Skip to main content

Pretreatment with Normobaric and Hyperbaric Oxygenation Worsens Cerebral Edema and Neurologic Outcomes in a Murine Model of Surgically Induced Brain Injury

  • Chapter
  • First Online:

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 111))

Abstract

Background: Hyperbaric oxygenation is a readily available treatment modality, and its ability to improve neurological outcomes in a variety of animal models has been demonstrated. This study was designed to investigate the use of a single pretreatment regimen of either hyperbaric oxygenation or normobaric oxygenation to determine its effects in a murine model of surgically induced brain injury (SBI). Materials and Methods: Hyperbaric oxygen (2.5ATM, 1 h), normobaric oxygen (100% FIO2, 1 h) or room air (21% FIO2, 1 h) was applied on CD-1 mice immediately, or at 1, 2 or 3 h followed by SBI or sham surgical operation. Neurological assessment of the animals was done by a blinded observer at 24 and 72 h using a 21-point modified Garcia scale, wire hanging test, and beam balance test. The brain edema was evaluated using brain water content at 24 and 72 h after SBI. Results: There was no statistically significant difference in the mortality rate after treatment compared with the SBI group. The brain water content after SBI was significantly increased in the right (ipsilateral) frontal lobe surrounding the site of surgical resection compared with the sham group. Both hyperbaric and normobaric oxygen treatment significantly increased the brain edema and worsened the neurological outcomes using a 21-point Garcia score compared with the SBI group. The brain edema at 24 h after injury was most pronounced in the group treated with normobaric oxygenation 2 h prior to surgery. These differences disappeared at 72 h after SBI. Conclusion: Immediate pretreatment with either hyperbaric (2.5ATM, 1 h) or normobaric oxygen (100% FIO2, 1 h) increased brain edema and worsened neurological function at 24 h following SBI.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rockswold GL, Ford SE (1985) Preliminary results of a prospective randomized trial for treatment of severely brain-injured patients with hyperbaric oxygen. Minn Med 68:533–535

    PubMed  CAS  Google Scholar 

  2. Rockswold SB, Rockswold GL, Vargo JM, Erickson CA, Sutton RL, Bergman TA, Biros MH (2001) Effects of hyperbaric oxygenation therapy on cerebral metabolism and intracranial pressure in severely brain injured patients. J Neurosurg 94:403–411

    Article  PubMed  CAS  Google Scholar 

  3. Daugherty WP, Levasseur JE, Sun D, Rockswold GL, Bullock MR (2004) Effects of hyperbaric oxygen therapy on cerebral oxygenation and mitochondrial function following moderate lateral fluid-percussion injury in rats. J Neurosurg 101:499–504

    Article  PubMed  Google Scholar 

  4. Mink RB, Dutka AJ (1995) Hyperbaric oxygen after global cerebral ischemia in rabbits does not promote brain lipid peroxidation. Crit Care Med 23:1398–1404

    Article  PubMed  CAS  Google Scholar 

  5. Rockswold SB, Rockswold GL, Defillo A (2007) Hyperbaric oxygen in traumatic brain injury. Neurol Res 29:162–172

    Article  PubMed  Google Scholar 

  6. Veltkamp R, Siebing DA, Sun L, Heiland S, Bieber K, Marti HH, Nagel S, Schwab S, Schwaninger M (2005) Hyperbaric oxygen reduces blood-brain barrier damage and edema after transient focal cerebral ischemia. Stroke 36:1679–1683

    Article  PubMed  Google Scholar 

  7. Calvert JW, Cahill J, Zhang JH (2007) Hyperbaric oxygen and cerebral physiology. Neurol Res 29:132–141

    Article  PubMed  CAS  Google Scholar 

  8. Ren H, Wang W, Ge Z, Zhang J (2001) Clinical, brain electric earth map, endothelin and transcranial ultrasonic Doppler findings after hyperbaric oxygen treatment for severe brain injury. Chin Med J (Engl) 114:387–390

    CAS  Google Scholar 

  9. Buras JA, Reenstra WR (2007) Endothelial-neutrophil interactions during ischemia and reperfusion injury: basic mechanisms of hyperbaric oxygen. Neurol Res 29:127–131

    Article  PubMed  CAS  Google Scholar 

  10. Vlodavsky E, Palzur E, Soustiel JF (2006) Hyperbaric oxygen therapy reduces neuroinflammation and expression of matrix metalloproteinase-9 in the rat model of traumatic brain injury. Neuropathol Appl Neurobiol 32:40–50

