Skip to main content

Brain Arteriovenous Malformation Pathogenesis: A Response-to-Injury Paradigm

  • Chapter
  • First Online:
Intracerebral Hemorrhage Research

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 111))

Abstract

Brain arteriovenous malformations (AVMs) are a rare but important cause of intracranial hemorrhage (ICH) in young adults. In this paper, we review both human and animal studies of brain AVM, focusing on the: (1) natural history of AVM hemorrhage, (2) genetic and expression studies of AVM susceptibility and hemorrhage, and (3) strategies for development of a brain AVM model in adult mice. These data target various mechanisms that must act in concert to regulate normal angiogenic response to injury. Based on the various lines of evidence reviewed in this paper, we propose a “response-to-injury” model of brain AVM pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arteriovenous Malformation Study Group (1999) Arteriovenous malformations of the brain in adults. N Engl J Med 340:1812–1818

    Article  Google Scholar 

  2. Al-Shahi R, Fang JS, Lewis SC, Warlow CP (2002) Prevalence of adults with brain arteriovenous malformations: a community based study in Scotland using capture-recapture analysis. J Neurol Neurosurg Psychiatry 73:547–551

    Article  PubMed  CAS  Google Scholar 

  3. Berman MF, Sciacca RR, Pile-Spellman J, Stapf C, Connolly ES Jr, Mohr JP, Young WL (2000) The epidemiology of brain arteriovenous malformations. Neurosurgery 47:389–396

    Article  PubMed  CAS  Google Scholar 

  4. Gabriel RA, Kim H, Sidney S, McCulloch CE, Singh V, Johnston SC, Ko NU, Achrol AS, Zaroff JG, Young WL (2010) Ten-year detection rate of brain arteriovenous malformations in a large, multiethnic, defined population. Stroke 41:21–26

    Article  PubMed  Google Scholar 

  5. Stapf C, Mast H, Sciacca RR, Berenstein A, Nelson PK, Gobin YP, Pile-Spellman J, Mohr JP (2003) The New York Islands AVM Study: design, study progress, and initial results. Stroke 34:e29–e33

    Article  PubMed  CAS  Google Scholar 

  6. Kim H, Sidney S, McCulloch CE, Poon KY, Singh V, Johnston SC, Ko NU, Achrol AS, Lawton MT, Higashida RT, Young WL (2007) Racial/ethnic differences in longitudinal risk of intracranial hemorrhage in brain arteriovenous malformation patients. Stroke 38:2430–2437

    Article  PubMed  Google Scholar 

  7. Hashimoto T, Lawton MT, Wen G, Yang GY, Chaly T Jr, Stewart CL, Dressman HK, Barbaro NM, Marchuk DA, Young WL (2004) Gene microarray analysis of human brain arteriovenous malformations. Neurosurgery 54:410–423

    Article  PubMed  Google Scholar 

  8. Rothbart D, Awad IA, Lee J, Kim J, Harbaugh R, Criscuolo GR (1996) Expression of angiogenic factors and structural proteins in central nervous system vascular malformations. Neurosurgery 38:915–924

    Article  PubMed  CAS  Google Scholar 

  9. Lee CZ, Xue Z, Zhu Y, Yang GY, Young WL (2007) Matrix metalloproteinase-9 inhibition attenuates vascular endothelial growth factor-induced intracranial hemorrhage. Stroke 38:2563–2568

    Article  PubMed  CAS  Google Scholar 

  10. Hashimoto T, Lam T, Boudreau NJ, Bollen AW, Lawton MT, Young WL (2001) Abnormal balance in the angiopoietin-tie2 system in human brain arteriovenous malformations. Circ Res 89:111–113

    Article  PubMed  CAS  Google Scholar 

  11. Chen Y, Fan Y, Poon KY, Achrol AS, Lawton MT, Zhu Y, McCulloch CE, Hashimoto T, Lee C, Barbaro NM, Bollen AW, Yang GY, Young WL (2006) MMP-9 expression is associated with leukocytic but not endothelial markers in brain arteriovenous malformations. Front Biosci 11:3121–3128

    Article  PubMed  CAS  Google Scholar 

  12. Hashimoto T, Wen G, Lawton MT, Boudreau NJ, Bollen AW, Yang GY, Barbaro NM, Higashida RT, Dowd CF, Halbach VV, Young WL (2003) Abnormal expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in brain arteriovenous malformations. Stroke 34:925–931

    Article  PubMed  CAS  Google Scholar 

  13. Chen Y, Pawlikowska L, Yao JS, Shen F, Zhai W, Achrol AS, Lawton MT, Kwok PY, Yang GY, Young WL (2006) Interleukin-6 involvement in brain arteriovenous malformations. Ann Neurol 59:72–80

    Article  PubMed  CAS  Google Scholar 

  14. Chen Y, Zhu W, Bollen AW, Lawton MT, Barbaro NM, Dowd CF, Hashimoto T, Yang GY, Young WL (2008) Evidence of inflammatory cell involvement in brain arteriovenous malformations. Neurosurgery 62:1340–1349

    Article  PubMed  Google Scholar 

  15. Shenkar R, Shi C, Check IJ, Lipton HL, Awad IA (2007) Concepts and hypotheses: inflammatory hypothesis in the pathogenesis of cerebral cavernous malformations. Neurosurgery 61:693–702

    Article  PubMed  Google Scholar 

  16. Gao P, Chen Y, Lawton MT, Barbaro NM, Yang GY, Su H, Ling F, Young WL (2010) Evidence of endothelial progenitor cells in the human brain and spinal cord arteriovenous malformations. Neurosurgery 67:1029–1035

    Google Scholar 

  17. Hao Q, Chen Y, Zhu Y, Fan Y, Palmer D, Su H, Young WL, Yang GY (2007) Neutrophil depletion decreases VEGF-induced focal angiogenesis in the mature mouse brain. J Cereb Blood Flow Metab 27:1853–1860

    Article  PubMed  CAS  Google Scholar 

  18. Hao Q, Liu J, Pappu R, Su H, Rola R, Gabriel RA, Lee CZ, Young WL, Yang GY (2008) Contribution of bone marrow-derived cells associated with brain angiogenesis is primarily through leucocytes and macrophages. Arterioscler Thromb Vasc Biol 28:2151–2157

    Article  PubMed  CAS  Google Scholar 

  19. Nuki Y, Matsumoto MM, Tsang E, Young WL, van Rooijen N, Kurihara C, Hashimoto T (2009) Roles of macrophages in flow-induced outward vascular remodeling. J Cereb Blood Flow Metab 29:495–503

    Article  PubMed  CAS  Google Scholar 

  20. Ota R, Kurihara C, Tsou TL, Young WL, Yeghiazarians Y, Chang M, Mobashery S, Sakamoto A, Hashimoto T (2009) Roles of matrix metalloproteinases in flow-induced outward vascular remodeling. J Cereb Blood Flow Metab 29:1547–1558

    Article  PubMed  CAS  Google Scholar 

  21. Marchuk DA, Srinivasan S, Squire TL, Zawistowski JS (2003) Vascular morphogenesis: tales of two syndromes. Hum Mol Genet 12:R97–R112

    Article  PubMed  CAS  Google Scholar 

  22. Abdalla SA, Letarte M (2006) Hereditary haemorrhagic telangiectasia: current views on genetics and mechanisms of disease. J Med Genet 43:97–110

    Article  PubMed  CAS  Google Scholar 

  23. Gallione CJ, Richards JA, Letteboer TG, Rushlow D, Prigoda NL, Leedom TP, Ganguly A, Castells A, Ploos van Amstel JK, Westermann CJ, Pyeritz RE, Marchuk DA (2006) SMAD4 mutations found in unselected HHT patients. J Med Genet 43:793–797

    Article  PubMed  CAS  Google Scholar 

  24. Kim H, Marchuk DA, Pawlikowska L, Chen Y, Su H, Yang GY, Young WL (2008) Genetic considerations relevant to intracranial hemorrhage and brain arteriovenous malformations. Acta Neurochir Suppl 105:199–206

    Article  PubMed  CAS  Google Scholar 

  25. Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26:328–331

    Article  PubMed  CAS  Google Scholar 

  26. Park SO, Lee YJ, Seki T, Hong KH, Fliess N, Jiang Z, Park A, Wu X, Kaartinen V, Roman BL, Oh SP (2008) ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2 (HHT2). Blood 111:633–642

    Article  PubMed  CAS  Google Scholar 

  27. ten Dijke P, Goumans MJ, Pardali E (2008) Endoglin in angiogenesis and vascular diseases. Angiogenesis 11:79–89

    Article  PubMed  CAS  Google Scholar 

  28. Lux A, Attisano L, Marchuk DA (1999) Assignment of transforming growth factor beta1 and beta3 and a third new ligand to the type I receptor ALK-1. J Biol Chem 274:9984–9992

    Article  PubMed  CAS  Google Scholar 

  29. Barbara NP, Wrana JL, Letarte M (1999) Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274:584–594

    Article  PubMed  CAS  Google Scholar 

  30. Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L, Lowik CW, Ten Dijke P (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120:964–972

    Article  PubMed  CAS  Google Scholar 

  31. Rogers MS, D’Amato RJ (2006) The effect of genetic diversity on angiogenesis. Exp Cell Res 312:561–574

    Article  PubMed  CAS  Google Scholar 

  32. Shaked Y, Bertolini F, Man S, Rogers MS, Cervi D, Foutz T, Rawn K, Voskas D, Dumont DJ, Ben-David Y, Lawler J, Henkin J, Huber J, Hicklin DJ, D’Amato RJ, Kerbel RS (2005) Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 7:101–111

    PubMed  CAS  Google Scholar 

  33. Pawlikowska L, Tran MN, Achrol AS, Ha C, Burchard EG, Choudhry S, Zaroff J, Lawton MT, Castro RA, McCulloch CE, Marchuk DA, Kwok PY, Young WL (2005) Polymorphisms in transforming growth factor-B-related genes ALK1 and ENG are associated with sporadic brain arteriovenous malformations. Stroke 36:2278–2280

    Article  PubMed  CAS  Google Scholar 

  34. Simon M, Franke D, Ludwig M, Aliashkevich AF, Koster G, Oldenburg J, Bostrom A, Ziegler A, Schramm J (2006) Association of a polymorphism of the ACVRL1 gene with sporadic arteriovenous malformations of the central nervous system. J Neurosurg 104:945–949

    Article  PubMed  CAS  Google Scholar 

  35. Simon M, Schramm J, Ludwig M, Ziegler A (2007) Arteriovenous malformation. J Neurosurg 106:732–733, Author reply to letter by Young WL et al

    Google Scholar 

  36. Kim H, Hysi PG, Pawlikowska L, Poon A, Burchard EG, Zaroff JG, Sidney S, Ko NU, Achrol AS, Lawton MT, McCulloch CE, Kwok PY, Young WL (2009) Common variants in interleukin-1-beta gene are associated with intracranial hemorrhage and susceptibility to brain arteriovenous malformation. Cerebrovasc Dis 27:176–182

    Article  PubMed  CAS  Google Scholar 

  37. Pawlikowska L, Tran MN, Achrol AS, McCulloch CE, Ha C, Lind DL, Hashimoto T, Zaroff J, Lawton MT, Marchuk DA, Kwok PY, Young WL (2004) Polymorphisms in genes involved in inflammatory and angiogenic pathways and the risk of hemorrhagic presentation of brain arteriovenous malformations. Stroke 35:2294–2300

    Article  PubMed  CAS  Google Scholar 

  38. Weinsheimer S, Kim H, Pawlikowska L, Chen Y, Lawton MT, Sidney S, Kwok PY, McCulloch CE, Young WL (2009) EPHB4 gene polymorphisms and risk of intracranial hemorrhage in patients with brain arteriovenous malformations. Circ Cardiovasc Genet 2:476–482

    Article  PubMed  CAS  Google Scholar 

  39. Achrol AS, Pawlikowska L, McCulloch CE, Poon KY, Ha C, Zaroff JG, Johnston SC, Lee C, Lawton MT, Sidney S, Marchuk D, Kwok PY, Young WL (2006) Tumor necrosis factor-alpha-238G>A promoter polymorphism is associated with increased risk of new hemorrhage in the natural course of patients with brain arteriovenous malformations. Stroke 37:231–234

    Article  PubMed  CAS  Google Scholar 

  40. Pawlikowska L, Poon KY, Achrol AS, McCulloch CE, Ha C, Lum K, Zaroff J, Ko NU, Johnston SC, Sidney S, Marchuk DA, Lawton MT, Kwok PY, Young WL (2006) Apoliprotein E epsilon2 is associated with new hemorrhage risk in brain arteriovenous malformation. Neurosurgery 58:838–843

    Article  PubMed  Google Scholar 

  41. Achrol AS, Kim H, Pawlikowska L, Poon KY, Ko NU, McCulloch CE, Zaroff JG, Johnston SC, McDermott MW, Lawton MT, Kwok PY, Young WL (2007) Association of tumor necrosis factor-alpha-238G>A and apolipoprotein E2 polymorphisms with intracranial hemorrhage after brain arteriovenous malformation treatment. Neurosurgery 61:731–739

    Article  PubMed  Google Scholar 

  42. Krebs LT, Starling C, Chervonsky AV, Gridley T (2010) Notch1 activation in mice causes arteriovenous malformations phenocopied by EphrinB2 and EphB4 mutants. Genesis 48:146–150

    PubMed  CAS  Google Scholar 

  43. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389

    Article  PubMed  CAS  Google Scholar 

  44. Donoso LA, Vrabec T, Kuivaniemi H (2010) The role of complement Factor H in age-related macular degeneration: a review. Surv Ophthalmol 55:227–246

    Article  PubMed  Google Scholar 

  45. Kim H, Pawlikowska L, Weinsheimer S, Kwok PY, Zaroff JG, McCulloch CE, Young WL (2010) Genome-wide association study of intracranial hemorrhage in brain arteriovenous malformation (BAVM) patients [Abstract]. Stroke 41:e11 (P37)

    Google Scholar 

  46. Shenkar R, Elliott JP, Diener K, Gault J, Hu LJ, Cohrs RJ, Phang T, Hunter L, Breeze RE, Awad IA (2003) Differential gene expression in human cerebrovascular malformations. Neurosurgery 52:465–478

    Article  PubMed  Google Scholar 

  47. Giusti B, Rossi L, Lapini I, Magi A, Pratesi G, Lavitrano M, Biasi GM, Pulli R, Pratesi C, Abbate R (2009) Gene expression profiling of peripheral blood in patients with abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 38:104–112

    Article  PubMed  CAS  Google Scholar 

  48. Sinnaeve PR, Donahue MP, Grass P, Seo D, Vonderscher J, Chibout SD, Kraus WE, Sketch M Jr, Nelson C, Ginsburg GS, Goldschmidt-Clermont PJ, Granger CB (2009) Gene expression patterns in peripheral blood correlate with the extent of coronary artery disease. PLoS ONE 4:e7037

    Article  PubMed  Google Scholar 

  49. Wang Y, Barbacioru CC, Shiffman D, Balasubramanian S, Iakoubova O, Tranquilli M, Albornoz G, Blake J, Mehmet NN, Ngadimo D, Poulter K, Chan F, Samaha RR, Elefteriades JA (2007) Gene expression signature in peripheral blood detects thoracic aortic aneurysm. PLoS ONE 2:e1050

    Article  PubMed  Google Scholar 

  50. Xu H, Tang Y, Liu DZ, Ander BP, Liu X, Apperson M, Ran R, Gregg JP, Pancioli A, Jauch EC, Wagner KR, Verro P, Broderick JP, Sharp FR (2008) Gene expression in peripheral blood differs following cardioembolic compared to large vessel atherosclerotic stroke: biomarkers for the etiology of ischemic stroke. J Cereb Blood Flow Metab 28:1320–1328

    Article  PubMed  CAS  Google Scholar 

  51. Weinsheimer S, Kim H, Pawlikowska L, McCulloch CE, Xu H, Stamova B, Tian Y, Sharp FR, Young WL (2009) Genome-wide expression profiling of human blood reveals biomarkers for hemorrhage in brain arteriovenous malformation patients [Abstract]. American Society of Human Genetics 59th Annual Meeting, Honolulu, HI

    Google Scholar 

  52. Su H, Hao Q, Shen F, Zhu Y, Lee CZ, Young WL, Yang GY (2008) Development of cerebral microvascular dysplasia model in rodents. Acta Neurochir Suppl 105:185–189

    Article  PubMed  CAS  Google Scholar 

  53. Torsney E, Charlton R, Diamond AG, Burn J, Soames JV, Arthur HM (2003) Mouse model for hereditary hemorrhagic telangiectasia has a generalized vascular abnormality. Circulation 107:1653–1657

    Article  PubMed  Google Scholar 

  54. Srinivasan S, Hanes MA, Dickens T, Porteous ME, Oh SP, Hale LP, Marchuk DA (2003) A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2. Hum Mol Genet 12:473–482

    Article  PubMed  CAS  Google Scholar 

  55. Satomi J, Mount RJ, Toporsian M, Paterson AD, Wallace MC, Harrison RV, Letarte M (2003) Cerebral vascular abnormalities in a murine model of hereditary hemorrhagic telangiectasia. Stroke 34:783–789

    Article  PubMed  Google Scholar 

  56. Hao Q, Su H, Marchuk DA, Rola R, Wang Y, Liu W, Young WL, Yang GY (2008) Increased tissue perfusion promotes capillary dysplasia in the ALK1-deficient mouse brain following VEGF stimulation. Am J Physiol Heart Circ Physiol 295:H2250–H2256

    Article  PubMed  CAS  Google Scholar 

  57. Hao Q, Zhu Y, Su H, Shen F, Yang GY, Kim H, Young WL (2010) VEGF induces more severe cerebrovascular dysplasia in Endoglin+/- than in Alk1+/- mice. Transl Stroke Res 1:197–201

    Google Scholar 

  58. Xu B, Wu YQ, Huey M, Arthur HM, Marchuk DA, Hashimoto T, Young WL, Yang GY (2004) Vascular endothelial growth factor induces abnormal microvasculature in the endoglin heterozygous mouse brain. J Cereb Blood Flow Metab 24:237–244

    Article  PubMed  CAS  Google Scholar 

  59. Park SO, Wankhede M, Lee YJ, Choi EJ, Fliess N, Choe SW, Oh SH, Walter G, Raizada MK, Sorg BS, Oh SP (2009) Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest 119:3487–3496

    PubMed  CAS  Google Scholar 

  60. Mahmoud M, Allinson KR, Zhai Z, Oakenfull R, Ghandi P, Adams RH, Fruttiger M, Arthur HM (2010) Pathogenesis of arteriovenous malformations in the absence of endoglin. Circ Res 106:1425–1433

    Article  PubMed  CAS  Google Scholar 

  61. Walker E, Shen F, Halprin R, Connolly S, Nishimura SL, Young WL, Su H (2010) Regional deletion of Smad4 plus VEGF stimulation leads to vascular dysplasia in the adult mouse brain [Abstract]. Stroke 41:e20 (#68)

    Google Scholar 

  62. Lebrin F, Srun S, Raymond K, Martin S, van den Brink S, Freitas C, Breant C, Mathivet T, Larrivee B, Thomas JL, Arthur HM, Westermann CJ, Disch F, Mager JJ, Snijder RJ, Eichmann A, Mummery CL (2010) Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat Med 16:420–428

    Article  PubMed  CAS  Google Scholar 

  63. Zhang G, Zhou J, Fan Q, Zheng Z, Zhang F, Liu X, Hu S (2008) Arterial-venous endothelial cell fate is related to vascular endothelial growth factor and Notch status during human bone mesenchymal stem cell differentiation. FEBS Lett 582:2957–2964

    Article  PubMed  CAS  Google Scholar 

  64. Murphy PA, Lu G, Shiah S, Bollen AW, Wang RA (2009) Endothelial Notch signaling is upregulated in human brain arteriovenous malformations and a mouse model of the disease. Lab Invest 89:971–982

    Article  PubMed  CAS  Google Scholar 

  65. ZhuGe Q, Zhong M, Zheng W, Yang GY, Mao X, Xie L, Chen G, Chen Y, Lawton MT, Young WL, Greenberg DA, Jin K (2009) Notch1 signaling is activated in brain arteriovenous malformation in humans. Brain 132:3231–3241

    Article  PubMed  Google Scholar 

  66. Walker EJ, Su H, Shen F, Choi EJ, Oh SP, Chen G, Lawton MT, Kim H, Chen Y, Chen W, Young WL (2011) Arteriovenous malformation in the adult mouse brain resembling the human disease. Ann Neurol doi: 10.1002/ana.22348

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the UCSF Brain AVM study project members http://avm.ucsf.edu; the other Principal Investigators (Nancy Boudreau, Tomoki Hashimoto, Charles E. McCulloch, Stephen Nishimura) of P01 NS044155 (Young), “Integrative Study of Brain Vascular Malformations”; and Voltaire Gungab for assistance in manuscript preparation. Studies are supported in part by R01 NS034949 (WLY), R01 NS027713 (WLY), and K23 NS058357 (HK).

Conflict of interest statement We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William L. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Kim, H., Su, H., Weinsheimer, S., Pawlikowska, L., Young, W.L. (2011). Brain Arteriovenous Malformation Pathogenesis: A Response-to-Injury Paradigm. In: Zhang, J., Colohan, A. (eds) Intracerebral Hemorrhage Research. Acta Neurochirurgica Supplementum, vol 111. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0693-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0693-8_14

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0692-1

  • Online ISBN: 978-3-7091-0693-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics