Skip to main content

Cutting Edge Approaches Toward Novel and Cross-Protective Influenza Vaccines

  • Chapter
  • First Online:
Development of Novel Vaccines

Abstract

Every year, recurrent influenza virus infections lead to excess hospitalizations and deaths. The very young, the elderly, pregnant women, and immunocompromised persons are at particular risk of influenza-related complications. Influenza places a heavy burden on health care systems worldwide and has a large economical impact. Currently licensed influenza vaccines provide antibody-mediated sterilizing protection when the requirement for antigenic match is fulfilled. This protection is limited in time because the ever-drifting main antigenic determinants of the virus, hemagglutinin (HA) and neuraminidase (NA), allow the virus to escape humoral immunity. For this reason, it is necessary to update seasonal vaccines continuously based on predictions of the strains that will likely circulate in the next season. If the virus strains included in the vaccine do not match the circulating strains, e.g. due to poor prediction accuracy or to complete antigenic shift of the viral HA and NA, the vaccine could be ineffective, leaving the vaccinated population susceptible for the circulating virus. Therefore, researchers all over the world are involved in the development of novel vaccines that protect against multiple influenza strains or even subtypes. A common theme among the variety of approaches that are explored, raising immunity against conserved features of the virus, is the underlying strategy. In this chapter, we highlight the principles of cross-protective immunity against influenza and discuss how effectively new vaccine candidates might provide cross-protective immunity. We explain how the design of broadly protective universal vaccines can exploit evolutionarily conserved structural features in the HA. The extracellular domain of matrix protein 2 (M2e) is highly conserved, and vaccines based on M2e are clinically most advanced. The concept and mechanism of protection provided by M2e vaccines are highlighted in this chapter. Vaccines based on internal influenza viral proteins such as matrix protein 1 and nucleoprotein are discussed. These viral antigens are conserved and naturally immunogenic, mainly as potent inducers of T-cell responses. In the last part of this book chapter, we discuss advantages and disadvantages of sterilizing immunity versus infection-permissive protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ameiss K et al (2010) Delivery of woodchuck hepatitis virus-like particle presented influenza M2e by recombinant attenuated Salmonella displaying a delayed lysis phenotype. Vaccine 28(41):6704–6713

    Article  PubMed  CAS  Google Scholar 

  • Assarsson E et al (2008) Immunomic analysis of the repertoire of T-cell specificities for influenza A virus in humans. J Virol 82(24):12241–12251

    Article  PubMed  CAS  Google Scholar 

  • Beerli RR et al (2009) Prophylactic and therapeutic activity of fully human monoclonal antibodies directed against Influenza A M2 protein. Virol J 6:224

    Article  PubMed  CAS  Google Scholar 

  • Berkhoff EG et al (2005) Functional constraints of influenza A virus epitopes limit escape from cytotoxic T lymphocytes. J Virol 79(17):11239–11246

    Article  PubMed  CAS  Google Scholar 

  • Bessa J et al (2008) Efficient induction of mucosal and systemic immune responses by virus like particles administered intranasally: implications for vaccine design. Eur J Immunol 38(1):114–126

    Article  PubMed  CAS  Google Scholar 

  • Black RA et al (1993) Antibody response to the M2 protein of influenza A virus expressed in insect cells. J Gen Virol 74(1):143

    Article  PubMed  CAS  Google Scholar 

  • Bodewes R et al (2009) Vaccination against human influenza A/H3N2 virus prevents the induction of heterosubtypic immunity against lethal infection with avian influenza A/H5N1 virus. PLoS One 4(5):e5538

    Article  PubMed  CAS  Google Scholar 

  • Bodewes R et al (2011) Vaccination against seasonal influenza A/H3N2 reduces the induction of heterosubtypic immunity against influenza A/H5N1 in ferrets. J Virol 85(6):2695–2702

    Article  PubMed  CAS  Google Scholar 

  • Bommakanti G et al (2010) Design of an HA2-based Escherichia coli expressed influenza immunogen that protects mice from pathogenic challenge. Proc Natl Acad Sci USA 107(31):13701

    Article  PubMed  CAS  Google Scholar 

  • Boon AC et al (2004) Recognition of homo- and heterosubtypic variants of influenza A viruses by human CD8+ T lymphocytes. J Immunol 172(4):2453–2460

    PubMed  CAS  Google Scholar 

  • Bron R et al (1993) Role of the M2 protein in influenza virus membrane fusion: effects of amantadine and monensin on fusion kinetics. Virology 195(2):808–811

    Article  PubMed  CAS  Google Scholar 

  • Brown DM et al (2006) CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J Immunol 177(5):2888–2898

    PubMed  CAS  Google Scholar 

  • Caton AJ, Gerhard W (1992) The diversity of the CD4+ T cell response in influenza. Semin Immunol 4(2):85–90

    PubMed  CAS  Google Scholar 

  • Chen BJ et al (2008) The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. J Virol 82(20):10059

    Article  PubMed  CAS  Google Scholar 

  • Chen GL et al (2011) Seasonal influenza infection and live vaccine prime for a response to the 2009 pandemic H1N1 vaccine. Proc Natl Acad Sci USA 108(3):1140–1145

    Article  PubMed  CAS  Google Scholar 

  • Corti D et al (2010) Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J Clin Invest 120(5):1663

    Article  PubMed  CAS  Google Scholar 

  • De Filette M et al (2005) Universal influenza A vaccine: optimization of M2-based constructs. Virology 337(1):149–161

    Article  PubMed  CAS  Google Scholar 

  • De Filette M et al (2008) An influenza A vaccine based on tetrameric ectodomain of matrix protein 2. J Biol Chem 283(17):11382

    Article  PubMed  CAS  Google Scholar 

  • De Filette M et al (2011) Antiserum against the conserved nine amino acid N-terminal peptide of influenza A virus matrix protein 2 is not immunoprotective. J Gen Virol 92(2):301

    Article  PubMed  CAS  Google Scholar 

  • Denis J et al (2008) Development of a universal influenza A vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform. Vaccine 26(27–28):3395–3403

    Article  PubMed  CAS  Google Scholar 

  • Doherty PC et al (2006) Influenza and the challenge for immunology. Nat Immunol 7(5):449

    Article  PubMed  CAS  Google Scholar 

  • Ebrahimi SM, Tebianian M (2010) Influenza A viruses: why focusing on M2e-based universal vaccines. Virus Genes 42(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Ebrahimi SM et al (2010) Cloning, expression and purification of the influenza A (H9N2) virus M2e antigen and truncated Mycobacterium tuberculosis HSP70 as a fusion protein in Pichia pastoris. Protein Expr Purif 70(1):7–12

    Article  PubMed  CAS  Google Scholar 

  • Eichelberger M et al (1991) Clearance of influenza virus respiratory infection in mice lacking class I major histocompatibility complex-restricted CD8+ T cells. J Exp Med 174(4):875

    Article  PubMed  CAS  Google Scholar 

  • Ekiert DC et al (2009) Antibody recognition of a highly conserved influenza virus epitope. Science 324(5924):246

    Article  PubMed  CAS  Google Scholar 

  • El Bakkouri K et al (2010) Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. J Immunol 186(2):1022–1031

    Article  PubMed  CAS  Google Scholar 

  • El Bakkouri K et al (2011) Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. J Immunol 186(2):1022

    Article  PubMed  CAS  Google Scholar 

  • Eliasson DG et al (2008) CTA1-M2e-DD: a novel mucosal adjuvant targeted influenza vaccine. Vaccine 26(9):1243–1252

    Article  PubMed  CAS  Google Scholar 

  • Epstein SL (2006) Prior H1N1 influenza infection and susceptibility of Cleveland Family Study participants during the H2N2 pandemic of 1957: an experiment of nature. J Infect Dis 193(1):49–53

    Article  PubMed  Google Scholar 

  • Fan J et al (2004) Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine 22(23–24):2993–3003

    Article  PubMed  CAS  Google Scholar 

  • Fedson DS (1996) Evaluating the impact of influenza vaccination. A North American perspective. Pharmacoeconomics 9:54

    Article  PubMed  Google Scholar 

  • Feng JQ et al (2006) Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2. Virol J 3(1):102

    Article  PubMed  CAS  Google Scholar 

  • Fiers W et al (2009) M2e-based universal influenza A vaccine. Vaccine 27(45):6280

    Article  PubMed  CAS  Google Scholar 

  • Fouchier RAM et al (2005) Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79(5):2814

    Article  PubMed  CAS  Google Scholar 

  • Frace AM et al (1999) Modified M2 proteins produce heterotypic immunity against influenza A virus. Vaccine 17(18):2237–2244

    Article  PubMed  CAS  Google Scholar 

  • Friesen RHE et al (2010) New class of monoclonal antibodies against severe influenza: prophylactic and therapeutic efficacy in ferrets. PLoS One 5(2):e9106

    Article  PubMed  CAS  Google Scholar 

  • Fu TM et al (2009a) Characterizations of four monoclonal antibodies against M2 protein ectodomain of influenza A virus. Virology 385(1):218

    Article  PubMed  CAS  Google Scholar 

  • Fu TM et al (2009b) Comparative immunogenicity evaluations of influenza A virus M2 peptide as recombinant virus like particle or conjugate vaccines in mice and monkeys. Vaccine 27(9):1440

    Article  PubMed  CAS  Google Scholar 

  • Furuse Y et al (2009) Evolution of the M gene of the influenza A virus in different host species: large-scale sequence analysis. Virol J 6:67

    Article  PubMed  CAS  Google Scholar 

  • Gannagé M et al (2009) Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe 6(4):367–380

    Article  PubMed  CAS  Google Scholar 

  • Ge X et al (2010) Assessment of seasonal influenza A virus-specific CD4 T-cell responses to 2009 pandemic H1N1 swine-origin influenza A virus. J Virol 84(7):3312–3319

    Article  PubMed  CAS  Google Scholar 

  • Gerhard W et al (1981) Antigenic structure of influenza virus haemagglutinin defined by hybridoma antibodies. Nature 290(5808):713–717

    Article  PubMed  CAS  Google Scholar 

  • Grandea AG et al (2010) Human antibodies reveal a protective epitope that is highly conserved among human and nonhuman influenza A viruses. Proc Natl Acad Sci USA 107(28):12658

    Article  PubMed  CAS  Google Scholar 

  • Grantham ML et al (2009) Palmitoylation of the influenza A virus M2 protein is not required for virus replication in vitro but contributes to virus virulence. J Virol 83(17):8655

    Article  PubMed  CAS  Google Scholar 

  • Graves PN et al (1983) Preparation of influenza virus subviral particles lacking the HA1 subunit of hemagglutinin: unmasking of cross-reactive HA2 determinants. Virology 126(1):106–116

    Article  PubMed  CAS  Google Scholar 

  • Green N et al (1982) Immunogenic structure of the influenza virus hemagglutinin. Cell 28(3):477–487

    Article  PubMed  CAS  Google Scholar 

  • Greenbaum JA et al (2009) Pre-existing immunity against swine-origin H1N1 influenza viruses in the general human population. Proc Natl Acad Sci USA 106(48):20365–20370

    Article  PubMed  CAS  Google Scholar 

  • Guan Z et al (2010) Interaction of Hsp40 with influenza virus M2 protein: implications for PKR signaling pathway. Protein Cell 1(10):944–955

    Article  PubMed  CAS  Google Scholar 

  • Haanen J et al (1999) Selective expansion of cross-reactive Cd8+ memory T cells by viral variants. J Exp Med 190(9):1319

    Article  PubMed  CAS  Google Scholar 

  • Hancock K et al (2009) Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N Engl J Med 361(20):1945

    Article  PubMed  CAS  Google Scholar 

  • Harbury PB et al (1993) A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262(5138):1401

    Article  PubMed  CAS  Google Scholar 

  • Harris A et al (2006) Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc Natl Acad Sci USA 103(50):19123

    Article  PubMed  CAS  Google Scholar 

  • Hobson D et al (1972) The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. J Hyg 70(4):767

    Article  CAS  Google Scholar 

  • Holsinger LJ, Lamb RA (1991) Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Virology 183(1):32

    Article  PubMed  CAS  Google Scholar 

  • Holsinger LJ et al (1994) Influenza A virus M2 ion channel protein: a structure-function analysis. J Virol 68(3):1551

    PubMed  CAS  Google Scholar 

  • Holsinger LJ et al (1995) Analysis of the posttranslational modifications of the influenza virus M2 protein. J Virol 69(2):1219

    PubMed  CAS  Google Scholar 

  • Huleatt JW et al (2008) Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine 26(2):201–214

    Article  PubMed  CAS  Google Scholar 

  • Ikonen N et al (2010) High frequency of cross-reacting antibodies against 2009 pandemic influenza A(H1N1) virus among the elderly in Finland. Euro Surveill 15(5):19478

    PubMed  Google Scholar 

  • Iwatsuki-Horimoto K et al (2006) The cytoplasmic tail of the influenza A virus M2 protein plays a role in viral assembly. J Virol 80(11):5233

    Article  PubMed  CAS  Google Scholar 

  • Jegerlehner A et al (2004) Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J Immunol 172(9):5598

    PubMed  CAS  Google Scholar 

  • Johansson BE, Kilbourne ED (1993) Dissociation of influenza virus hemagglutinin and neuraminidase eliminates their intravirionic antigenic competition. J Virol 67(10):5721

    PubMed  CAS  Google Scholar 

  • Johansson BE, Kilbourne ED (1996) Immunization with dissociated neuraminidase, matrix, and nucleoproteins from influenza A virus eliminates cognate help and antigenic competition. Virology 225(1):136

    Article  PubMed  CAS  Google Scholar 

  • Johansson BE, Moran TM, Kilbourne ED (1987) Antigen-presenting B cells and helper T cells cooperatively mediate intravirionic antigenic competition between influenza A virus surface glycoproteins. Proc Natl Acad Sci USA 84(19):6869

    Article  PubMed  CAS  Google Scholar 

  • Kashyap AK et al (2008) Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies. Proc Natl Acad Sci USA 105(16):5986

    Article  PubMed  CAS  Google Scholar 

  • Khurana S et al (2009) Antigenic fingerprinting of H5N1 avian influenza using convalescent sera and monoclonal antibodies reveals potential vaccine and diagnostic targets. PLoS Med 6(4):e1000049

    Article  PubMed  CAS  Google Scholar 

  • Kilbourne ED, Schulman JL (1965) The induction of broadened (multitypic) immunity with doubly antigenic influenza virus recombinants. Trans Assoc Am Physicians 78:323

    PubMed  CAS  Google Scholar 

  • Kitikoon P, Strait EL, Thacker EL (2008) The antibody responses to swine influenza virus (SIV) recombinant matrix 1 (rM1), matrix 2 (M2), and hemagglutinin (HA) proteins in pigs with different SIV exposure. Vet Microbiol 126(1–3):51

    Article  PubMed  CAS  Google Scholar 

  • Kitikoon P et al (2009) Swine influenza matrix 2 (M2) protein contributes to protection against infection with different H1 swine influenza virus (SIV) isolates. Vaccine 28(2):523–531

    Article  PubMed  CAS  Google Scholar 

  • Knossow M, Skehel JJ (2006) Variation and infectivity neutralization in influenza. Immunology 119(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Kovacsovics-Bankowski M et al (1993) Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc Natl Acad Sci USA 90(11):4942–4946

    Article  PubMed  CAS  Google Scholar 

  • Kreijtz JH et al (2007) Primary influenza A virus infection induces cross-protective immunity against a lethal infection with a heterosubtypic virus strain in mice. Vaccine 25(4):612–620

    Article  PubMed  CAS  Google Scholar 

  • Kreijtz JH et al (2009) Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus. Vaccine 27(36):4983–4989

    Article  PubMed  CAS  Google Scholar 

  • Kresse H, Rovini H (2009) Influenza vaccine market dynamics. Nat Rev Drug Discov 8(11):841–842

    Article  PubMed  CAS  Google Scholar 

  • Krystal M et al (1982) Evolution of influenza A and B viruses: conservation of structural features in the hemagglutinin genes. Proc Natl Acad Sci USA 79(15):4800

    Article  PubMed  CAS  Google Scholar 

  • Lamb RA, Choppin PW (1981) Identification of a second protein (M2) encoded by RNA segment 7 of influenza virus. Virology 112(2):729–737

    Article  PubMed  CAS  Google Scholar 

  • Lamb RA, Zebedee SL, Richardson CD (1985) Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell 40(3):627–633

    Article  PubMed  CAS  Google Scholar 

  • Laurie KL et al (2010) Multiple infections with seasonal influenza A virus induce cross-protective immunity against A(H1N1) pandemic influenza virus in a ferret model. J Infect Dis 202(7):1011–1020

    Article  PubMed  Google Scholar 

  • Lee LY et al (2008) Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. J Clin Invest 118(10):3478–3490

    PubMed  CAS  Google Scholar 

  • Leser GP, Lamb RA (2005) Influenza virus assembly and budding in raft-derived microdomains: a quantitative analysis of the surface distribution of HA, NA and M2 proteins. Virology 342(2):215–227

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Zou P, Chen YH (2004) Monoclonal antibodies recognizing EVETPIRN epitope of influenza A virus M2 protein could protect mice from lethal influenza A virus challenge. Immunol Lett 93(2–3):131

    Article  PubMed  CAS  Google Scholar 

  • Liu W et al (2005) Sequence comparison between the extracellular domain of M2 protein human and avian influenza A virus provides new information for bivalent influenza vaccine design. Microbes Infect 7(2):171–177

    Article  PubMed  CAS  Google Scholar 

  • Lowin B et al (1994) Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370(6491):650–652

    Article  PubMed  CAS  Google Scholar 

  • Ludwig C, Wagner R (2007) Virus-like particles–universal molecular toolboxes. Curr Opin Biotechnol 18(6):537–545

    Article  PubMed  CAS  Google Scholar 

  • Lukacher AE, Braciale VL, Braciale TJ (1984) In vivo effector function of influenza virus-specific cytotoxic T lymphocyte clones is highly specific. J Exp Med 160(3):814

    Article  PubMed  CAS  Google Scholar 

  • Lundegaard C, Nielsen M, Lund O (2006) The validity of predicted T-cell epitopes. Trends Biotechnol 24(12):537–538

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie CD, Taylor PM, Askonas BA (1989) Rapid recovery of lung histology correlates with clearance of influenza virus by specific CD8+ cytotoxic T cells. Immunology 67(3):375

    PubMed  CAS  Google Scholar 

  • Marshall D et al (1999) TH cells primed during influenza virus infection provide help for qualitatively distinct antibody responses to subsequent immunization. J Immunol 163(9):4673–4682

    PubMed  CAS  Google Scholar 

  • Martinez O, Tsibane T, Basler CF (2009) Neutralizing anti-influenza virus monoclonal antibodies: therapeutics and tools for discovery. Int Rev Immunol 28(1–2):69–92

    Article  PubMed  CAS  Google Scholar 

  • McElhaney JE et al (2006) T cell responses are better correlates of vaccine protection in the elderly. J Immunol 176(10):6333–6339

    PubMed  CAS  Google Scholar 

  • McMichael AJ et al (1983) Cytotoxic T-cell immunity to influenza. N Engl J Med 309(1):13–17

    Article  PubMed  CAS  Google Scholar 

  • McVernon J et al (2011) Absence of cross-reactive antibodies to influenza A (H1N1) 2009 before and after vaccination with 2009 Southern Hemisphere seasonal trivalent influenza vaccine in children aged 6 months-9 years: a prospective study. Influenza Other Respi Viruses 5(1):7–11

    Article  PubMed  Google Scholar 

  • Mi SF, Li Y, Yan JH (2010) Na+/K+-ATPase 1 subunit interacts with M2 proteins of influenza A and B viruses and affects the virus replication. Sci China Life Sci 53:1098–1105

    Article  PubMed  CAS  Google Scholar 

  • Miller E et al (2010) Incidence of 2009 pandemic influenza A H1N1 infection in England: a cross-sectional serological study. Lancet 375(9720):1100–1108

    Article  PubMed  Google Scholar 

  • Min Jou W et al (1980) Complete structure of the hemagglutinin gene from the human influenza A/Victoria/3/75 (H3N2) strain as determined from cloned DNA. Cell 19(3):683

    Article  Google Scholar 

  • Misplon JA et al (2010) Genetic control of immune responses to influenza A matrix 2 protein (M2). Vaccine 28(36):5817–5827

    Article  PubMed  CAS  Google Scholar 

  • Moise L, De Groot AS (2006) Putting immunoinformatics to the test. Nat Biotechnol 24(7):791–792

    Article  PubMed  CAS  Google Scholar 

  • Moris P et al (2010) H5N1 influenza vaccine formulated with AS03 A induces strong cross-reactive and polyfunctional CD4 T-cell responses. J Clin Immunol 31(3):443–54

    Google Scholar 

  • Moutaftsi M et al (2006) A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. Nat Biotechnol 24(7):817–819

    Article  PubMed  CAS  Google Scholar 

  • Mozdzanowska K et al (2003) Induction of influenza type A virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2. Vaccine 21(19–20):2616–2626

    Article  PubMed  CAS  Google Scholar 

  • Mozdzanowska K et al (2007) Roles of adjuvant and route of vaccination in antibody response and protection engendered by a synthetic matrix protein 2-based influenza A virus vaccine in the mouse. Virol J 4(1):118

    Article  PubMed  CAS  Google Scholar 

  • Nayak B et al (2010) Contributions of the avian influenza virus HA, NA, and M2 surface proteins to the induction of neutralizing antibodies and protective immunity. J Virol 84(5):2408

    Article  PubMed  CAS  Google Scholar 

  • Neirynck S et al (1999) A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med 5(10):1157–1163

    Article  PubMed  CAS  Google Scholar 

  • Nemchinov LG, Natilla A (2007) Transient expression of the ectodomain of matrix protein 2 (M2e) of avian influenza A virus in plants. Protein Expr Purif 56(2):153–159

    Article  PubMed  CAS  Google Scholar 

  • Okada A, Miura T, Takeuchi H (2001) Protonation of histidine and histidine-tryptophan interaction in the activation of the M2 Ion channel from influenza A virus. Biochemistry 40(20):6053–6060

    Article  PubMed  CAS  Google Scholar 

  • Okuno Y et al (1990) Rapid focus reduction neutralization test of influenza A and B viruses in microtiter system. J Clin Microbiol 28(6):1308

    PubMed  CAS  Google Scholar 

  • Okuno Y et al (1993) A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J Virol 67(5):2552

    PubMed  CAS  Google Scholar 

  • Okuno Y et al (1994) Protection against the mouse-adapted A/FM/1/47 strain of influenza A virus in mice by a monoclonal antibody with cross-neutralizing activity among H1 and H2 strains. J Virol 68(1):517

    PubMed  CAS  Google Scholar 

  • Park EK et al (1998) The M2 ectodomain is important for its incorporation into influenza A virions. J Virol 72(3):2449

    PubMed  CAS  Google Scholar 

  • Pejoski D et al (2010) A lipopeptide based on the M2 and HA proteins of influenza A viruses induces protective antibody. Immunol Cell Biol 88(5):605–611

    Article  PubMed  CAS  Google Scholar 

  • Peters B et al (2005) The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol 3(3):e91

    Article  PubMed  CAS  Google Scholar 

  • Riedl K et al (2008) The novel adjuvant IC31 strongly improves influenza vaccine-specific cellular and humoral immune responses in young adult and aged mice. Vaccine 26(27–28):3461

    Article  PubMed  CAS  Google Scholar 

  • Rimmelzwaan GF et al (2000) A randomized, double blind study in young healthy adults comparing cell mediated and humoral immune responses induced by influenza ISCOM vaccines and conventional vaccines. Vaccine 19(9–10):1180

    Article  PubMed  CAS  Google Scholar 

  • Rimmelzwaan GF et al (2004) Sequence variation in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. Virus Res 103(1–2):97–100

    Article  PubMed  CAS  Google Scholar 

  • Rossman JS et al (2010a) Influenza virus M2 ion channel protein is necessary for filamentous virion formation. J Virol 84(10):5078

    Article  PubMed  CAS  Google Scholar 

  • Rossman JS et al (2010b) Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 142(6):902–913

    Article  PubMed  CAS  Google Scholar 

  • Russell CJ, Webster RG (2005) The genesis of a pandemic influenza virus. Cell 123(3):368

    Article  PubMed  CAS  Google Scholar 

  • Sagawa H et al (1996) The immunological activity of a deletion mutant of influenza virus haemagglutinin lacking the globular region. J Gen Virol 77(7):1483

    Article  PubMed  CAS  Google Scholar 

  • Scherle PA, Gerhard W (1988) Differential ability of B cells specific for external vs. internal influenza virus proteins to respond to help from influenza virus-specific T-cell clones in vivo. Proc Natl Acad Sci USA 85(12):4446

    Article  PubMed  CAS  Google Scholar 

  • Scherle PA, Palladino G, Gerhard W (1992) Mice can recover from pulmonary influenza virus infection in the absence of class I-restricted cytotoxic T cells. J Immunol 148(1):212

    PubMed  CAS  Google Scholar 

  • Schotsaert M et al (2009) Universal M2 ectodomain-based influenza A vaccines: preclinical and clinical developments. Expert Rev Vaccines 8(4):499

    Article  PubMed  CAS  Google Scholar 

  • Schuurhuis DH et al (2002) Antigen-antibody immune complexes empower dendritic cells to efficiently prime specific CD8+ CTL responses in vivo. J Immunol 168(5):2240–2246

    PubMed  CAS  Google Scholar 

  • Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69(1):531–569

    Article  PubMed  CAS  Google Scholar 

  • Skehel JJ et al (1980) Studies on the Structure of the Haemagglutinin. Phil Trans Roy Soc Lond B Biol Sci 288(1029):335–339

    Article  CAS  Google Scholar 

  • Slepushkin VA et al (1995) Protection of mice against influenza A virus challenge by vaccination with baculovirus-expressed M2 protein. Vaccine 13(15):1399–1402

    Article  PubMed  CAS  Google Scholar 

  • Smirnov YA et al (2000) Prevention and treatment of bronchopneumonia in mice caused by mouse-adapted variant of avian H5N2 influenza A virus using monoclonal antibody against conserved epitope in the HA stem region. Arch Virol 145(8):1733–1741

    Article  PubMed  CAS  Google Scholar 

  • Song JM et al (2011a) Vaccination inducing broad and improved cross protection against multiple subtypes of influenza A virus. Proc Natl Acad Sci USA 108(2):757–761

    Article  PubMed  CAS  Google Scholar 

  • Song JM et al (2011b) Influenza virus-like particles containing M2 induce broadly cross protective immunity. PLoS One 6(1):1921–1925

    Google Scholar 

  • Steel J et al (2010a) Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio 1(1):e00018

    Article  PubMed  Google Scholar 

  • Steel J et al (2010b) Transmission of pandemic H1N1 influenza virus and impact of prior exposure to seasonal strains or interferon treatment. J Virol 84(1):21–26

    Article  PubMed  CAS  Google Scholar 

  • Straight TM et al (2008) Antibody contributes to heterosubtypic protection against influenza A-induced tachypnea in cotton rats. Virol J 5:44

    Article  PubMed  CAS  Google Scholar 

  • Subbramanian RA et al (2010) Age-related changes in magnitude and diversity of cross-reactive CD4+ T-cell responses to the novel pandemic H1N1 influenza hemagglutinin. Hum Immunol 71(10):957–963

    Article  PubMed  CAS  Google Scholar 

  • Sui J et al (2009) Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol 16(3):265–273

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Lamb RA (1994) Influenza virus M2 protein ion channel activity stabilizes the native form of fowl plague virus hemagglutinin during intracellular transport. J Virol 68(2):911

    PubMed  CAS  Google Scholar 

  • Teijaro JR et al (2010) Memory CD4 T cells direct protective responses to influenza virus in the lungs through helper-independent mechanisms. J Virol 84(18):9217–9226

    Article  PubMed  CAS  Google Scholar 

  • Throsby M et al (2008) Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS One 3(12):3942

    Article  CAS  Google Scholar 

  • Tissot AC et al (2010) Versatile virus-like particle carrier for epitope based vaccines. PLoS One 5(3):54–60

    Article  CAS  Google Scholar 

  • Tompkins SM et al (2007) Matrix protein 2 vaccination and protection against influenza viruses, including subtype H5N1. Emerg Infect Dis 13(3):426

    Article  PubMed  CAS  Google Scholar 

  • Topham DJ, Tripp RA, Doherty PC (1997) CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J Immunol 159(11):5197–5200

    PubMed  CAS  Google Scholar 

  • Treanor JJ et al (1990) Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice. J Virol 64(3):1375

    PubMed  CAS  Google Scholar 

  • Tu W et al (2010) Cytotoxic T lymphocytes established by seasonal human influenza cross-react against 2009 pandemic H1N1 influenza virus. J Virol 84(13):6527–6535

    Article  PubMed  CAS  Google Scholar 

  • Ulmer JB et al (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259(5102):1745–1749

    Article  PubMed  CAS  Google Scholar 

  • Vareçková E et al (2003) Inhibition of fusion activity of influenza A haemagglutinin mediated by HA2-specific monoclonal antibodies. Arch Virol 148(3):469–486

    Article  PubMed  CAS  Google Scholar 

  • Venkataraman P, Lamb RA, Pinto LH (2005) Chemical rescue of histidine selectivity filter mutants of the M2 ion channel of influenza A virus. J Biol Chem 280(22):21463

    Article  PubMed  CAS  Google Scholar 

  • Verhoeyen M et al (1980) Antigenic drift between the haemagglutinin of the Hong Kong influenza strains A/Aichi/2/68 and A/Victoria/3/75. Nature 286(5775):771

    Article  PubMed  CAS  Google Scholar 

  • Vita R et al (2009) The immune epitope database 2.0. Nucleic Acids Res 38:D854–D862

    Article  PubMed  CAS  Google Scholar 

  • Wack A et al (2008) Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice. Vaccine 26(4):552

    Article  PubMed  CAS  Google Scholar 

  • Wang R et al (2008) Therapeutic potential of a fully human monoclonal antibody against influenza A virus M2 protein. Antivir Res 80(2):168

    Article  PubMed  CAS  Google Scholar 

  • Wang Y et al (2009) Monoclonal antibody recognizing SLLTEVET epitope of M2 protein potently inhibited the replication of influenza A viruses in MDCK cells. Biochem Biophys Res Commun 385(1):118

    Article  PubMed  CAS  Google Scholar 

  • Wang TT et al (2010a) Broadly protective monoclonal antibodies against H3 influenza viruses following sequential immunization with different hemagglutinins. PLoS Pathog 6:e100796

    Google Scholar 

  • Wang TT et al (2010b) Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc Natl Acad Sci USA 107(44):18979

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T et al (2001) Influenza A virus can undergo multiple cycles of replication without M2 ion channel activity. J Virol 75(12):5656

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Watanabe T, Kawaoka Y (2009) Influenza A virus lacking M2 protein as a live attenuated vaccine. J Virol 83(11):5947

    Article  PubMed  CAS  Google Scholar 

  • Waterfield MD et al (1979) Structure of the haemagglutinin of influenza virus. Br Med Bull 35(1):57–63

    PubMed  CAS  Google Scholar 

  • Webster RG et al (1992) Evolution and ecology of influenza A viruses. Microbiol Mol Biol Rev 56(1):152

    CAS  Google Scholar 

  • Wharton SA et al (1994) Role of virion M2 protein in influenza virus uncoating: specific reduction in the rate of membrane fusion between virus and liposomes by amantadine. J Gen Virol 75(4):945

    Article  PubMed  CAS  Google Scholar 

  • White J, Kartenbeck J, Helenius A (1982) Membrane fusion activity of influenza virus. EMBO J 1(2):217

    PubMed  CAS  Google Scholar 

  • WHO (2011) http://www.who.int/mediacentre/factsheets/fs211/en/index.html

  • Wiley DC, Skehel JJ (1987) The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem 56(1):365–394

    Article  PubMed  CAS  Google Scholar 

  • Wiley DC, Wilson IA, Skehel JJ (1981) Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289(5796):373

    Article  PubMed  CAS  Google Scholar 

  • Wrammert J et al (2011) Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med 208(1):181

    Article  PubMed  CAS  Google Scholar 

  • Wu F et al (2007) Characterization of immunity induced by M2e of influenza virus. Vaccine 25(52):8868–8873

    Article  PubMed  CAS  Google Scholar 

  • Wu F et al (2009) Heterosubtypic protection conferred by combined vaccination with M2e peptide and split influenza vaccine. Vaccine 27(43):6095

    Article  PubMed  CAS  Google Scholar 

  • Yap KL, Ada GL, McKenzie IF (1978) Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus. Nature 273(5659):238–239

    Article  PubMed  CAS  Google Scholar 

  • Yetter RA, Barber WH, Small PA Jr (1980) Heterotypic immunity to influenza in ferrets. Infect Immun 29(2):650

    PubMed  CAS  Google Scholar 

  • Zebedee SL, Lamb RA (1988) Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J Virol 62(8):2762

    PubMed  CAS  Google Scholar 

  • Zhang GG et al (2009) Enhancement of mucosal immune response against the M2eHBc+ antigen in mice with the fusion expression products of LTB and M2eHBc+ through mucosal immunization route. Vet Res Commun 33(7):735

    Article  PubMed  Google Scholar 

  • Zhang Z et al (2010) Fusion to chicken C3d enhances the immunogenicity of the M2 protein of avian influenza virus. Virol J 7(1):89

    Article  PubMed  CAS  Google Scholar 

  • Zhao G et al (2010a) Induction of protection against divergent H5N1 influenza viruses using a recombinant fusion protein linking influenza M2e to Onchocerca volvulus activation associated protein-1 (ASP-1) adjuvant. Vaccine 28(44):7233–7240

    Article  PubMed  CAS  Google Scholar 

  • Zhao G et al (2010b) An H5N1 M2e-based multiple antigenic peptide vaccine confers heterosubtypic protection from lethal infection with pandemic 2009 H1N1 virus. Virol J 7:151

    Article  PubMed  CAS  Google Scholar 

  • Zhao G et al (2010c) An M2e-based multiple antigenic peptide vaccine protects mice from lethal challenge with divergent H5N1 influenza viruses. Virol J 7:9

    Article  PubMed  CAS  Google Scholar 

  • Zharikova D et al (2005) Influenza type A virus escape mutants emerge in vivo in the presence of antibodies to the ectodomain of matrix protein 2. J Virol 79(11):6644

    Article  PubMed  CAS  Google Scholar 

  • Zou P, Liu W, Chen YH (2005) The epitope recognized by a monoclonal antibody in influenza A virus M2 protein is immunogenic and confers immune protection. Int Immunopharmacol 5(4):631

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Saelens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Roose, K., Schotsaert, M., Bakkouri, K.E., Schepens, B., Fiers, W., Saelens, X. (2012). Cutting Edge Approaches Toward Novel and Cross-Protective Influenza Vaccines. In: von Gabain, A., Klade, C. (eds) Development of Novel Vaccines. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0709-6_9

Download citation

Publish with us

Policies and ethics