Skip to main content

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 37))

Abstract

Neuropathic pain (NP) may become refractory to conservative medical management, necessitating neurosurgical procedures in carefully selected cases. In this context, the functional neurosurgeon must have suitable knowledge of the disease he or she intends to treat, especially its pathophysiology. This latter factor has been studied thanks to advances in the functional exploration of NP, which will be detailed in this review. The study of the flexion reflex is a useful tool for clinical and pharmacological pain assessment and for exploring the mechanisms of pain at multiple levels. The main use of evoked potentials is to confirm clinical, or detect subclinical, dysfunction in peripheral and central somato-sensory pain pathways. LEP and SEP techniques are especially useful when used in combination, allowing the exploration of both pain and somato-sensory pathways. PET scans and fMRI documented rCBF increases to noxious stimuli. In patients with chronic NP, a decreased resting rCBF is observed in the contralateral thalamus, which may be reversed using analgesic procedures. Abnormal pain evoked by innocuous stimuli (allodynia) has been associated with amplification of the thalamic, insular and SII responses, concomitant to a paradoxical CBF decrease in ACC. Multiple PET studies showed that endogenous opioid secretion is very likely to occur as a reaction to pain. In addition, brain opioid receptors (OR) remain relatively untouched in peripheral NP, while a loss of ORs is most likely to occur in central NP, within the medial nociceptive pathways. PET receptor studies have also proved that antalgic Motor Cortex Stimulation (MCS), indicated in severe refractory NP, induces endogenous opioid secretion in key areas of the endogenous opioid system, which may explain one of the mechanisms of action of this procedure, since the secretion is proportional to the analgesic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler LJ, Gyulai FE, Diehl DJ et al. (1997) Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesth Analg 84: 120–126

    PubMed  CAS  Google Scholar 

  2. Allison T, McCarthy G, Wood CC et al. (1989) Human cortical potentials evoked by stimulation of the median nerve II. Cytoarchitectonic areas generating long-latency activity. J Neurophysiol 62: 711–722

    PubMed  CAS  Google Scholar 

  3. Amantini A, Lombardi M, de Scisciolo G et al. (1996) CO2-laser and electric somato-sensory evoked potentials in Friedreich’s ataxia. Electroenceph Clin Neurophysiol 46 (Suppl): 233–240

    CAS  Google Scholar 

  4. Andersen G, Vestergaard K, Ingeman-Nielsen M, Jensen TS (1995) Incidence of central post-stroke pain. Pain 61(2): 187–193

    Article  PubMed  CAS  Google Scholar 

  5. Arendt-Nielsen L (1990) Second pain event related potentials to argon laser stimuli: recording and quantification. J Neurol Neurosurg Psychiatry 53: 405–410

    Article  PubMed  CAS  Google Scholar 

  6. Baron R, Baron Y, Disbrow E, Roberts TPL (1999) Brain processing of capsaicin-induced secondary hyperalgesia. A functional MRI study. Neurology 53: 548–557

    Article  PubMed  CAS  Google Scholar 

  7. Becker DE, Yingling CD, Fein G (1993) Identification of pain, intensity and P300 components in the pain evoked potential. Electroenceph Clin Neurophysiol 88: 290–301

    Article  PubMed  CAS  Google Scholar 

  8. Beydoun A, Dyke DB, Morrow TJ, Casey KL (1996) Topical capsaicin selectively attenuates heat pain and A delta fiber-mediated laser-evoked potentials. Pain 65: 189–196

    Article  PubMed  CAS  Google Scholar 

  9. Boivie J, Leijon G, Johansson I (1989) Central post-stroke pain — a study of the mechanisms through analyses of the sensory abnormalities. Pain 37: 173–185

    Article  PubMed  CAS  Google Scholar 

  10. Bouhassira D, Le Bars D, Bolgert F, Laplane D, Willer JC (1993) Diffuse noxious inhibitory controls in humans: a neurophysiological investigation of a patient with a form of Brown-Sequard syndrome. Ann Neurol 34: 536–543

    Article  PubMed  CAS  Google Scholar 

  11. Boulu P, De Broucker T, Maitre P, Meunier S, Willer JC (1985) Somatosensory evoked potential and pain. I. Late cortical responses obtained at different levels of stimulation. Rev Electroenceph Neurophysiol Clin 15: 19–25

    Article  CAS  Google Scholar 

  12. Boureau F, Willer JC, Albe-Fessard D (1978) Role played in man by myelinated fibers of different diameters for the evocation of a nociceptive flex reflex and the accompanying pain sensation. CR Acad Sci Hebd Seances Acad Sci D 16: 1375–1378

    Google Scholar 

  13. Boureau F, Willer JC, Dehen H (1977) The action of acupuncture on pain. Physiological basis. Nouv Presse Med 6: 1871–1874

    PubMed  CAS  Google Scholar 

  14. Boureau F, Sebille A, Willer JC et al. (1978) Effects of percutaneous heterosegmental electric stimulation (electroacupuncture) on the nociceptive flexion reflex in man. Ann Anesthesiol Fr 19: 422–426

    PubMed  CAS  Google Scholar 

  15. Bowsher D (1996) Central pain: clinical and physiological characteristics. J Neurol Neurosurg Psychiatry 61: 62–69

    Article  PubMed  CAS  Google Scholar 

  16. Bragard D, Chen ACN, Plaghki L (1996) Direct isolation of ultra-late (C-fibre) evoked brain potentials by CO2 laser stimulation of tiny cutaneous surface areas in man. Neurosci Lett 209: 81–84

    Article  PubMed  CAS  Google Scholar 

  17. Bromm B, Frieling A, Lankers J (1991) Laser-evoked brain potentials in patients with dissociated loss of pain and temperature sensibility. Electroenceph Clin Neurophysiol 80: 284–291

    Article  PubMed  CAS  Google Scholar 

  18. Bromm B, Treede RD (1984) Nerve fibers discharges, cerebral potentials and sensations induced by CO2 laser stimulation. Hum Neurobiol 3: 33–40

    PubMed  CAS  Google Scholar 

  19. Bromm B, Treede RD (1987) Pain related cerebral potentials: late and ultralate components. Int J Neurosci 33: 15–23

    Article  PubMed  CAS  Google Scholar 

  20. Buchsbaum MS, Davis GC (1979) Application of somatosensory event-related potentials to experimental pain and the pharmacology of analgesia. In: Lehmann D, Callaway E (eds) Human Evoked Potentials. Plenum Press, New York, pp 43–54

    Chapter  Google Scholar 

  21. Buchsbaum MS, Davis GC, Goodwin FK et al. (1980) Psychophysical pain judgments and somatosensory evoked potentials in patients with affective illness and in normal adults. Adv Biol Psychiatry 4: 63–72

    Google Scholar 

  22. Buckner RL (1998) Event-related fMRI and the hemodynamic response. Hum Brain Map 6: 373–377

    Article  CAS  Google Scholar 

  23. Carmichael ST, Price JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363(4): 615–641

    Article  PubMed  CAS  Google Scholar 

  24. Carmon A, Dotan Y, Sarne Y (1978) Correlation of subjective pain experience with cerebral evoked responses to noxious thermal stimulations. Exp Brain Res 33: 445–453

    Article  PubMed  CAS  Google Scholar 

  25. Carroll D, Joint C, Maartens N et al. (2000) Motor cortex stimulation for chronic neuropathic pain: a preliminary study of 10 cases. Pain 84: 431–437

    Article  PubMed  CAS  Google Scholar 

  26. Casey KL, Beydoun A, Boivie J et al. (1996) Laser-evoked cerebral potentials and sensory function in patients with central pain. Pain 64: 485–491

    Article  PubMed  CAS  Google Scholar 

  27. Chan CW, Tsang H (1987) Inhibition of the human flexion reflex by low intensity, high frequency transcutaneous electrical nerve stimulation (TENS) has a gradual onset and offset. Pain 28: 239–253

    Article  PubMed  CAS  Google Scholar 

  28. Chapman CR, Colpitts YM, Benedeti C et al. (1980) Evoked potential assessment of acupunctural analgesia: attempted reversal with naloxone. Pain 9: 183–197

    Article  PubMed  CAS  Google Scholar 

  29. Chatrian GE, Canfield RC, Knauss TA, Eegt EL (1975) Cerebral responses to electrical tooth pulp stimulation in man. An objective correlate of acute experimental pain. Neurology 25: 745–757

    Article  PubMed  CAS  Google Scholar 

  30. Cheing GL, Hui-Chan CW (1999) Transcutaneous electrical nerve stimulation: nonparallel antinociceptive effects on chronic clinical pain and acute experimental pain. Arch Phys Med Rehabil 80: 305–312

    Article  PubMed  CAS  Google Scholar 

  31. Chen ACN, Chapman CR (1980) Aspirin analgesia evaluated by even-related potentials in man: possible central action in brain. Exp Brain Res 39: 359–364

    Article  PubMed  CAS  Google Scholar 

  32. Coghill RC, Sang CN, Maisog JM, Iadarola MJ (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 82: 1934–1943

    PubMed  CAS  Google Scholar 

  33. Cole JD, Merton WL, Barrett G, Katifi HA, Treede R-D (1995) Evoked potentials in a subject with a large-fiber sensory neuropathy below the neck. Can J Physiol Pharmacol 73: 234–245

    Article  PubMed  CAS  Google Scholar 

  34. Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18: 7426–7435

    PubMed  CAS  Google Scholar 

  35. Cruccu G, Fornarelli M, Inghilleri M, Manfredi M (1983) The limits of tooth pulp evoked potentials for pain quantitation. Physiol Behav 31: 339–342

    Article  PubMed  CAS  Google Scholar 

  36. Cruccu G, Iannetti GD, Agostino R et al. (2000) Conduction velocity of the human spinothalamic tract as assessed by laser evoked potentials. Neuroreport 11: 3029–3032

    Article  PubMed  CAS  Google Scholar 

  37. Cruccu G, Leandri M, Iannetti GD et al. (2001) Small-fiber dysfunction in trigeminal neuralgia: carbamazepine effect on laser-evoked potentials. Neurology 56: 1722–1726

    Article  PubMed  CAS  Google Scholar 

  38. Cruccu G, García-Larrea L (2004) Clinical utility of laser-evoked potentials. In: Hallett M, Phillips LH, Schomer DL, Massey JM (eds) Advances in evoked potentials. Clinical Neurophysiology Supplement, Vol. 57. Elsevier, Amsterdam, Chap. 12

    Google Scholar 

  39. De Broucker T, Cesaro P, Willer JC, Le Bars D (1990) Diffuse noxious inhibitory controls in man. Involvement of the spinoreticular tract. Brain 113: 1223–1234

    Article  PubMed  Google Scholar 

  40. Dellemijn PLI, Vanneste JAL (1997) Randomised double blind active-placebo-controlled crossover trial of intravenous fentanyl in neuropathic pain. Lancet 340: 753–758

    Article  Google Scholar 

  41. Dellemijn PLI, VanDuijn H, Vanneste JAL (1998) Prolonged treatment with transderma1 fentanyl in neuropathic pain. J Pain Symptom Manage 16: 220–229

    Article  PubMed  CAS  Google Scholar 

  42. Derbyshire SW, Jones AK, Collins M et al. (1999) Cerebral responses to pain in patients suffering acute postdental extraction pain measured by positron emission tomography (PET). Eur J Pain 3: 103–113

    Article  PubMed  Google Scholar 

  43. Devor M, Carmon A, Frostig R (1982) Primary afferent and spinal neurons that respond to brief pulses of intense infrared laser radiation: a preliminary survey in rats. Exp Neurol 76: 483–494

    Article  PubMed  CAS  Google Scholar 

  44. Dias RJ, Souza L, Morais WF, Carneiro AP (2004) SEP diagnosing neuropathy of the lateral cutaneous branch of the iliohypogastric nerve: case report. Arq Neuropsiquiatry 62: 895–898

    Article  Google Scholar 

  45. Di Piero V, Jones AK, Iannotti F et al. (1991) Chronic pain: a PET study of the central effects of percutaneous high cervical cordotomy. Pain 46: 9–12

    Article  PubMed  Google Scholar 

  46. Dostrovsky JO, Hutchison WD, Davis KD, Lozano A (1995) Potential role of orbital and cingulate cortices in nociception. In: Besson JM, Guilbaud G, Ollat H (eds) Forebrain areas involved in pain processing. John Libbey Eurotext, Paris, pp 171–181

    Google Scholar 

  47. Duncan G, Kupers RC, Marchand S et al. (1998) Stimulation of human thalamus for pain relief: possible modulatory circuits revealed by positron emission tomography. J Neurophysiol 80: 3326–3330

    PubMed  CAS  Google Scholar 

  48. Ertekin C, Ertekin N, Karcioglu M (1975) Conduction velocity along human nociceptive reflex afferent nerve fibers. J Neurol Neurosurg Psychiatry 38: 959–965

    Article  PubMed  CAS  Google Scholar 

  49. Esteban A, Traba A (1990) Post-radiation brachial plexus disease. Clinical and neurophysiological study. Arch Neurobiol (Madr) 53: 23–32

    CAS  Google Scholar 

  50. Facchinetti F, Sandrini G, Petraglia F et al. (1984) Concomitant increase in nociceptive flexion reflex threshold and plasma opioids following transcutaneous nerve stimulation. Pain 19: 295–303

    Article  PubMed  CAS  Google Scholar 

  51. Fernandes de Lima VM, Chatrian GE, Lettich E et al. (1982) Electrical stimulation of tooth pulp in humans. I. Relationship among physical stimulus intensities, psychological magnitude estimates and cerebral evoked potentials. Pain 14: 207–232

    Google Scholar 

  52. Firestone LL, Gyulai F, Mintun M et al. (1996) Human brain activity response to fentanyl imaged by positron emission tomography. Anesth Analg 82: 1247–1251

    PubMed  CAS  Google Scholar 

  53. García-Larrea L, Charles N, Sindou M, Mauguière F (1993) Flexion reflexes following anterolateral cordotomy in man: dissociation between pain sensation and nociceptive reflex RIII. Pain 55: 139–149

    Article  PubMed  Google Scholar 

  54. García-Larrea L, Convers P, Magnin M et al. (2002) Laser-evoked potential abnormalities in central pain patients: the influence of spontaneous and provoked pain. Brain 125: 2766–2781

    Article  PubMed  Google Scholar 

  55. García-Larrea L, Mauguière F (1990) Electrophysiological assessment of nociception in normals and patients: the use of nociceptive reflexes. Electroencephalogr Clin Neurophysiol (Suppl) 41: 102–118

    Google Scholar 

  56. García-Larrea L, Mauguière F (1990) Short-latency somatosensory evoked potentials. In: Colon E, Visser SL (eds) Evoked potential manual. Kluwer Academic, Dordrecht, pp 221–278

    Chapter  Google Scholar 

  57. García-Larrea L, Peyron R, Laurent B, Mauguière F (1997) Association and dissociation between laser-evoked potentials and pain perception. Neuroreport 8: 3785–3789

    Article  PubMed  Google Scholar 

  58. García-Larrea L, Peyron R, Mertens P et al. (1999) Electrical stimulation of motor cortex for pain control: a combined PET scan and electrophysiological study. Pain 83: 259–273

    Article  PubMed  Google Scholar 

  59. García-Larrea L, Peyron R, Mertens P et al. (2000) Functional imaging and neurophysiological assessment of spinal and brain therapeutic modulation in humans. Arch Med Res 31: 248–257

    Article  PubMed  Google Scholar 

  60. García-Larrea L, Sindou M, Mauguière F (1989) Clinical use of nociception flexion reflex recording in the evaluation of functional neurosurgical procedures. Acta Neurochir (Suppl) 46: 53–57

    Article  Google Scholar 

  61. García-Larrea L, Sindou M, Mauguière F (1989) Nociceptive flexion reflexes during analgesic neurostimulation in man. Pain 39: 145–156

    Article  PubMed  Google Scholar 

  62. Graff-Radford NR, Damasio H, Yamada T et al. (1985) Nonhaemorrhagic thalamic infarction. Clinical, neuropsychological and electrophysiological findings in four anatomical groups defined by computerized tomography. Brain 108: 485–516

    Article  PubMed  Google Scholar 

  63. Hansen C, Treede RD, Lorenz J et al. (1996) Recovery from brainstem lesions involving the nociceptive pathways: comparison of clinical findings with laser-evoked potentials. J Clin Neurophysiol 13: 330–338

    Article  PubMed  CAS  Google Scholar 

  64. Harkins SW, Chapman CR (1978) Cerebral evoked potentials to noxious dental stimulation: relationship to subjective pain report. Psychophysiology 15: 248–252

    Article  PubMed  CAS  Google Scholar 

  65. Hartmann-von Monakow K, Akert K, Künzle H (1979) Projections of precentral and premotor cortex to the red nucleus and other midbrain areas in macaca fascicularis. Exp Brain Res 34: 91–105

    Google Scholar 

  66. Hautvast RWM, Terhorst GJ, Dejong BM et al. (1997) Relative changes in regional cerebral blood flow during spinal cord stimulation in patients with refractory angina pectoris. Eur J Neurosci 9: 1178–1183

    Article  PubMed  CAS  Google Scholar 

  67. Hsieh JC, Belfrage M, Stone-Elander S, Hansson P, Ingvar M (1995) Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain 63: 225–236

    Article  PubMed  CAS  Google Scholar 

  68. Hugon M (1973) Exteroceptive reflexes to stimulation of the sural nerve in normal man. In: Desmedt JE (ed) New developments in electromyography and clinical neurophysiology, Vol. III. Karger, Basel, pp 713–729

    Google Scholar 

  69. Iadarola MJ, Berman KF, Zeffiro TA et al. (1998) Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain 121: 931–947

    Article  PubMed  Google Scholar 

  70. Iadarola MJ, Max MB, Berman KF et al. (1995) Unilateral decrease in thalamic activity observed with positron emission tomography in patients with chronic neuropathic pain. Pain 63: 55–64

    Article  PubMed  CAS  Google Scholar 

  71. Iannetti GD, Truini A, Romaniello A et al. (2003) Evidence of a specific spinal pathway for the sense of warmth in humans. J Neurophysiol 89: 562–570

    Article  PubMed  CAS  Google Scholar 

  72. Iriki A, Tanaka M, Iwamura Y (1996) Attention-induced neuronal activity in the monkey somatosensory cortex revealed by pupillometrics. Neurosci Res 25: 173–181

    PubMed  CAS  Google Scholar 

  73. Itskovich VV, Fei DY, Harkins SW (2000) Psychophysiological and psychophysical responses to experimental pain induced by two types of cutaneous thermal stimuli. Intl J Neurosci 105: 63–75

    Article  CAS  Google Scholar 

  74. Jeanmonod D, Magnin M, Morel A (1993) Thalamus and neurogenic pain: physiological, anatomical and clinical data. Neuroreport 4(5): 475–478

    Article  PubMed  CAS  Google Scholar 

  75. Jones AKP, Cunningham VJ, Ha-Kawa S et al. (1994) Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br J Rheumatol 33(10): 909–916

    Article  PubMed  CAS  Google Scholar 

  76. Jones AKP, Derbyshire SW (1997) Reduced cortical responses to noxious heat in patients with rheumatoid arthritis. Ann Rheum Dis 56: 601–607

    Article  PubMed  CAS  Google Scholar 

  77. Jones AKP, Watabe H, Cunningham VJ et al. (2004) Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur J Pain 8: 479–485

    Article  PubMed  CAS  Google Scholar 

  78. Kakigi R, Kuroda Y, Neshige R et al. (1992) Physiological study of the spinothalamic tract conduction in multiple sclerosis. J Neurol Sci 107: 205–209

    Article  PubMed  CAS  Google Scholar 

  79. Kakigi R, Kuroda Y, Takashima H et al. (1992) Physiological functions of the ascending spinal tracts in HTLV-I-associated myelopathy (HAM). Electroenceph Clin Neurophysiol 84: 110–114

    Article  PubMed  CAS  Google Scholar 

  80. Kakigi R, Shibasaki H, Ikeda A et al. (1992) Pain-related somatosensory evoked potentials following CO2 laser stimulation in peripheral neuropathies. Acta Neurol Scand 85: 347–352

    Article  PubMed  CAS  Google Scholar 

  81. Kakigi R, Shibasaki H, Kuroda Yet al. (1991) Pain-related somatosensory evoked potentials in syringomyelia. Brain 114: 1871–1889

    Article  PubMed  Google Scholar 

  82. Kakigi R, Shibasaki H, Tanaka K et al. (1991) CO2 laser-induced pain-related somatosensory evoked potentials in peripheral neuropathies: correlation between electrophysiological and histopathological findings. Muscle Nerve 14: 441–450

    Article  PubMed  CAS  Google Scholar 

  83. Kanda M, Mima T, Xu X et al. (1996) Pain-related somatosensory evoked potentials can quantitatively evaluate hypalgesia in Wallenberg’s syndrome. Acta Neurol Scand 94: 131–136

    Article  PubMed  CAS  Google Scholar 

  84. Landau W, Bishop GH (1953) Pain from dermal, periosteal and fascial endings and from inflammation: electrophysiological study employing different nerve blocks. Arch Neurol Psychiatry 69: 490–504

    Article  CAS  Google Scholar 

  85. Lefaucheur JP, Brusa A, Creange A et al. (2002) Clinical application of laser evoked potentials using the Nd:YAG laser. Neurophysiol Clin 32: 91–98

    Article  PubMed  CAS  Google Scholar 

  86. Legrain V, Guérit JM, Bruyer R, Plaghki L (2002) Attentional modulation of the nociceptive processing into the human brain: selective spatial attention, probability of stimulus occurrence, and target detection effects on laser evoked potentials. Pain 99: 21–39

    Article  PubMed  Google Scholar 

  87. Levinsson A, Garwicz M, Schouenborg J (1999) Sensorimotor transformation in cat nociceptive withdrawal reflex system. Eur J Neurosci 11: 4327–4332

    Article  PubMed  CAS  Google Scholar 

  88. Lorenz J, Hansen HC, Kunze K, Bromm B (1996) Sensory deficits of a nerve root lesion can be objectively documented by somatosensory evoked potentials elicited by painful infrared laser stimulations. A case study. J Neurol Neurosurg Psychiatry 61: 107–110

    Article  PubMed  CAS  Google Scholar 

  89. Lorenz J, García-Larrea L (2003) Contribution of attentional and cognitive factors to laser-evoked potentials (LEPs). Neurophysiol Clin 33: 293–301

    Article  PubMed  Google Scholar 

  90. Maarrawi J, Peyron R, García-Larrea L (2006) Brain opioid receptor availability differs in central and peripheral neuropathic pain. In: Flor H, Kalso E, Dotrovsky J (eds) Proc 11th World Congress on Pain. IASP Press, Seattle, pp 407–414

    Google Scholar 

  91. Maarrawi J, Peyron R, Mertens P et al. (2007) Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain 127: 183–194

    Article  PubMed  CAS  Google Scholar 

  92. Maarrawi J, Peyron R, Mertens P et al. (2007) Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology 69(9): 827–834

    Article  PubMed  CAS  Google Scholar 

  93. MacGowan DJL, Janal MN, Clark MC et al. (1997) Central poststroke pain and Wallenberg’s lateral medullary infarction: frequency, character, and determinants in 63 patients. Neurology 49: 120–125

    Article  PubMed  CAS  Google Scholar 

  94. Magerl W, Ali Z, Ellrich J et al. (1999) C- and Aδ-fiber components of heat-evoked cerebral potentials in healthy human subjects. Pain 82: 127–137

    Article  PubMed  CAS  Google Scholar 

  95. Manfredi M (1970) Differential block of conduction of larger fibers in peripheral nerve by direct current. Arch Ital Biol 108: 52–71

    PubMed  CAS  Google Scholar 

  96. Mauguière F, Desmedt JE (1988) Thalamic pain syndrome of Dejerine-Roussy. Differentiation of four subtypes assisted by somatosensory evoked potentials data. Arch Neurol 45: 1312–1320

    Article  PubMed  Google Scholar 

  97. Mauguière F, Merlet I, Forss N et al. (1997) Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part I: Location and activation timing of SEF sources. Electroenceph Clin Neurophysiol 10: 281–289

    Google Scholar 

  98. Mendell JR, Sahenk Z (2003) Clinical practice. Painful sensory neuropathy. N Engl J Med 348(13): 1243–1255

    Article  PubMed  Google Scholar 

  99. Mertens P, Nuti C, Sindou M et al. (1999) Precentral cortex stimulation for the treatment of central neuropathic pain: results of a prospective study in a 20-patient series. Stereotact Funct Neurosurg 73(1–4): 122–125

    Article  PubMed  CAS  Google Scholar 

  100. Montes C, Magnin M, Maarrawi J et al. (2005) Thalamic ventral posterior infarct with central pain. Changes in spino-thalamic and lemniscal-related responses and the role of VPL and VMpo in thalamic pain. Pain 113: 223–232

    Article  PubMed  Google Scholar 

  101. Mouraux A, Guérit JM, Plaghki L (2004) Refractoriness cannot explain why C-fiber laser-evoked brain potentials are recorded only if concomitant Adelta-fiber activation is avoided. Pain 112(1–2): 16–26

    Article  PubMed  CAS  Google Scholar 

  102. Nguyen JP, Lefaucher JP, Le Guerinel C et al. (2000) Motor cortex stimulation in the treatment of central and neuropathic pain. Arch Med Res 31(3): 263–265

    Article  PubMed  CAS  Google Scholar 

  103. Opsommer E, Guérit JM, Plaghki L (2003) Exogenous and endogenous components of ultralate (C-fiber) evoked potentials following CO2 laser stimuli to tiny skin surface areas in healthy subjects. Neurophysiol Clin 33: 78–85

    Article  PubMed  Google Scholar 

  104. Petersson P, Waldenstrom A, Fahraeus C, Schouenborg J (2003) Spontaneous muscle twitches during sleep guide spinal self organization. Nature 424: 72–75

    Article  PubMed  CAS  Google Scholar 

  105. Peyron R, Faillenot I, Mertens P et al. (2007) Motor cortex stimulation in neuropathic pain. Correlations between analgesic effect and hemodynamic changes in the brain. A PET study. Neuroimage 34(1): 310–321

    Article  PubMed  Google Scholar 

  106. Peyron R, García-Larrea L, Deiber MP et al. (1995) Electrical stimulation of precentral cortical area in the treatment of central pain. Electrophysiological and PET study. Pain 62: 275–286

    Article  PubMed  CAS  Google Scholar 

  107. Peyron R, García-Larrea L, Grégoire MC et al. (1996) Positron Emission Tomography (PET) evidence of Cerebral Blood Flow (CBF) abnormalities in patients with neurological pain after lateral-medullary infarct (Wallenberg’s syndrome WS). VIIIth World Congress on Pain, IASP, Vancouver [abstract].

    Google Scholar 

  108. Peyron R, García-Larrea L, Grégoire MC et al. (1998) Allodynia after lateral-medullary (Wallenberg) infarct. A Positron Emission Tomography (PET) study. Brain 121: 345–356

    Article  PubMed  Google Scholar 

  109. Peyron R, García-Larrea L, Grégoire MC et al. (1999) Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 122: 1765–1780

    Article  PubMed  Google Scholar 

  110. Plaghki L (1998) Complex regional pain syndrome and A-delta impairment. Sever Algia 55: 1

    Google Scholar 

  111. Ploner M, Schmitz F, Freund HJ, Schnitzler A (1999) Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 81: 3100–3104

    PubMed  CAS  Google Scholar 

  112. Prestor B, Golob P (1999) Intra-operative spinal cord neuromonitoring in patients operated on for intramedullary tumors and syringomyelia. Neurol Res 21: 125–129

    PubMed  CAS  Google Scholar 

  113. Quante M, Lampe F, Hauck M et al. (2003) Laser-evoked potentials: diagnostic approach to the dorsal root. Orthopäde 32: 852–858

    Article  PubMed  CAS  Google Scholar 

  114. Ragazzoni A, Amantini A, Lombardi M et al. (1993) Electric and CO2 laser SEPs in a patient with asymptomatic syringomyelia. Electroenceph Clin Neurophysiol 88: 335–338

    Article  PubMed  CAS  Google Scholar 

  115. Rage M, Plaghki L (2003) Neurophysiological exploration of the chest wall by CO2-laser-evoked potentials. In: Proc 4th Congress Europ Fed IASP Chapters, Prague, p 472

    Google Scholar 

  116. Rainville P, Duncan GH, Price DD et al. (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277: 968–971

    Article  PubMed  CAS  Google Scholar 

  117. Rees G, Howseman A, Josephs O et al. (1997) Characterizing the relationship between BOLD contrast and regional cerebral blood flow measurements by varying the stimulus presentation rate. Neuroimage 6: 270–278

    Article  PubMed  CAS  Google Scholar 

  118. Restuccia D, Di Lazzaro V, Valeriani M et al. (1992) Segmental dysfunction of the cervical cord revealed by abnormalities of the spinal N13 potential in cervical spondylotic myelopathy. Neurology 42: 1054–1063

    Article  PubMed  CAS  Google Scholar 

  119. Restuccia D, Di Lazzaro V, Valeriani M et al. (1996) Spinal responses to median and fibial nerve stimulation and magnetic resonance imaging in intramedullary cord lesions. Neurology 46: 1706–1714

    Article  PubMed  CAS  Google Scholar 

  120. Roby A, Bussel B, Willer JC (1981) Morphine reinforces post-discharge inhibition of alpha-motoneurons in man. Brain Res 222: 209–212

    Article  PubMed  CAS  Google Scholar 

  121. Roby-Brami A, Bussel B, Willer JC, Le Bars D (1987) An electrophysiological investigation into the pain-relieving effects of heterotopic nociceptive stimuli. Probable involvement of a supraspinal loop. Brain 110: 1497–1508

    Article  PubMed  Google Scholar 

  122. Romaniello A, Cruccu G, Frisardi G, Arendt-Nielsen L, Svensson P (2003) Assessment of nociceptive trigeminal pathways by laser-evoked potentials and laser silent periods in patients with painful temporomandibular disorders. Pain 103: 31–39

    Article  PubMed  CAS  Google Scholar 

  123. Romaniello A, Iannetti GD, Truini A, Cruccu G (2003) Trigeminal responses to laser stimuli. Neurophysiol Clin 33: 315–324

    Article  PubMed  CAS  Google Scholar 

  124. Rosen SD, Paulesu E, Frith CD et al. (1994) Central nervous pathways mediating angina pectoris. Lancet 344: 147–150

    Article  PubMed  CAS  Google Scholar 

  125. Rosen BR, Buckner RL, Dale AM (1998) Event-related functional MRI: past, present, and future. Proc Natl Acad Sci USA 95: 773–780

    Article  PubMed  CAS  Google Scholar 

  126. Rossi A, Decchi B (1994) Flexibility of lower limb reflex responses to painful cutaneous stimulation in standing humans: evidence of load-dependent modulation. J Physiol 481: 521–532

    PubMed  CAS  Google Scholar 

  127. Rossi A, Zalaffi A, Decchi B (1996) Interaction of nociceptive and non-nociceptive cutaneous afferents from foot sole in common reflex pathways to tibialis anterior motoneurones in humans. Brain Res 714: 76–86

    Article  PubMed  CAS  Google Scholar 

  128. Rousseaux M, Cassim F, Bayle B, Laureau E (1999) Analysis of the perception of and reactivity to pain and heat in patients with Wallenberg syndrome and severe spinothalamic tract dysfunction. Stroke 30: 2223–2229

    Article  PubMed  CAS  Google Scholar 

  129. Rowbotham MC, Reisner-Keller LA, Fields HL (1991) Both intravenous lidocaine and morphine reduce the pain of postherpetic neuralgia. Neurology 41(7): 1024–1028

    Article  PubMed  CAS  Google Scholar 

  130. Rowbotham MC, Twilling L, Davies PS et al. (2003) Oral opioid therapy for chronic peripheral and central neuropathic pain. N Engl J Med 348(13): 1223–1232

    Article  PubMed  CAS  Google Scholar 

  131. Sadato N, Yonekura Y, Yamada H et al. (1998) Activation patterns of covert word generation detected by fMRI: comparison with 3D PET. J Comput Assist Tomogr 22: 945–952

    Article  PubMed  CAS  Google Scholar 

  132. Sandrini G, Arrigo A, Bono G, Nappi G (1993) The nociceptive flexion reflex as a tool for exploring pain control systems in headache and other pain syndromes. Cephalalgia 13: 21–27

    Article  PubMed  CAS  Google Scholar 

  133. Sandrini G, Serrao M, Rossi P et al. (2005) The lower limb flexion reflex in humans. Prog Neurobiol 77(6): 353–395

    Article  PubMed  Google Scholar 

  134. Santiago S, Ferrer T, Espinosa ML (2000) Neurophysiological studies of thin myelinated (A delta) and unmyelinated (C) fibers: application to peripheral neuropathies. Neurophysiol Clin 30: 27–42

    Article  PubMed  CAS  Google Scholar 

  135. Schlereth T, Baumgärtner U, Magerl W et al. (2003) Left hemisphere dominance in early nociceptive processing in the human parasylvian cortex. Neuroimage 20: 437–450

    Article  Google Scholar 

  136. Senapati AK, Huntington PJ, LaGraize SC et al. (2005) Electrical stimulation of the primary somatosensory cortex inhibits spinal dorsal horn neuron activity. Brain Res 1057: 134–140

    Article  PubMed  CAS  Google Scholar 

  137. Serra J, Campero M, Bostock H, Ochoa J (2004) Two types of C nociceptors in human skin and their behavior in areas of capsaicin-induced secondary hyperalgesia. J Neurophysiol 91: 2770–2781

    Article  PubMed  Google Scholar 

  138. Sikes RW, Vogt BA (1992) Nociceptive neurons in area 24 of rabbit cingulate cortex. J Neurophysiol 68: 1720–1732

    PubMed  CAS  Google Scholar 

  139. Sindou M, Quoex C, Baleydier C (1974) Fiber organization at the posterior spinal cord-rootlet junction in man. J Comp Neurol 153: 15–26

