Skip to main content

Role of Plant-Growth-Promoting Rhizobacteria in the Management of Cadmium-Contaminated Soil

  • Chapter
  • First Online:
Toxicity of Heavy Metals to Legumes and Bioremediation

Abstract

During the last decades, heavy metals have become a common contaminant worldwide. Root-colonizing bacteria that exert beneficial effects on plant development directly or indirectly, often called as plant-growth-promoting rhizobacteria (PGPR), play an important role in the remediation of heavy-metal-contaminated soils. The prospect of manipulating rhizosphere microbial populations by inoculating beneficial bacteria to increase plant growth has shown considerable promise in laboratory and greenhouse studies, but responses have been variable under the field trials. In addition to their role in metal decontamination/removal, PGPR have also been found to facilitate plant growth in conventional soils by various mechanisms. These mechanisms include the suppression of phytopathogens by producing siderophores, synthesizing antifungal antibiotics, secreting fungal cell-wall-lysing enzymes, or hydrogen cyanide in addition to the release of growth-promoting hormones, solubilization of insoluble phosphate, and providing other essential nutrients to plants. Here in this chapter, the role of PGPR in metal especially cadmium decontamination is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    Article  CAS  Google Scholar 

  • Abou-Shanab RA, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • ANL USD (2005) Argonne National Laboratory: EVSUSDE, Human Health Fact Sheet. http://wwwevsanlgov/pub/doc/Cadmiumpdf. Accessed Aug 2005

  • Ashrafi V, Seiedi MN (2011) Influence of different plant densities and plant growth promoting rhizobacteria (PGPR) on yield and yield attributes of corn (Zea maize L). Rec Res Sci Technol 3:63–66

    Google Scholar 

  • Ashrafuzzaman M, Akhtar HF, Ismail M, Razi Hoque Md, Anamul IM, Zahurul SSM, Sariah M (2009) Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8:1247–1252

    CAS  Google Scholar 

  • Belimov AA, Kunakova AM, Safronova VI, Stepanok VV, Iudkin L, Alekseev IUV, Kozhemiakov AP (2004) Employment of associative bacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Mikrobiologiia 73:118–25

    PubMed  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L Czern). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Black RC, Choate DM, Bardhan S, Revis N, Barton LL, Zocco TG (1993) Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ Toxicol Chem 12:1365–1376

    Google Scholar 

  • Blainey JD, Adams RG, Brewer DB, Harvey TC (1980) Cadmium-induced osteomalacia. Br J Ind Med 37:278–284

    PubMed  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  PubMed  CAS  Google Scholar 

  • Borgmann U (2000) Methods for assessing the toxicological significance of metals in aquatic ecosystems: bio-accumulation–toxicity relationships, water concentrations and sediment spiking approaches. Aquat Ecosyt Health 3:277–289

    CAS  Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Article  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr and Pb contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Article  PubMed  Google Scholar 

  • Brierley CL, Brierley JA (1993) Immobilization of biomass for industrial application of biosorption. In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies, vol 2. The Minerals, Metals & Materials Society, Warrendale, PA, pp 35–44

    Google Scholar 

  • Brooks RR (1998) Geobotany and hyperaccumulators. In: Brook RR (ed) Plants that hyperaccumulate heavy metals, vol 8. CAB International, Wallingford, pp 55–94

    Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  PubMed  CAS  Google Scholar 

  • Chunxiao J, Hongwen S, Tieheng S, Qingmin Z, Yanfeng Z (2009) Immobilization of cadmium in soils by UV-mutated Bacillus subtilis 38 bioaugmentation and NovoGro amendment. J Hazard Mater 167:1170–1177

    Article  Google Scholar 

  • Cook M, Morrow H (1995) Anthropogenic sources of cadmium to the Canadian environment. In: Workshop proceedings of national workshop on cadmium transport into plants, Canadian Network of Toxicology Centres, Ottawa, Canada, 20–21 June 1995

    Google Scholar 

  • CPCB (2007) Cadmium levels in environment. News Letter Central Pollution Control Board New Delhi. http://wwcpcbnic.in/oldwebsite/news%20letters/latest/cadmium/ch8-cadmiumhtm. Accessed 2007

  • Cybulski Z, Dzuirla E, Kaczorek E, Olszanowski A (2003) The influence of emulsifiers on hydrocarbon biodegradation by Pseudomonadacea and Bacillacea strains. Spill Sci Technol B 8:503–507

    Article  CAS  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    Article  PubMed  CAS  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84

    Article  Google Scholar 

  • De-Souza MP, Huang CPA, Chee N, Terry N (1999) Rhizosphere bacteria enhance that accumulation of selenium and mercury in wetland plants. Planta 209:259–263

    Article  PubMed  CAS  Google Scholar 

  • Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E, Vallini G (2006) Combined application of Triton X-100 and Sinorhizobium sp Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63:293–299

    Article  PubMed  Google Scholar 

  • Egamberdiyeva D, Hoflich G (2004) Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. J Arid Environ 56:293–301

    Article  Google Scholar 

  • Elinder C-G (1985) Cadmium: uses, occurrence and intake, cadmium and health: a toxicological and epidemiological appraisal. CRC, Boca Raton, FL

    Google Scholar 

  • Espinosa-Urgel M (2004) Plant-associated Pseudomonas populations: Molecular Biology, DNA dynamics and gene transfer. Plasmid 52:139–150

    Article  PubMed  CAS  Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Dixon DG, Click BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal contaminated field site. Environ Pollut 147:540–545

    Article  PubMed  CAS  Google Scholar 

  • Frerot H, Lefebvre C, Gruber W, Collin C, Dos Santos A, Escarre J (2006) Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil 282:53–65

    Article  CAS  Google Scholar 

  • Friberg L, Kjellstrom T, Nordberg GF (1986) Cadmium. In: Friberg L, Nordberg GF, Vouk VB (eds) Handbook on the toxicology of metals, 2nd edn. Elsevier, Amsterdam, pp 130–184

    Google Scholar 

  • FWPCA (1968) Water quality criteria. Report of the National Technical Advisory Committee to the Secretary of the Interior. Federal Water Pollution Control Administration, Corvallis, OR, pp 32–34

    Google Scholar 

  • Gamalero E, Lingua G, Capri FG, Fusconi A, Berta G, Lemanceau P (2004) Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy. FEMS Microb Ecol 48:79–87

    Article  CAS  Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56:403–407

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, UK, pp 86–179

    Book  Google Scholar 

  • Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J Biotechnol 81:45–53

    Article  PubMed  CAS  Google Scholar 

  • Gunasekaran P, Muthukrishnan J, Rajendran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41:935–944

    PubMed  Google Scholar 

  • Herzig R, Guadagnini M, Rehnert A, Erismann KH (2003) Phytoextraction efficiency of in vitro-bred tobacco variants using a non-GMO approach. In: Phytoremediation inventory—COST Action 837 View, p 73

    Google Scholar 

  • Horiguchi H, Kayama F, Oguma E, Willmore WG, Hradecky P, Bunn HF (2000) Cadmium and platinum suppression of erythropoietin production in cell Culture: clinical implications. Blood 96:3743–3747

    PubMed  CAS  Google Scholar 

  • Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66:1670–1676

    Article  PubMed  CAS  Google Scholar 

  • Jensen A, Bro-Rasmussen F (1992) Environmental contamination in Europe. Rev Environ Contam Technol 125:101–181

    CAS  Google Scholar 

  • Jetiyanon J, Kloepper JW (2002) Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol Control 24:285–291

    Article  Google Scholar 

  • Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72(157–1):64

    Google Scholar 

  • Jing Y-de, He Z-li, Yang X-e (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Article  PubMed  CAS  Google Scholar 

  • Johnson DL, Anderson DR, McGrath SP (2005) Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol Biochem 37:2334–2336

    Article  CAS  Google Scholar 

  • Kapley A, Purohit HJ, Chhatre S, Shanker R, Chakrabarti T (1999) Osmotolerance and hydrocarbon degradation by a genetically engineered microbial consortium. Bioresour Technol 67:241–245

    Article  CAS  Google Scholar 

  • Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant Soil 249:67–81

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol 2, Station de Pathologie Vegetale et Phytobacteriologie, INRA, Angers, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kudjo DE (2007) Phytoremediation: the state of rhizosphere engineering for accelerated rhizodegradation of xenobiotic contaminants. J Chem Technol Biot 82:228–232

    Article  Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant Microbe Interact 14:1197–1205

    Article  PubMed  CAS  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  PubMed  CAS  Google Scholar 

  • Kumino T, Seaki K, Nagaoka K, Oyaizu H, Matsumoto S (2001) Characterization of copper-resistant bacterial community in rhizosphere of highly copper-contaminated soil. Eur J Soil Biol 37:95–102

    Article  Google Scholar 

  • Lafuente A, Gonzalez-Carracedo A, Romero A, Esquifino AI (2003) Effect of cadmium on 24-h variations in hypothalamic dopamine and serotonin metabolism in adult male rats. Exp Brain Res 149:200–206

    PubMed  CAS  Google Scholar 

  • Lázaro M, Cayo R, Estrella D, Ronchel MC, García JM, Wyke L, Ramos JL (2000) Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol Biochem 32:315–321

    Article  Google Scholar 

  • Lenntech WT (2009) Chemical properties, health and environmental effects of copper: Lenntech water treatment and purification holding BV. http://wwwlenntechcom/periodic/elements/cdhtm. Accessed 2009

  • Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant Sedum alfredii. J Exp Bot 58:4173–4182

    Article  PubMed  CAS  Google Scholar 

  • Lubeck PS, Hansen M, Sorensen J (2000) Simultaneous detection of the establishment of seed-inoculated Pseudomonas fluorescens strain DR54 and native soil bacteria on sugar beet root surfaces using fluorescence antibody and in situ hybridization techniques. FEMS Microbiol Ecol 33:11–19

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009a) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 90:831–837

    Article  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009b) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75:719–725

    Article  PubMed  CAS  Google Scholar 

  • Mansouri H, Petit A, Oger P, Dessaux Y (2002) Engineered rhizosphere: the trophic bias generated by opine-producing plants is independent of the opine type, the soil origin and the plant species. Appl Environ Microbiol 68:2562–2566

    Article  PubMed  CAS  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • McSpadden GBB, Fravel DR (2002) Biological control of plant pathogens: Research, commercialization and application in the USA. Online Plant Health Prog. doi:101094/PHP-2002-0510-01-RV

    Google Scholar 

  • Mench M, Tancogne J, Gornez A, Juste C (1989) Cadmium bioavailability to Nicotiana tabacum L, Nicotiana rustica L and Zea mays L grown in soil amended or not amended with cadmium nitrate. Biol Fertil Soil 8:48–53

    Article  CAS  Google Scholar 

  • Mishra M, Kumar U, Kishor MP, Veeru P (2010) Efficiency of plant growth promoting rhizobacteria for the enhancement of Cicer arietinum L growth and germination under salinity. Adv Biol Res 4:92–96

    CAS  Google Scholar 

  • Mukunoki J, Fujimoto K (1996) Collection and recycling of used Ni-Cd batteries in Japan: sources of cadmium in the environment. Inter-Organization Programme for the Sound Management of Chemicals (IOMC), Organization for Economic Co-operation and Development (OECD), Paris

    Google Scholar 

  • OECD (1994) Risk reduction monograph no 5: Cadmium. Organization for Economic Co-operation and Development, OECD Environment Directorate, Paris, France

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 68:3795–3801

    Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions plant. Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Philip L, Iyengar L, Venkobacher L (2000) Site of interaction of copper on Bacillus polymyxa. Water Air Soil Poll 119:11–21

    Article  CAS  Google Scholar 

  • Pohl HR, Roney N, Wilbur S, Hansen H, De Rosa CT (2003) Six interaction profiles for simple mixtures. Chemosphere 53:183–197

    Article  PubMed  CAS  Google Scholar 

  • Rai UN, Pandey K, Sinha S, Singh A, Saxena R, Gupta DK (2004) Revegetating fly ash landfills with Prosopis juliflora L: impact of different amendments and Rhizobium inoculation. Environ Int 30:293–300

    Article  PubMed  CAS  Google Scholar 

  • Reed M, Glick B (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Roberts M (2003) Review of risks from metals in the UK. Chemical Stakcholder Forum, Fourteenth meeting, pp 20

    Google Scholar 

  • Safronova V, Stepanok V, Engqvist G, Alekseyev Y, Belimov A (2006) Root associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272

    Article  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  PubMed  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Sanita di Toppi L, Gabrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Sar P, D’Souza SF (2001) Biosorptive uranium uptake by Pseudomonas strain: characterization and equilibrium studies. J Chem Technol Biot 76:1286–1294

    Article  CAS  Google Scholar 

  • Sell J, Kayser A, Schulin R, Brunner I (2005) Contribution of ectomycorrhizal fungi to cadmium uptake of poplars and willows from a heavily polluted soil. Plant Soil 277:245–253

    Article  CAS  Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  PubMed  CAS  Google Scholar 

  • Sheng-wang PAN, Shi-qiang WEI, Xin YUAN, Sheng-xian CAO (2008) The removal and remediation of phenanthrene and pyrene in soil by mixed cropping of Alfalfa and Rape. Agric Sci China 7:1355–1364

    Article  Google Scholar 

  • Shukla KP, NandKumar S, Shivesh S (2010) Bioremediation: developments, current practices and perspectives. Gen Eng Biotech J 3:1–20

    CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2002) Resistance against damping-off fungus Rhizoctonia solani systematically induced by the plant-growth-promoting rhizobacteria Pseudomonas aeruginosa (1E-6S(+)) and P fluorescens (CHAO). J Phytopathol 150:500–506

    Article  Google Scholar 

  • Siedleska A (1995) Some aspects of interactions between heavy metals and plant mineral nutrients. Acta Soc Bot Pol 64:265–272

    Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr. Microbiol. 56: 55–60

    Google Scholar 

  • Smith KP, Goodman RM (1999) Host variation for interactions with beneficial plant-associated microbes. Annu Rev Phytopathol 37:473–491

    Article  PubMed  CAS  Google Scholar 

  • Tarangini K (2009) Biosorption of heavy metals using individual and mixed cultures of Pseudomonas aeruginosa and Bacillus subtilis. M Tech Thesis, Department of Chemical Engineering, NIT, Rourkela, India

    Google Scholar 

  • Vangronsveld J, Clijsters H (1994) Toxic effects of metals. In: Farago ME (ed) Plants and the chemical elements: biochemistry, uptake, tolerance and toxicity. VCH, Weinheim, Germany, pp 150–177

    Google Scholar 

  • Vassilev A, Schwitzguébel JP, Thewys T, van der Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal-contaminated soils. Sci World J 4:9–34

    Article  CAS  Google Scholar 

  • Walter WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Cadmium, chromium and copper in green gram plants. Agron Sustain Dev 27:145–153

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Chromium reducing and plant growth promoting Mesorhizobium improves chickpea growth in chromium amended soil. Biotechnol Lett 30:159–163

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Iwani O, Shimbo S, Ikeda M (1993) Reduction in cadmium in blood and dietary intake among general populations in Japan. Int Arch Occup Environ Health 65:S205–S208

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Shimbo S, Yasumoto M, Imai Y, Kimura K, Yamamoto K, Kawamura S, Ikeda M (1994) Reduction to one half in dietary intake of cadmium and lead among Japanese populations. Bull Environ Contam Toxicol 52:196–202

    Article  PubMed  CAS  Google Scholar 

  • WHO (1992) Environmental health criteria 134-cadmium international programme on chemical safety (IPCS) monograph. World Health Organization, Geneva

    Google Scholar 

  • Woodbury PB (2005) Municipal solid waste composting: potential effects of heavy metals in municipal solid waste composts on plants and the environment: Fact Sheet. http://compostcsscornelledu/MSWFactSheets/mswfs4html. Accessed 2005

  • Zahir ZA, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv in Agron 81:97–168

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author is thankful to K.P. Rathoure (Mrs.) for her valuable comments and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Kumar, A. (2012). Role of Plant-Growth-Promoting Rhizobacteria in the Management of Cadmium-Contaminated Soil. In: Zaidi, A., Wani, P., Khan, M. (eds) Toxicity of Heavy Metals to Legumes and Bioremediation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0730-0_10

Download citation

Publish with us

Policies and ethics