Skip to main content

Heavy Metal Toxicity to Symbiotic Nitrogen-Fixing Microorganism and Host Legumes

  • Chapter
  • First Online:
Toxicity of Heavy Metals to Legumes and Bioremediation

Abstract

Legume species of the flowering family Fabaceae are well known for their ability to fix atmospheric nitrogen and enhance nitrogen pool of soil, leading to increase in crop especially legumes both in conventional or derelict soils. The interaction between Rhizobia and legumes provides nutrients to plants, increases soil fertility, facilitates plant growth and restores deranged/damaged ecosystem. These characteristics together make legume extremely interesting crop for evaluating the effect of heavy metals. Environmental pollutants like heavy metals at lower concentrations are required for various metabolic activities of microbes including Rhizobia and legume crops. The excessive metal concentrations on the other hand cause undeniable damage to Rhizobia, legumes and their symbiosis. Currently, little is, however, known about how free-living Rhizobia or the legume–Rhizobium symbiosis is affected by varying metal concentration. We focus here that how the nitrogen-fixing root nodule bacteria, the “rhizobia,” increase plant growth and highlight gaps in existing knowledge to understand the mechanistic basis of how different metals affect rhizobia–legume symbiosis which is likely to help to manage legume cultivation in metal contaminated locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH (1994) Solubilization of rock phosphates by Rhizobium and Bradyrhizobium. Folia Microbiol 39:53–56

    CAS  Google Scholar 

  • Afzal A, Bano A, Fatima M (2010) Higher soybean yield by inoculation with N-fixing and P- solubilizing bacteria. Agron Sustain Dev 30:487–495

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2009) Effect of insecticide-tolerant and plant growth-promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. J Crop Sci Biotechnol 12:213–222

    Google Scholar 

  • Ahemad M, Khan MS (2010a) Ameliorative effects of Mesorhizobium sp. MRC4 on chickpea yield and yield components under different doses of herbicide stress. Pest Biochem Physiol 98:183–190

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2010b) Growth promotion and protection of lentil (Lens esculenta) against herbicide stress by Rhizobium species. Ann Microbiol 60:735–745

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2010c) Comparative toxicity of selected insecticides to pea plants and growth promotion in response to insecticide-tolerant and plant growth promoting Rhizobium leguminosarum. Crop Prot 29:325–329

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2011a) Plant-growth-promoting fungicide-tolerant Rhizobium improves growth and symbiotic characteristics of lentil (Lens esculentus) in fungicide-applied soil. J Plant Growth Regul. doi:DOI:10.1007/s00344-011-9195y

  • Ahemad M, Khan MS (2011b) Insecticide-tolerant and plant-growth-promoting Rhizobium improves the growth of lentil (Lens esculentus) in insecticide-stressed soils. Pest Manag Sci 67:423–429

    PubMed  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011c) Effect of pesticides on plant growth promoting traits of greengram-symbiont, Bradyrhizobium sp. strain MRM6. Bull Environ Contam Toxicol 86:384–388

    PubMed  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011d) Ecotoxicological assessment of pesticides towards the plant growth promoting activities of Lentil (Lens esculentus)-specific Rhizobium sp. strain MRL3. Ecotoxicology 20:661–669

    PubMed  CAS  Google Scholar 

  • Ahmad MSA, Hussain M, Ijaz S, Alvi AK (2008a) Photosynthetic performance of two mung bean (Vigna radiata) cultivars under lead and copper stress. Int J Agric Biol 10:167–172

    CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008b) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    PubMed  CAS  Google Scholar 

  • Arora NK, Khare E, Singh S, Maheshwari DK (2010) Effect of Al and heavy metals on enzymes of nitrogen metabolism of fast and slow growing rhizobia under explanta conditions. World J Microbiol Biotechnol 26:811–816

    CAS  Google Scholar 

  • Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect on cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Funct Plant Biol 30:57–64

    CAS  Google Scholar 

  • Balestrasse KB, Gallego AM, Tomaro ML (2004) Cadmium-induced senescence in nodules of soybean (Glycine max L.) plants. Plant Soil 262:373–381

    CAS  Google Scholar 

  • Barajas-Aceves M, Dendooven L (2001) Nitrogen, carbon and phosphorus mineralization in soils from semi-arid highlands of central Mexico amended with tannery sludge. Bioresour Technol 77:121–130

    PubMed  CAS  Google Scholar 

  • Batut J, Mergaert P, Masson-Boivin C (2011) Peptide signalling in the Rhizobium–legume symbiosis. Curr Opin Microbiol 14:181–187

    PubMed  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    CAS  Google Scholar 

  • Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632

    PubMed  CAS  Google Scholar 

  • Bianucci E, Fabra A, Castro S (2011) Cadmium Accumulation and Tolerance in Bradyrhizobium spp. (Peanut Microsymbionts). Curr Microbiol 62:96–100

    PubMed  CAS  Google Scholar 

  • Bibi M, Hussain M (2005) Effect of copper and lead on photosynthesis and plant pigments in black gram (Vigna mungo L.). Bull Environ Contam Toxicol 74:1126–1133

    PubMed  CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by three strains of Bradyrizobium japonicum and possible physiological and technological implications. J Appl Microbiol Biotechnol 74:874–80

    CAS  Google Scholar 

  • Bondarenko O, Rahman PKSM, Rahman TJ, Kahru A, Ivask A (2010) Effects of rhamnolipids from Pseudomonas aeruginosa DS10-129 on luminescent bacteria: toxicity and modulation of cadmium bioavailability. Microbiol Ecol 59:588–600

    CAS  Google Scholar 

  • Brahima S, Jokea D, Ann C, Jean-Paul N, Marjo T, Arja T, Sirpac K, Frank V, Karen S, Jaco V (2010) Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167:247–254

    Google Scholar 

  • Broos K, Uyttebroek M, Mertens J, Smolders E (2004) A survey of symbiotic nitrogen fixation by white clover grown on metal contaminated soils. Soil Biol Biochem 36:633–640

    CAS  Google Scholar 

  • Broos K, Beyens H, Smolders E (2005) Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant. Soil Biol Biochem 37:573–579

    CAS  Google Scholar 

  • Buchanan RE (1926) What names should be used for the organisms producing nodules on the roots of leguminous plants? Proc Iowa Acad Sci 33:81–90

    Google Scholar 

  • Carrascoa JA, Armarioc P, Pajueloa E, Burgosa A, Caviedesc MA, Lópezb R, Chambera MA, Palomaresc AJ (2005) Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcóllar pyrite mine. Soil Biol Biochem 37:1131–1140

    Google Scholar 

  • Ceribasi IH, Yetis U (2001) Biosorption of Ni (II) and Pb (II) by Phanaerochaete chrysosporium from a binary metal system kinetics. Water SA 24:15

    Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Plant Soil 184:311–321

    CAS  Google Scholar 

  • Chakrabarti J, Chatterjee S, Ghosh S, Chatterjee NC, Dutta S (2010) Synergism of VAM and Rhizobium on production and metabolism of IAA in roots and root nodules of Vigna Mungo. Curr Microbiol 61:203–209

    PubMed  CAS  Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:124–130

    Google Scholar 

  • Chaudri AM, McGrath SP, Giller KE, Reitz E, Suerbeck DR (1993) Enumeration of indigenous Rhizobium leguminosarum biovar trifolii in soils previously treated with metal contaminated sewage sludge. Soil Biol Biochem 25:301–309

    CAS  Google Scholar 

  • Chaudri AM, Allain CM, Barbosa-Jefferson VL, Nicholson FA, Chambers BJ, McGrath SP (2000) A study of the impacts of Zn and Cu on two rhizobial species in soils of a long term field experiment. Plant Soil 22:167–179

    Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegr 59:8–15

    CAS  Google Scholar 

  • Conn HJ (1938) Taxonomic relationships of certain non-sporeforming rods in soil. J Bacteriol 36:320–321

    Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    PubMed  CAS  Google Scholar 

  • Dakora FD (1995) Plant flavonoids: biological molecules for useful exploitation. Aust J Plant Physiol 22:7–99

    Google Scholar 

  • Dangeard PA (1926) Recherches sur les tubercles radicaux des Légumineuses. Botaniste (Paris) 16:1–275

    Google Scholar 

  • Deshwal VK, Dubey RC, Maheshwari DK (2003a) Isolation of plant growth-promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr Sci 84:443–448

    Google Scholar 

  • Deshwal VK, Pandey P, Kang SC, Maheshwari DK (2003b) Rhizobia as a biological control agent against soil borne plant pathogenic fungi. Ind J Exp Biol 41:1160–1164

    CAS  Google Scholar 

  • Eckhardt MM, Baldwin IR, Fred EB (1931) Studies on the root-nodule bacteria of Lupinus. J Bacteriol 21:273–285

    PubMed  CAS  Google Scholar 

  • El-Aziz R, Angle JS, Chaney RL (1991) Metal tolerance of Rhizobium meliloti isolated from heavy metal contaminated soils. Soil Biol Biochem 23:795–798

    CAS  Google Scholar 

  • Feng J, Shi Q, Wang X, Wei M, Yang F, Xu H (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci Hortic 123:521–530

    CAS  Google Scholar 

  • Frank B (1889) Ueber die Pilzsymbiose der Leguminosen. Bet Dtsch Bot Ges 7:332–346

    Google Scholar 

  • Garg N, Aggarwal N (2011) Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. J Plant Growth Regul 30:286–300

    CAS  Google Scholar 

  • Giller KE, McGrath SP, Hirsch PR (1989) Absence of nitrogen fixation in clover grown on soil subject to long-term contamination with heavy metals is due to survival of only ineffective Rhizobium. Soil Biol Biochem 21:841–848

    CAS  Google Scholar 

  • Hayat R (2005) Sustainable legume cereal cropping system through management of biological nitrogen fixation in Pothwar. PhD Dissertation, PMAS Arid Agriculture University, Rawalpindi, Pakistan

    Google Scholar 

  • Hayat R, Ali S, Ijaz SS, Chatha TH, Siddique MT (2008a) Estimation of N2-fixation of mung bean and mash bean through xylem uriede technique under rainfed conditions. Pak J Bot 40:723–734

    CAS  Google Scholar 

  • Hayat R, Ali S, Siddique MT, Chatha TH (2008b) Biological nitrogen fixation of summer legumes and their residual effects on subsequent rainfed wheat yield. Pak J Bot 40:711–722

    CAS  Google Scholar 

  • Heckman JR, Angle JS, Chaney RL (1987) Residual effects of sewage sludge on soybean II. Accumulation of soil and symbiotically fixed nitrogen. J Environ Qual 16:117–124

    Google Scholar 

  • Hernandez L, Probst A, Probst JL, Ulrich E (2003) Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Sci Total Environ 312:195–219

    PubMed  CAS  Google Scholar 

  • Hirsch PR, Jones MJ, McGrath SP, Giller KE (1993) Heavy metals from past applications of sewage sludge decrease the genetic diversity of Rhizobium leguminosarum biovar trifolii populations. Soil Biol Biochem 25:1485–1490

    Google Scholar 

  • Ibekwe AM, Angle JS, Chaney RL, van Berkum P (1995) Sewage sludge and heavy metal effects on nodulation and nitrogen fixation of legumes. J Environ Qual 24:1199–1204

    CAS  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How symbionts invade plants: the Sinorhizobium-Medicago model. Nature 5:619–33

    CAS  Google Scholar 

  • Jordan DC, Allen ON (1974) Family I, Rhizobiaceae Conn, 1938. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams & Wilkins, Baltimore, pp 261–264

    Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC, London

    Google Scholar 

  • Karpiscak MM, Whiteaker LR, Artiola JF, Foster KE (2001) Nutrient and heavy metal uptake and storage in constructed wetland systems in Arizona. Water Sci Technol 44:455–462

    PubMed  CAS  Google Scholar 

  • Keating JDH, Chapmanian N, Saxena MC (1998) Effect of improved management of legumes in a legume-cereal rotation on field estimates of crop nitrogen uptake and symbiotic nitrogen fixation in northern Syria. J Agric Sci 110:651–659

    Google Scholar 

  • Khan M, Scullion J (2002) Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Appl Soil Ecol 20:145–155

    Google Scholar 

  • Khan MS, Zaidi A, Aamil M (2002) Biocontrol of fungal pathogens by the use of plant growth promoting rhizobacteria and nitrogen fixing microorganisms. J Ind Bot Soc 81:255–263

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

    Google Scholar 

  • Khan MS, Zaidi A, Oves M, Wani PA (2008) Heavy metal toxicity to legumes. In: Samuel EB, William CW (eds) Heavy metal pollution. Nova Science, Hauppauge, pp 197–225

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009a) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Ahemad M, Oves M (2009b) Functional diversity among plant growth-promoting rhizobacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 105–132

    Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi—current perspective. Arch Agron Soil Sci 56:73–98

    CAS  Google Scholar 

  • Kinkle BK, Angle JS, Keyser HH (1987) Long-term effects of metal-rich sewage sludge application on soil populations of Bradyrhizobium japonicum. Appl Environ Microbiol 53:315–319

    PubMed  CAS  Google Scholar 

  • Krishnan HB, Kang BR, Krishnan AH, Kil Kim KY, Kim YC (2007) Rhizobium etli USDA9032 engineered to produce a phenazine antibiotic inhibits the growth of fungal pathogens but is impaired in symbiotic performance. Appl Environ Microbiol 73:327–330

    PubMed  CAS  Google Scholar 

  • Krujatz F, Haarstrick A, Nörtemann B, Greis T (2011) Assessing the toxic effects of nickel, cadmium and EDTA on growth of the plant growth-promoting rhizobacterium Pseudomonas brassicacearum. Water Air Soil Pollut. doi:10.1007/s11270-011-0944-0

  • Lakzian A, Murphy P, Turner A, Beynon JL, Giller KE (2002) Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance. Soil Biol Biochem 34:519–529

    CAS  Google Scholar 

  • Lei M, Tie B, William PN, Zheng Y, Huang Y (2011) Arsenic, cadmium, and lead pollution and uptake by rice (Oryza sativa L.) grown in greenhouse. J Soils Sediments 11:115–123

    CAS  Google Scholar 

  • Maj D, Wielbo J, Marek-Kozaczuk M, Skorupska A (2010) Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum. Microbiol Res 165:50–60

    PubMed  CAS  Google Scholar 

  • Manier N, Deram A, Broos K, Denayer FO, Haluwyn CV (2009) White clover nodulation index in heavy metal contaminated soils–a potential bioindicator. J Environ Qual 38:685–692

    PubMed  CAS  Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3:1–7

    CAS  Google Scholar 

  • McGrath SP, Brookes PC, Giller KE (1988) Effects of potential toxic metals in soil derived from past applications of sewage sludge on nitrogen fixation by Trifolium repens L. Soil Biol Biochem 20:415–424

    CAS  Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol 14:94–104

    PubMed  CAS  Google Scholar 

  • Mehboob I, Zahir ZA, Arshad M, Tanveer A, Farroq-E-Azam (2011) Growth promoting activities of different Rhizobium sp. in wheat. Pak J Bot 43:1643–1650

    Google Scholar 

  • Moftah AE (2000) Physiological response of lead polluted tomato and egg plant to the antioxidant ethylene diurea. Menufiya Agric Res 25:933–955

    Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22:368–374

    PubMed  CAS  Google Scholar 

  • Mumtaz H, Sajid M, Ahmad A (2006) Effect of lead and chromium on growth, photosynthetic pigments and yield components in mash bean [Vigna Mungo (L.) Hepper]. Pak J Bot 38:1389–1396

    Google Scholar 

  • Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2007) Cadmium induced oxidative stress in soybean plants also by the accumulation of d-aminolevulinic acid. Biometals 20:841–851

    PubMed  CAS  Google Scholar 

  • Obbard JP, Sauerbeck DR, Jones KC (1993) Rhizobium leguminosarum bv. trifolii in soils amended with heavy metal contaminated sewage sludges. Soil Biol Biochem 25:227–231

    CAS  Google Scholar 

  • Paton GI, Palmer G, Burton M, Rattray EA, McGrath SP, Glover LA, Killham K (1997) Development of an acute chronic ecotoxicity assay using lux-marked Rhizobium leguminosarum biovar trifolii. Lett Appl Microbiol 24:296–300

    PubMed  CAS  Google Scholar 

  • Paudyal SP, Aryal RR, Chauhan SVS, Maheshwari DK (2007) Effect of heavy metals on growth of Rhizobium strains and symbiotic efficiency of two species of tropical legumes. Sci World 5:27–32

    Google Scholar 

  • Pereira SIA, Lima AIG, Figueira EMAP (2006) Heavy metal toxicity in Rhizobium leguminosarum biovar viciae isolated from soils subjected to different sources of heavy metal contamination: effect on protein expression. Appl Soil Ecol 33:286–293

    Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    PubMed  CAS  Google Scholar 

  • Qing-xia Z, Shi-jun L, Jing-you X, Zhao-lin J, Xi-jun C, Yun-hui T (2011) Purification and characterization of chitinase produced by Sinorhizobium sp. strain L03. Chinese J Biol Control 27(2):241–245

    Google Scholar 

  • Rebah FB, Prevost D, Tyagi RD (2002) Growth of alfalfa in sludge-amended soils and inoculated with rhizobia produced in sludge. J Environ Qual 31:1339–1348

    PubMed  CAS  Google Scholar 

  • Reichman SMÃ (2007) The potential use of the legume–Rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol 39:2587–2593

    CAS  Google Scholar 

  • Rivas R, García-Fraile P, Velázquez E (2009) Taxonomy of bacteria nodulating legumes. Microbiol Insights 2:51–69

    Google Scholar 

  • Robinson B, Russell C, Hedley M, Clothier B (2001) Cadmium adsorption by rhizobacteria: implications for New Zealand pastureland. Agric Ecol Environ 87:315–321

    CAS  Google Scholar 

  • Rother JA, Millbank JW, Thornton I (1983) Nitrogen fixation by white clover (Trifolium repens) in grasslands on soils contaminated with cadmium, lead and zinc. J Soil Sci 34:127–136

    CAS  Google Scholar 

  • Santamaría MM, Marrero ARD, Hernández J, Navarro AMG, Corzo J (2003) Effect of thorium on the growth and capsule morphology of Bradyrhizobium. Environ Microbiol 5:916–924

    Google Scholar 

  • Sepehri M, Rastin NS, Rahmani HA, Alikhani H (2006) Effects of soil pollution by cadmium on nodulation and nitrogen fixation ability of native strains of Sinorhizobium meliloti. J Sci Technol Agric Nat Res 10:153–163

    CAS  Google Scholar 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880

    PubMed  CAS  Google Scholar 

  • Shi W, Bischoff M, Turco R, Konopka A (2002) Long-term effects of chromium and lead upon the activity of soil microbial communities. Appl Soil Ecol 21:169–177

    Google Scholar 

  • Shiferaw B, Bantilan MCS, Serraj R (2004) Harnessing the potential of BNF for poor farmers: technological policy and institutional constraints and research need. In: Serraj R (ed) Symbiotic nitrogen fixation: prospects for enhanced application in tropical agriculture. Oxford & IBH, New Delhi, p 3

    Google Scholar 

  • Shvaleva A, Peña TC, Rincón A, Morcillo CN, Torre VSG, Lucas MM, Pueyo JJ (2010) Flavodoxin overexpression reduces cadmium-induced damage in alfalfa root nodules. Plant Soil 326:109–121

    CAS  Google Scholar 

  • Singh RP, Tripathi RD, Dabas S, Rizvi SMH, Ali MB, Sinha SK, Gupta DK, Mishra S, Rai UN (2003) Effect of lead on growth and nitrate assimilation of Vigna radiata (L.) Wilczek seedlings in a salt affected environment. Chemosphere 52:1245–1250

    PubMed  CAS  Google Scholar 

  • Smith SR, Giller KE (1992) Effective Rhizobium leguminosarum biovar trifolii present in five soils contaminated with heavy metals from long-term applications of sewage sludge or metal mine spoil. Soil Biol Biochem 24:781–788

    CAS  Google Scholar 

  • Snapp SS, Aggarwal VD, Chirwa RM (1998) Note on phosphorus and genotype enhancement of biological nitrogen fixation and productivity of maize/bean intercrops in Malawi. Field Crops Res 58:205–212

    Google Scholar 

  • Stajkovic O, Delic D, Josic D, Kuzmanovic Đ, Rasulic N, Knezevic-Vukcevic J (2011) Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Roman Biotechnol Lett 16:5919–5926

    Google Scholar 

  • Stan V, Gament E, Corena CP, Voaides C, Dusa M, Plopeanu G (2011) Effects of heavy metal from polluted soils on the Rhizobium diversity. Not Bot Hort Agrobot Cluj 39:88–95

    Google Scholar 

  • Terry N (1981) An analysis of the growth responses of Beta vulgaris L. to phytotoxic trace elements. II. Chromium. Final report to the Kearney foundation of soil science. July 1975–June 1980

    Google Scholar 

  • Tittabutr P, Awaya JD, Li QX, Borthakur D (2008) The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. Syst Appl Microbiol 31:141–150

    PubMed  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Google Scholar 

  • Vasseur L, Fortin MJ, Cyr J (1998) Clover and cress as indicator species of impacts from limed sewage sludge and landfill wastewater land application. Sci Total Environ 217:231–239

    PubMed  CAS  Google Scholar 

  • Velázquez E, García-Fraile P, Ramírez-Bahena MH, Rivas R, Martínez-Molina E (2010) Bacteria involved in nitrogen-fixing legume symbiosis: current taxonomic perspective. In: Khan MS et al (eds) Microbes for legume improvement. Springer, Heidelberg, pp 1–25

    Google Scholar 

  • Wani PA (2008) Heavy metal toxicity to plant growth promoting rhizobacteria (PGPR) and certain legume crops. Ph.D. Thesis, Aligarh Muslim University, Aligarh, India

    Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

    PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2006) An evaluation of the effects of heavy metals on the growth, seed yield and grain protein of lentil in pots. Ann Appl Biol 27(TAC Suppl):23–24

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by green gram plants. Chemosphere 70:36–45

    PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea. Aus J Exp Agric 47:712–720

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007c) Effect of metal tolerant plant growth promoting Rhizobium on the performance of pea grown in metal amended soil. Arch Environ Contam Toxicol 55:33–42

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008a) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42

    PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008b) Impact of zinc-tolerant plant growth promoting rhizobacteria on lentil grown in zinc-amended soil. Agron Sustain Dev 28:449–455

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008c) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163

    PubMed  CAS  Google Scholar 

  • Wani PA, Zaidi A, Khan MS (2009) Chromium reducing and plant growth promoting potential of Mesorhizobium species under chromium stress. Bioremed J 13:121–129

    CAS  Google Scholar 

  • Webster G, Gough C, Vasse J, Batchelor CA, O’Callaghan KJ, Kothari SL, Davey MR, Denarie J, Cocking EC (1997) Interactions of rhizobia with rice and wheat. Plant Soil 194:115–122

    CAS  Google Scholar 

  • Wood M, Cooper JE (1988) Acidity, aluminium and multiplication of Rhizobium trifolii possible mechanisms of aluminium toxicity. Soil Biol Biochem 20:95–99

    CAS  Google Scholar 

  • Younis M (2007) Responses of Lablab purpureus-Rhizobium symbiosis to heavy metals in pot and field experiments. World J Agric Sci 3:111–122

    Google Scholar 

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ees Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Ahmad, E., Zaidi, A., Khan, M.S., Oves, M. (2012). Heavy Metal Toxicity to Symbiotic Nitrogen-Fixing Microorganism and Host Legumes. In: Zaidi, A., Wani, P., Khan, M. (eds) Toxicity of Heavy Metals to Legumes and Bioremediation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0730-0_2

Download citation

Publish with us

Policies and ethics