Skip to main content

Resting-state brain networks in functional Magnetic Resonance Imaging (MRI)

  • Chapter
Brain Mapping

Abstract

Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been extensively used to study how task performance modulates brain activity. Such an approach emphasizes the principle of functional segregation, in that different brain areas are characterized by their involvement in specific cognitive processes. However, this type of analysis essentially ignores that the brain maintains a constant level of spontaneous activity, i.e., activity that is not a direct consequence of environmental stimulations. Investigating these spontaneous brain fluctuations is a challenge precisely because they cannot be controlled by an experimental design. The first successful study of brain spontaneous fluctuations by BOLD fMRI was performed by Biswal and colleagues [3], who computed the correlation between the time course of a seed region and all brain voxels in the absence of any experimental task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3: e17

    Article  PubMed  Google Scholar 

  2. Auer DP (2008) Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the “resting” brain. Magn Reson Imaging 26: 1055–1064

    Article  PubMed  Google Scholar 

  3. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echoplanar MRI. Magn Reson Med 34: 537–541

    Article  PubMed  CAS  Google Scholar 

  4. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kötter, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng G, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107: 4734–4739

    Article  PubMed  CAS  Google Scholar 

  5. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124: 1–38

    Article  PubMed  Google Scholar 

  6. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10: 186–198

    Article  PubMed  CAS  Google Scholar 

  7. Calhoun VD, Kiehl KA, Pearlson GD (2008) Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp 29: 828–838

    Article  PubMed  Google Scholar 

  8. Calhoun VD, Liu J, Adali T (2009) A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45(Suppl 1): S163–S172

    Article  PubMed  Google Scholar 

  9. Chang C, Glover GH (2009) Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage 47: 1448–1459

    Article  PubMed  Google Scholar 

  10. Cole DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation of restingstate FMRI data. Front Syst Neurosci 4: Article 8

    Google Scholar 

  11. Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 213: 525–533

    Article  PubMed  Google Scholar 

  12. Damoiseaux JS, Rombouts SA, Barkhof F, Scheutens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103: 13848–13853

    Article  PubMed  CAS  Google Scholar 

  13. Damoiseaux JS, Beckmann CF, Sanz Arigita EJ, Barkhof F, Scheltens P, Stam CJ, Smith SM, Rombouts SARB (2008) Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex 18: 1856–1864

    Article  PubMed  CAS  Google Scholar 

  14. Esposito F, Bertolino A, Scarabino T, Latorre V, Blasi G, Popolizio T, Tedeschi G, Cirillo S, Goebel R, Di Salle F (2006) Independent component model of the defaultmode brain function: assessing the impact of active thinking. Brain Res Bull 70: 263–269

    Article  PubMed  Google Scholar 

  15. Fransson P, Skiöld B, Horsch S, Nordell A, Blennow M, Lagercrantz H, Åden U (2007) Resting-state networks in the infant brain. Proc Natl Acad Sci USA 104: 15531–15536

    Article  PubMed  CAS  Google Scholar 

  16. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100: 253–258

    Article  PubMed  CAS  Google Scholar 

  17. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s desease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101: 4637–4642

    Article  PubMed  CAS  Google Scholar 

  18. Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19: 72–78

    Article  PubMed  Google Scholar 

  19. Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2: 685–694

    Article  PubMed  CAS  Google Scholar 

  20. Guye M, Bettus G, Bortolomei F, Cozzone PJ (2010) Graph theoretical analysis of structural and functional connecitvity MRI in normal and pathological brain networks. Magn Reson Mater Phys Biol Med 23: 409–421

    Article  Google Scholar 

  21. Hayasaka S, Laurenti PJ (2010) Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data. Neuroimage 50: 498–508

    Article  Google Scholar 

  22. Honey CJ, Thivierge JP, Sporns O (2010) Can structure predict function in the human brain? Neuroimage 52: 766–776

    Article  PubMed  Google Scholar 

  23. James GA, Kelley ME, Craddock RC, Holtzheimer PE, Dunlop BW, Nemeroff CB, Mayberg HS, Hu XP (2009) Exploratory structural equation modeling of restingstate fMRI: applicability of group models to individual subjects. Neuroimage 45: 778–787

    Article  PubMed  Google Scholar 

  24. Koch W, Teipel S, Mueller S, Buerger K, Bokde ALW, Hampel H, Coates U, Reiser M, Meindl T (2010) Effects of aging on default mode network activity in resting state fMRI: does the method of analysis matter? Neuroimage 51: 280–287

    Article  PubMed  CAS  Google Scholar 

  25. Kokkonen SM, Nikkinen J, Remes J, Kantola J, Starck T, Haapea M, Tuominen J, Tervonen O, Kiviniemi V (2009) Preoperative localization of the sensorimotor area using independent component analysis of restingstate fMRI. Magn Reson Imaging 27: 733–740

    Article  PubMed  Google Scholar 

  26. Laufs H (2008) Endogenous brain oscillations and related networks detected by surface EEG-combined fMRI. Hum Brain Mapp 29: 762–769

    Article  PubMed  Google Scholar 

  27. Li K, Guo L, Nie J, Li G, Liu T (2009) Review of methods for functional brain connectivity detection using fMRI. Comput Med Imaging Graph 33: 131–139

    Article  PubMed  Google Scholar 

  28. Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB, Villringer A, Castellanos FX, Milham MP, Petrides M (2009) Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci USA 106: 20069–20074

    PubMed  CAS  Google Scholar 

  29. Marrelec G, Bellec P, Benali H (2006) Exploring largescale brain networks. J Physiol Paris 100: 171–181

    Article  PubMed  Google Scholar 

  30. Mesulam M (2009) Defining neurocognitive networks in the BOLD new world of computed connectivity. Neuron 62: 1–3

    Article  PubMed  CAS  Google Scholar 

  31. Nakamura T, Hillary FG, Biswal BB (2009) Resting network plasticity following brain injury. PLoS One 4: e8220

    Article  PubMed  Google Scholar 

  32. Perlbarg V, Marrelec G (2008) Contribution of exploratory methods to the investigation of extended largescale brain networks in functional MRI — methodologies, results, and challenges. Int J Biomed Imaging 2008: Article ID 218519

    Google Scholar 

  33. Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37: 1083–1090

    Article  PubMed  Google Scholar 

  34. Rogers BP, Morgan VL, Newtonb AT, Gore JC (2007) Assessing functional connectivity in the human brain by fMRI. Magn Reson Imaging 25: 1347–1357

    Article  PubMed  Google Scholar 

  35. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target largescale human brain networks. Neuron 62: 42–52

    Article  PubMed  CAS  Google Scholar 

  36. Shimony JS, Zhang D, Johnston JM, Fox MD, Roy A, Leuthardt EC (2009) Resting state spontaneous fluctuations in brain activity: a new paradigm for presurgical planning using fMRI. Acad Radiol 16: 578–583

    Article  PubMed  Google Scholar 

  37. Shmuel A, Leopold DA (2008) Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: implications for functional connectivity at rest. Hum Brain Mapp 29: 751–761

    Article  PubMed  Google Scholar 

  38. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106: 13040–13045

    Article  PubMed  CAS  Google Scholar 

  39. Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 4: e1000100

    Article  PubMed  Google Scholar 

  40. Supekar K, Musen M, Menon V (2009) Development of large-scale functional brain networks in children. PLoS Biol 7: e1000157

    Article  PubMed  Google Scholar 

  41. Tomassini V, Jbabdi S, Klein JC, Behrens TE, Pozzilli C, Matthews PM, Rushworth MF, Johansen-Berg H (2007) Diffusion-weighted imaging tractography-based parcellation of the human lateral premotor cortex identifies dorsal and ventral subregions with anatomical and functional specializations. J Neurosci 27: 10259–10269

    Article  PubMed  CAS  Google Scholar 

  42. van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20: 519–534

    Article  PubMed  Google Scholar 

  43. van den Heuvel MP, Mandl RCW, Kahn RS, Hulshoff Pol HE (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30: 3127–3141

    Article  PubMed  Google Scholar 

  44. van Dijk KRA, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL (2010) Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 103: 297–321

    Article  PubMed  Google Scholar 

  45. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ-F, Bruno, Boveroux P, Schnakers C, Soddu A, Perlbarg V, Ledoux D, Brichant J-F, Moonen G, Maquet P, Greicius MD, Laureys S, Boly M (2010) Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133: 161–171

    Article  PubMed  Google Scholar 

  46. Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447: 83–86

    Article  PubMed  CAS  Google Scholar 

  47. Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C, He Y (2009) Parcellation-dependent smallworld brain functional networks: a resting-state fMRI study. Hum Brain Mapp 30: 1511–1523

    Article  PubMed  Google Scholar 

  48. Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T (2007) Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum Brain Mapp 28: 967–978

    Article  PubMed  Google Scholar 

  49. Zhang D, Johnston JM, Fox MD, Leuthardt EC, Grubb RL, Chiconoine MR, Smyth MD, Snyder AZ, Raichle ME, Shimony JS (2009) Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience. Neurosurgery 65: 226–236

    Article  PubMed  Google Scholar 

  50. Zuo X-N, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP (2010) Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. Neuroimage 49: 2163–2177

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Bellec, P., Messé, A., Coynel, D., Perlbarg, V., Benali, H., Marrelec, G. (2011). Resting-state brain networks in functional Magnetic Resonance Imaging (MRI). In: Duffau, H. (eds) Brain Mapping. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0723-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0723-2_28

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0722-5

  • Online ISBN: 978-3-7091-0723-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics