Skip to main content

Heavy Metal Resistance in Plants: A Putative Role of Endophytic Bacteria

  • Chapter
  • First Online:
Toxicity of Heavy Metals to Legumes and Bioremediation

Abstract

Heavy metals and metalloids have become one of the major environmental concerns which pose a serious threat to plants and animal health. In this context, endophytic bacteria could play an important role in understanding the uptake mechanism of heavy metal ions and providing immunity to plant against metal toxicity. The defensive effects of certain elements in plants are known, but the role of endophytes in providing protection to plants has poorly been investigated. Endophytic bacteria, originating from hyperaccumulator plants, exhibit a comparatively higher level of resistance to heavy metals than the soil and the rhizosphere bacteria. Among bacteria, Methylobacterium spp., as well as the representatives of Gram-positive bacteria, are the most widespread bacterial species in both the hyperaccumulator endosphere and endorhizae. The endophytic microbial populations enhance the resistance capacity of the host plants, which, however, depends on the structure and activity of the community. Moreover, endophytic bacteria including those of legume endophytes are considered a promising biological material for improving the efficiency of phytoremediation and, consequently, growing of clean and safe crops including legumes in metal polluted soils. The recent developments in the putative mechanisms by which endophytic microorganisms affect the plant resistance to heavy metals and how they could affect phytoextraction of metals from contaminated soils are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso A, Sanchez P, Martinez JL (2000) Stenotrophomonas maltophilia D457R contains a cluster of genes from Gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrob Agents Chemother 44:1778–1782

    Article  PubMed  CAS  Google Scholar 

  • Ardanov P, Ovcharenko L, Zaets I, Kozyrovska N, Pirttila AM (2011) Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.). Biocontrol 56:43–49

    Google Scholar 

  • Baldani JI, Caruso L, Baldani VLD, Goi SR, Döbereinner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  • Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microbiol Ecol 53:306–316

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1997) Azosprillum–plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE et al (2001) Characterisation of plant growth-promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    Article  PubMed  CAS  Google Scholar 

  • Boyd RS, Martens SN (1992) The raison d’être for metal hyperaccumulation by plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, pp 279–289

    Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Smith BW, Winefordner JD, Tu MS, Kertulis G, Ma LQ (2004) Arsenic speciation in Chinese brake fern by ion-pair high-performance liquid chromatography-inductively coupled plasma mass spectroscopy. Anal Chim Acta 504:199–207

    Article  CAS  Google Scholar 

  • Chen L, Luo S, Xiao X, Guo X, Chen J, Wan Y, Li B, Xu T, Xi X, Rao C, Liu C, Zeng G (2010) Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Appl Soil Ecol 46:383–389

    Article  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  PubMed  CAS  Google Scholar 

  • Conn VM, Walker AR, Franco CM (2008) Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant Microbe Interact 21:208–218

    Article  PubMed  CAS  Google Scholar 

  • Deng ZS, Zhao LF, Kong Z, Yang WQ, Lindström K, Wang ET, Wei GH (2011) Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China. FEMS Microbiol Ecol 76:463–475

    Article  PubMed  CAS  Google Scholar 

  • Diels L, Van Roy S, Taghavi S, Van Houdt R (2009) From industrial sites to environmental applications with Cupriavidus metallidurans. Antonie Van Leeuwenhoek 96:247–258

    Article  PubMed  Google Scholar 

  • Fones H, Davis CAR, Rico A, Fang F, Smith JAC, Preston GM (2010) Metal hyperaccumulation armors plants against disease. PLoS Pathog 6:e1001093

    Article  PubMed  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Badger JH, Durkin AS, Huot H, Shrivastava S, Kothari S, Dodson RJ, Mohamoud Y, Khouri H, Roesch LF, Krogfelt KA, Struve C, Triplett EW, Methe BA (2008) Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 25:e1000141

    Article  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y (2010) Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresour Technol 101:8599–605

    Article  PubMed  CAS  Google Scholar 

  • Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 83:2634–2645

    Article  Google Scholar 

  • Huang Y, Zhang G, Wu F, Chen J, Xiao Y (2006) Interaction of salinity and cadmium stresses on antioxidant enzymes, sodium, and cadmium accumulation in four barley genotypes. J Plant Nutr 29:2215–2225

    Article  CAS  Google Scholar 

  • Huang WY, Cai YZ, Xing J, Corke H, Sun M (2007) A potential antioxidant resource: endophytic fungi isolated from traditional Chinese medicinal plants. Econ Bot 61:14–30

    Article  CAS  Google Scholar 

  • Hung PQ, Kumar SM, Govindsamy V, Annapurna K (2007) Isolation and characterization of endophytic bacteria from wild and cultivated soybean varieties. Biol Fertil Soils 44:155–162

    Article  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  PubMed  CAS  Google Scholar 

  • Idris R, Kuffner M, Bodrossy L, Puschenreiter M, Monchy S, Wenzel WW, Sessitsch A (2006) Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. Syst Appl Microbiol 29:634–644

    Article  PubMed  CAS  Google Scholar 

  • Iniguez AL, Dong YM, Carter HD, Ahmer BMM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant Microbe Interact 18:169–178

    Article  PubMed  CAS  Google Scholar 

  • Jennings DB, Ehrenshaft M, Pharr DM, Williamson JD (1998) Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. Proc Natl Acad Sci USA 95:15129–15133

    Article  PubMed  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • Kozyrovskaya NA, Makitruk VL, Ruckdashell E (1990) Nitrogen-fixing Klebsiella species produce indole-3-acetic acid. Biopolym Cell 6:93–96

    Google Scholar 

  • Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch A (2010) Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108:1471–1484

    Article  PubMed  CAS  Google Scholar 

  • Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  PubMed  CAS  Google Scholar 

  • Leifert C, Morris CE, Waites WM (1994) Ecology of microbial saprophytes and pathogens in tissue culture and field grown plants: reasons for contamination problems in vitro. Crit Rev Plant Sci 13:139–183

    Google Scholar 

  • Lian J, Wang Z, Zhou S (2008) Response of endophytic bacterial communities in banana tissue culture plantlets to Fusarium wilt pathogen infection. J Gen Appl Microbiol 54:83–92

    Article  PubMed  CAS  Google Scholar 

  • Liesegang H, Lemke K, Siddiqui RA, Schlegel HG (1993) Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J Bacteriol 175:767–778

    PubMed  CAS  Google Scholar 

  • Liu J, Luo J, Ye H, Sun Y, Lu Z, Zeng X (2009) Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr Polym 78:275–281

    Article  CAS  Google Scholar 

  • Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, Van Der Lelie D (2001) The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. Int J Phytoremediation 3:173–187

    Article  CAS  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Luo S, Wan Y, Xiao X, Guo H, Chen L, Xi Q, Zeng G, Liu C, Chen J (2011a) Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation. Appl Microbiol Biotechnol 89:1637–44

    Article  PubMed  CAS  Google Scholar 

  • Luo S, Xiao X, Xi Q, Wan Y, Chen L, Zeng G, Liu C, Guo H, Chen J (2011b) Enhancement of cadmium bioremediation by endophytic bacterium Bacillus sp. L14 using industrially used metabolic inhibitors (DCC or DNP). J Hazard Mater 190:1079–1082

    Article  PubMed  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L). Chemosphere 69:220–228

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Dwivedi S, Shukla MK (2008) Response of antioxidant enzymes in coontail (Ceratophyllum demersum L.) plants under cadmium stress. Environ Toxicol 23:294–301

    Article  PubMed  CAS  Google Scholar 

  • Moreira FM, Lange A, Klauberg-Filho O, Siqueira JO, Nóbrega RS, Lima AS (2008) Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites. Anais Acad Bras Cienc 80:749–61

    CAS  Google Scholar 

  • Muthukumarasamy R, Revathi G, Seshadri S, Lakshminarsimhan C (2002) Glucanacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Curr Sci India 83:137–145

    CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  • Pál M, Horváth E, Janda T, Páldi E, Szalai G (2006) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246

    Google Scholar 

  • Pages D, Rose J, Conrod S, Cuine S, Carrier P, Heulin T, Achouak W (2008) Heavy metal tolerance in Stenotrophomonas maltophilia. PLoS One 3:e1539

    Article  PubMed  Google Scholar 

  • Podolich OV, Ardanov PE, Voznyuk TM, Kovalchuk MV, Danylchenko OV, Laschevskyi VV, Lyastchenko SA, Kozyrovska NO (2007) Endophytic bacteria from potato in vitro activated by exogenic non-pathogenic bacteria. Biopolym Cell 23:21–28

    Google Scholar 

  • Potrich DP, Passaglia LMP, Schrank IS (2001) Partial characterization of nif genes from the bacterium Azospirillum amazonense. Braz J Med Biol Res 34:1105–1113

    Article  PubMed  CAS  Google Scholar 

  • Prévéral S, Gayet L, Moldes C, Hoffmann J, Mounicou S, Gruet A, Reynau F, Lobinski R, Verbavatz JM, Vavasseur A, Forestier C (2009) A common highly-conserved cadmium detoxification mechanism from bacteria to humans. Heavy metal tolerance conferred by the ABC transporter SpHMT1 requires glutathione but not metal-chelating phytochelatins peptides. J Biol Chem 284:4936–4943

    Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Río LA et al (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Article  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL et al (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  PubMed  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19

    Article  Google Scholar 

  • Sun LN, Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour Technol 101:501–509

    Article  PubMed  CAS  Google Scholar 

  • Trajanovska S, Britz ML, Bhave M (1997) Detection of heavy metal ion resistance genes in Gram-positive and Gram-negative bacteria isolated from a lead-contaminated site. Biodegradation 8:113–124

    Article  PubMed  CAS  Google Scholar 

  • Tremaroli V, Workentine ML, Weljie AM, Vogel HJ, Ceri H, Viti C, Tatti E, Zhang P, Hynes AP, Turner RJ, Zannoni D (2009) Metabolomic investigation of the bacterial response to a metal challenge. Appl Environ Microbiol 75:719–728

    Article  PubMed  CAS  Google Scholar 

  • Van Houdt R, Monchy S, Leys N, Mergeay M (2009) New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Antonie Van Leeuwenhoek 96:205–226

    Article  PubMed  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    Google Scholar 

  • von Rozycki T, Nies D (2009) Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie van Leeuwenhoek 96:115–139

    Article  Google Scholar 

  • Wang ET, Tan ZY, Guo XW, Rodríguez-Duran R, Boll G, Martínez-Romero E (2006) Diverse endophytic bacteria isolated from a leguminous tree Conzattia multiflora grown in Mexico. Arch Microbiol 186:251–259

    Article  PubMed  CAS  Google Scholar 

  • Weckx J, Vangronsveld J, Clijsters H (1993) Heavy metal induction of ethylene production and stress enzymes. I. Kinetics of responses. In: Pech JC, Latché A, Balagné C (eds) Cellular and molecular aspects of plant hormone ethylene. Kluwer Academic, Dordrecht, pp 238–239

    Google Scholar 

  • Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158:2422–2427

    Article  PubMed  CAS  Google Scholar 

  • White JF, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138:440–446

    Article  PubMed  CAS  Google Scholar 

  • Wilson D (1995) Endophyte-the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  PubMed  CAS  Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–1692

    Article  PubMed  CAS  Google Scholar 

  • Zaets I, Kramarev S, Kozyrovska N (2010) Inoculation with a bacterial consortium alleviates the effect of cadmium overdose in soybean plants. Cent Eur J Biol 5:481–490

    Article  CAS  Google Scholar 

  • Zaetz I, Voznyuk T, Kovalchuk M, Rogutskyy I, Lukashov D, Mytrokhyn O, Mashkovska S, Foing B, Kozyrovska N (2006) Optimization of plant mineral nutrition under growth-limiting conditions at a lunar greenhouse. Kosm Nauka Technol (Space Sci Technol) 12:1–8

    Google Scholar 

  • Zaetz IE, Кozyrovska NO (2008) Effect of a bacterial consortium on oxidative stress in soybean plants in cadmium-contaminated soil. Biopolym Cell 24:246–253

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iryna Zaets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Zaets, I., Kozyrovska, N. (2012). Heavy Metal Resistance in Plants: A Putative Role of Endophytic Bacteria. In: Zaidi, A., Wani, P., Khan, M. (eds) Toxicity of Heavy Metals to Legumes and Bioremediation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0730-0_12

Download citation

Publish with us

Policies and ethics