    Article  PubMed  CAS  Google Scholar 

  11. Palzur E, Zaaroor M, Vlodavsky E, Milman F, Soustiel JF (2008) Neuroprotective effect of hyperbaric oxygen therapy in brain injury is mediated by preservation of mitochondrial membrane properties. Brain Res 1221:126–133

    Article  PubMed  CAS  Google Scholar 

  12. Ostrowski RP, Colohan AR, Zhang JH (2005) Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 25:554–571

    Article  PubMed  CAS  Google Scholar 

  13. Peng Z, Ren P, Kang Z, Du J, Lian Q, Liu Y, Zhang JH, Sun X (2008) Up-regulated HIF-1alpha is involved in the hypoxic tolerance induced by hyperbaric oxygen preconditioning. Brain Res 1212:71–78

    Article  PubMed  CAS  Google Scholar 

  14. Liu Z, Jiao QF, You C, Che YJ, Su FZ (2006) Effect of hyperbaric oxygen on cytochrome C, Bcl-2 and Bax expression after experimental traumatic brain injury in rats. Chin J Traumatol 9:168–174

    PubMed  CAS  Google Scholar 

  15. Vlodavsky E, Palzur E, Feinsod M, Soustiel JF (2005) Evaluation of the apoptosis-related proteins of the BCL-2 family in the traumatic penumbra area of the rat model of cerebral contusion, treated by hyperbaric oxygen therapy: a quantitative immunohistochemical study. Acta Neuropathol 110:120–126

    Article  PubMed  CAS  Google Scholar 

  16. Nemoto EM, Betterman K (2007) Basic physiology of hyperbaric oxygen in brain. Neurol Res 29:116–126

    Article  PubMed  CAS  Google Scholar 

  17. Niklas A, Brock D, Schober R, Schulz A, Schneider D (2004) Continuous measurements of cerebral tissue oxygen pressure during hyperbaric oxygenation–HBO effects on brain edema and necrosis after severe brain trauma in rabbits. J Neurol Sci 219:77–82

    Article  PubMed  CAS  Google Scholar 

  18. Veltkamp R, Sun L, Herrmann O, Wolferts G, Hagmann S, Siebing DA, Marti HH, Veltkamp C, Schwaninger M (2006) Oxygen therapy in permanent brain ischemia: potential and limitations. Brain Res 1107:185–191

    Article  PubMed  CAS  Google Scholar 

  19. Lee S, Jadhav V, Ayer RE, Rojas H, Hyong A, Lekic T, Tang J, Zhang JH (2009) Dual effects of melatonin on oxidative stress after surgical brain injury in rats. J Pineal Res 46(1):43–48

    Article  PubMed  CAS  Google Scholar 

  20. Demchenko IT, Welty-Wolf KE, Allen BW, Piantadosi CA (2007) Similar but not the same: normobaric and hyperbaric pulmonary oxygen toxicity, the role of nitric oxide. Am J Physiol Lung Cell Mol Physiol 293:L229–L238

    Article  PubMed  CAS  Google Scholar 

  21. Nonaka Y, Shimazawa M, Yoshimura S, Iwama T, Hara H (2008) Combination effects of normobaric hyperoxia and edaravone on focal cerebral ischemia-induced neuronal damage in mice. Neurosci Lett 441:224–228

    Article  PubMed  CAS  Google Scholar 

  22. Qin Z, Song S, Xi G, Silbergleit R, Keep RF, Hoff JT, Hua Y (2007) Preconditioning with hyperbaric oxygen attenuates brain edema after experimental intracerebral hemorrhage. Neurosurg Focus 22:E13

    Article  PubMed  Google Scholar 

  23. Demchenko IT, Boso AE, O’Neill TJ, Bennett PB, Piantadosi CA (2000) Nitric oxide and cerebral blood flow responses to hyperbaric oxygen. J Appl Physiol 88(4):1381–1389

    Google Scholar 

Download references

Acknowledgement

This study is partially supported by NIH NS053407 to J.H. Zhang.

Conflict of interest statement We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Westra, D., Chen, W., Tsuchiyama, R., Colohan, A., Zhang, J.H. (2011). Pretreatment with Normobaric and Hyperbaric Oxygenation Worsens Cerebral Edema and Neurologic Outcomes in a Murine Model of Surgically Induced Brain Injury. In: Zhang, J., Colohan, A. (eds) Intracerebral Hemorrhage Research. Acta Neurochirurgica Supplementum, vol 111. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0693-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0693-8_41

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0692-1

  • Online ISBN: 978-3-7091-0693-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics