analysis of chromium(vi) reducing bacteria of a magnetite mine drainage from Hebei China. Modern Appl Sci 5:113–118

    CAS  Google Scholar 

  • Ma Z, Zhu W, Long H, Chai L, Qingwei Wang Q (2007) Chromate reduction by resting cells of Achromobacter sp. Ch-1 under aerobic conditions. Process Biochem 42:1028–1032

    CAS  Google Scholar 

  • Mangaiyarkarasi MS, Vincenta S, Janarthanan S (2011) Bioreduction of Cr (vi) by alkaliphilic Bacillus subtilis and interaction of the membrane groups. Saud J Biol Sci 18:157–167

    CAS  Google Scholar 

  • Marsh TL, Mclnerney MJ (2001) Relationship of hydrogen bioavailability to chromate reduction in aquifer sediments. Appl Environ Microbiol 67:517

    Google Scholar 

  • Mary Mangaiyarkarasi MS, Vincent S, Janarthanan S, Subba Rao T, Tata BVR (2011) Bioreduction of Cr(vi) by alkaliphilic Bacillus subtilis and interaction of the membrane groups. Saudi J Biol Sci 18:157–167

    Google Scholar 

  • Mclean J, Beveridge TJ (2001) Chromate reduction by a Pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    PubMed  CAS  Google Scholar 

  • Mclean J, Beveridge TJ, Phipps D (2000) Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate contaminated site. Environ Microbiol 2:611–619

    PubMed  CAS  Google Scholar 

  • Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:51–54

    PubMed  CAS  Google Scholar 

  • Mistry K, Desai C, Patel K (2010) Chromate reduction by Vogococcus sp. isolated from Cr (vi) contaminated industrial effluent. Electron J Biol 6:6–12

    Google Scholar 

  • Morais PV, Branco R, Francisco R (2011) Chromium resistance strategies and toxicity: what makes Ochrobactrum tritici 5bvl1 a strain highly resistant. Bio Metals 24:401–410

    CAS  Google Scholar 

  • Morales DK, Ocampo W, Zambrano MM (2007) Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure. J Appl Microbiol 103:2704–2712

    PubMed  CAS  Google Scholar 

  • Myers CR, Carstens BP, Antholine WE (2000) Chromium (vi) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J Appl Microbiol 88:98–106

    PubMed  CAS  Google Scholar 

  • Oewietlik R, Trojanowska M (2004) Fractionation of chromium in soil heavily polluted by tannery wastes. Case study of the Radom Region (Poland). Polish J Environ Stud 13(Suppl IV):19

    Google Scholar 

  • Okeke BC (2008) Bioremoval of hexavalent chromium from water by a salt tolerant bacterium, Exiguobacterium sp. GS1. J Ind Microbiol Biotechnol 35:1571–1579

    PubMed  CAS  Google Scholar 

  • Okeke BC, Laymon J, Crenshaw S, Oji C (2008) Environmental and kinetic parameters for Cr(vi) bioreduction by a bacterial monoculture purified from Cr(VI)-resistant consortium. Biol Trace Element Res 123:229–241

    CAS  Google Scholar 

  • Opperman DJ, Piater LA, Heerden E (2008) A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. J Bacteriol 190:3076–3082

    PubMed  CAS  Google Scholar 

  • Ozturk S, Aslim B, Suludere Z (2009) Evaluation of chromium(vi)removal behavior by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Bioresour Technol 100:5588–5593

    PubMed  CAS  Google Scholar 

  • Pal A, Paul AK (2004) Aerobic chromate reduction by chromium resistant bacteria isolated from serpentine soil. Microbiol Res 159:347–354

    PubMed  CAS  Google Scholar 

  • Pal A, Dutta S, Paul AK (2005) Reduction of hexavalent chromium by cell free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr Microbiol 51:327–330

    PubMed  CAS  Google Scholar 

  • Park CH, Keyhan M, Wielinga B, Fendorf S, Martin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788

    PubMed  CAS  Google Scholar 

  • Pattanapipitpaisal P, Brown NL, Macaskie LE (2001a) Chromate reduction by Microbacterium liquefaciens immobilized in polyvinyl alcohol. Biotechnol Lett 23:257–261

    Google Scholar 

  • Pattanapipitpaisal P, Brown NL, Macaskie LF (2001b) Chromate reduction and 16 S rRNA identification of bacteria isolated from a Cr6+ contaminated site. Appl Microbiol Biotechnol 57:257–261

    PubMed  CAS  Google Scholar 

  • Pei QH, Shahir S, Raj ASS, Zakaria ZA, Ahmad WA (2009) Chromium(vi) resistance and removal by Acinetobacter haemolyticus. World J Microbiol Biotechnol 25:1085–1093

    CAS  Google Scholar 

  • Puzon GJ, Peterson JN, Roberts AG, Kramer DM, Xun L (2002) Bacterial flavin reductase system reduces chromate to soluble chromium (III)-NAD complex. Biophys Biochem Res Commun 294:76

    CAS  Google Scholar 

  • Puzon GJ, Roberts AG, Kramer DM, Xun L (2005) Formation of soluble organochromium (III) complexes after chromate reduction in the presence of cellular organics. Environ Sci Technol 39:2811–2817

    PubMed  CAS  Google Scholar 

  • Rahman M, Gul S, Haq MZ (2007) Reduction of chromium (vi) by locally isolated Pseudomonas sp. C-171. Turk J Biol 31:161–166

    CAS  Google Scholar 

  • Rajwade JM, Salunkhe PB, Paknikar KM (1999) Biochemical basis of chromate reduction by Pseudomonas mendocina. Process Metallurgy 9:105–114

    Google Scholar 

  • Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. BioMetals 21:321–332

    PubMed  Google Scholar 

  • Rehman A, Zahoor A, Muneer B, Hasnain S (2008) Chromium tolerance and reduction potential a Bacillus sp.ev3 isolated from metal contaminated wastewater. Bull Environ Contam Toxicol 81:25–29

    PubMed  CAS  Google Scholar 

  • Reichman SM (2007) The potential use of the legume–Rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol Biochem 39:2587–2593

    CAS  Google Scholar 

  • Richard FC, Bourg ACM (1991) Aqueous geochemistry of chromium. A review. Water Res 25:807–816

    CAS  Google Scholar 

  • Romanenko VI, Korenkov VN (1977) A pure culture of bacterial cells assimilating chromates and bichromates as hydrogen acceptors when grown under anaerobic conditions. Mikrobiologiya 46:414–417

    CAS  Google Scholar 

  • Sarangi A, Krishnan C (2008) Comparison of in vitro Cr (vi) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Bioresour Technol 99:4130–4137

    PubMed  CAS  Google Scholar 

  • Seng JK, Bielefeldt AR (2002) Low temperature chromium (vi) biotransformation in soil with varying electron acceptor. J Environ Qual 31:1831–1841

    Google Scholar 

  • Shakoori AR, Makhdoom M, Haq RU (2000) Hexavalent chromium reduction by a dichromate resistant gram-positive bacterium isolated from effluents of tanneries. Appl Microbiol Biotechnol 53:348–351

    PubMed  CAS  Google Scholar 

  • Shi W, Bischoff M, Turco R, Konopka A (2002) Long-term effects of chromium and lead upon the activity of soil microbial communities. J Appl Soil Ecol 21:169–177

    Google Scholar 

  • Shiny KJ, Remani KN, Jalaja TK, Sasidharan VK (2004) Removal of chromium by two aquatic pteridophytes. Ind J Environ Health 46:249–251

    CAS  Google Scholar 

  • Shun-hong H, Bing P, Zhi-hui Y, Li-yuan C, Li-cheng Z (2009) Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory. Trans Nonferrous Met Soc China 19:241–248

    Google Scholar 

  • Silva B, Figueiredo H, Neves IC, Tavares T (2009) The role of pH on Cr(vi) reduction and removal by Arthrobacter viscosus. Int J Chem Biol Eng 2:100–103

    CAS  Google Scholar 

  • Singanan M, Abebaw A, Singanan V (2007) Studies on the removal of hexavalent chromium from industrial wastewater by using biomaterials. Electron J Environ Agric Food Chem 6:2557–2564

    CAS  Google Scholar 

  • Singh A, Prasad SM (2011) Reduction of heavy metal load in food chain: technology assessment. Rev Environ Sci Biotechnol. doi:10.1007/s11157-011-9241-z

  • Sultan S, Hasnain S (2007) Reduction of toxic hexavalent chromium by Ochrobacterium intermedium strain SDCr-5 stimulated by heavy metals. Bioresour Technol 98:340–344

    PubMed  CAS  Google Scholar 

  • Thacker U, Madamwar D (2005) Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. World J Microbiol Biotechnol 21:891–899

    CAS  Google Scholar 

  • Thacker U, Parikh R, Shouche Y, Madamwar D (2006) Hexavalent chromium reduction by Providencia sp. Process Biochem 41:1332–1337

    CAS  Google Scholar 

  • Thacker U, Parikh R, Shouche Y, Madamwar D (2007) Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(vi) contaminated sites. Bioresour Technol 98:1541–1547

    PubMed  CAS  Google Scholar 

  • Urvashi T, Parikh R, Shouche Y, Datta M (2007) Reduction of chromate cell free extract of Brucella sp. isolated from Cr(vi) contaminated sites. Bioresour Technol 98:1541–1547

    Google Scholar 

  • Vaxevanidou K, Papassiopi N, Paspaliaris I (2008) Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques. Chemosphere 70:1329–1337

    PubMed  CAS  Google Scholar 

  • Viti C (2006) Response of microbial communities to different doses of chromate in soil microcosms. J Appl Soil Ecol 34:125–139

    Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    PubMed  Google Scholar 

  • Wang YT, Xiao C (1995) Factors affecting hexavalent chromium reduction in pure cultures of bacteria. Water Res 29:2467–2474

    CAS  Google Scholar 

  • Wang P, Mori T, Toda K, Ohtake H (1990) Membrane associated chromate reductase activity from Enterobacter cloacae. J Bacteriol 172:1670–1672

    PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

    PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Chromium reduction, plant growth promoting potentials and metal solubilization by Bacillus sp. isolated from alluvial soil. Curr Microbiol 54:237–243

    PubMed  CAS  Google Scholar 

  • Wani R, Kodam KM, Gawai KR, Dhakephalkar PK (2007b) Chromate reduction by Burkholderia cepacia MCMB-821 isolated from the pristine habitat of alkaline crater lake. Appl Microb Cell Phys 75:627–632

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Chromium reducing and plant growth promoting Mesorhizobium improves chickpea growth in chromium amended soil. Biotechnol Lett 30:159–163

    PubMed  CAS  Google Scholar 

  • Wani PA, Zaidi A, Khan MS (2009) Chromium reducing and plant growth promoting potential of Mesorhizobium species under chromium stress. Bioremed J 13:121–129

    CAS  Google Scholar 

  • Wei-hua X, Yun-guo L, Guang-ming XL, Hua-xiao S, Qing-qing P (2009) Characterization of Cr(vi) resistance and reduction by Pseudomonas aeruginosa. Trans Nonferrous Met Soc China 19:1336–1339

    Google Scholar 

  • Wenzel W (2008) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Google Scholar 

  • Wyszkowska J, Kucharski J, Jastrzębska E, Hlasko A (2001) The biological properties of soil as influenced by chromium contamination. Polish J Environ Stud 10:37–42

    CAS  Google Scholar 

  • Xiao W, Wang L, Li ZK, Zhang SW, Ren DM (2008) Mechanisms and enzymatic characters of hexavalent chromium reduction by Bacillus cereus S5.4. Huan Jing Ke Xue 29:751–755

    PubMed  CAS  Google Scholar 

  • Zahoor A, Rehman A (2009) Isolation of Cr (vi) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J Environ Sci 21:814–820

    Google Scholar 

  • Zemin M, Wenjie Z, Huaizhong L, Liyuan C, Qingwei W (2007) chromium reduction by resting cells of Achromobacter sp. Ch-1 under aerobic conditions. Process Biochem 42:1028–1032

    Google Scholar 

  • Zhu W, Chai L, Ma Z, Wang Y, Xiao H, Zhao K (2008a) Anaerobic reduction of hexavalent chromium by bacterial cells of Achromobacter sp. strain Ch1. Microbiol Res 163:616–623

    PubMed  CAS  Google Scholar 

  • Zhu W, Yang Z, Ma Z, Chai L (2008b) Reduction of high concentrations of chromate by Leucobacter sp. CRB1 isolated from Changsha, China. World J Microbiol Biotechnol 24:991–996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saghir Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Khan, M.S., Zaidi, A., Wani, P.A. (2012). Chromium–Plant-Growth-Promoting Rhizobacteria Interactions: Toxicity and Management. In: Zaidi, A., Wani, P., Khan, M. (eds) Toxicity of Heavy Metals to Legumes and Bioremediation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0730-0_4

Download citation

Publish with us

Policies and ethics