    Article  PubMed  CAS  Google Scholar 

  140. Sindou M, Mertens P, Bendavid U et al. (2003) Predictive value of somatosensory evoked potentials for long-lasting pain relief after spinal cord stimulation: practical use for patient selection. Neurosurgery 52: 1374–1383

    Article  PubMed  Google Scholar 

  141. Sokoloff L, Reivich M, Kennedy C et al. (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916

    Article  PubMed  CAS  Google Scholar 

  142. Sokoloff L, Porter A, Roland P et al. (1991) General discussion. In: Chadwick C, Derek J, Whelan J (eds) Exploring brain functional anatomy with positron emission tomography. Ciba Foundation Symposium 163. Wiley & Sons, London, pp 43–56

    Google Scholar 

  143. Spiegel J, Hansen C, Baumgärtner U et al. (2003) Sensitivity of laser-evoked potentials versus somatosensory evoked potentials in patients with multiple sclerosis. Clin Neurophysiol 114: 992–1002

    Article  PubMed  Google Scholar 

  144. Synek VM (1986) Diagnostic importance of somatosensory evoked potentials in the diagnosis of thoracic outlet syndrome. Clin Electroenceph 17: 112–116

    CAS  Google Scholar 

  145. Synek VM (1987) Short latency somatosensory evoked potentials in patients with painful dysaesthesias in peripheral nerve lesions. Pain 29: 49–58

    Article  PubMed  CAS  Google Scholar 

  146. Talbot JD, Marrett S, Evans AC, Meyer E, Bushnell MC, Duncan GH (1991) Multiple representations of pain in human cerebral cortex. Science 251: 1355–1358

    Article  PubMed  CAS  Google Scholar 

  147. Tarkka IM, Treede RD (1993) Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2-laser. J Clin Neurophysiol 10: 513–519

    Article  PubMed  CAS  Google Scholar 

  148. Tasker RR (1990) Thalamotomy. Neurosurg Clin N Am 1(4): 841–864

    PubMed  CAS  Google Scholar 

  149. Timmermann L, Ploner M, Haucke K et al. (2001) Differential coding of pain intensity in the human primary and secondary somatosensory cortex. J Neurophysiol 86: 1499–1503

    PubMed  CAS  Google Scholar 

  150. Tölle TR, Kaufmann T, Siessmeier T et al. (1 999) Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann Neurol 45: 40–47

    Article  Google Scholar 

  151. Towell AD, Purves AM, Boyd SG (1996) CO2 laser activation of nociceptive and nonnociceptive thermal afferents from hairy and glabrous skin. Pain 66: 79–86

    Article  PubMed  CAS  Google Scholar 

  152. Tran TD, Inui K, Hoshiyama M et al. (2002) Cerebral activation by the signals ascending through unmyelinated C-fibers in humans: a magnetoencephalographic study. Neuroscience 113: 375–386

    Article  PubMed  CAS  Google Scholar 

  153. Treede RD, Lankers J, Frieling A et al. (1991) Cerebral potentials evoked by painful, laser stimuli in patients with syringomyelia. Brain 114: 1595–1607

    Article  PubMed  Google Scholar 

  154. Treede RD, Lorenz J, Baumgärtner U (2003) Clinical usefulness of laser-evoked potentials. Neurophysiol Clin 33: 293–302

    Article  Google Scholar 

  155. Treede RD, Lorenz J, Kunze K, Bromm B (1995) Assessment of nociception pathways with laser-evoked potentials in normal subjects and patients. In: Bromm B, Desmedt JE (eds) Pain and the Brain Series: Advances in Pain Research and Therapy 22. Raven Press, New York, pp 377–392

    Google Scholar 

  156. Treede RD, Meier W, Kunze K, Bromm B (1988) Ultralate cerebral potentials as correlates of delayed pain perception: observation in a case of neurosyphilis. J Neurol Neurosurg Psychiatry 51(10): 1330–1333

    Article  PubMed  CAS  Google Scholar 

  157. Treede RD, Meyer RA, Raja SN, Campbell JN (1995) Evidence for two different heat transduction mechanisms in nociceptive primary afferents innervating monkey skin. J Physiol 483: 747–758

    PubMed  CAS  Google Scholar 

  158. Truini A, Cruccu G, García-Larrea L (2003) Painful sensory neuropathy. N Engl J Med 349: 306–307

    Article  PubMed  Google Scholar 

  159. Truini A, Haanpaa M, Zucchi R et al. (2003) Laser-evoked potentials in post-herpetic neuralgia. Clin Neurophysiol 114: 702–709

    Article  PubMed  CAS  Google Scholar 

  160. Truini A, Rossi P, Galeotti F, Romaniello A, Virtuoso M, De Lena C, Leandri M, Cruccu G (2004) Excitability of the A-delta nociceptive pathways as assessed by the recovery cycle of laser evoked potentials in humans. Exp Brain Res 155: 120–123

    Article  PubMed  CAS  Google Scholar 

  161. Tsubokawa T, Katayama Y, Yamamoto T et al. (1991) Chronic motor cortex stimulation for the treatment of central pain. Acta Neurochir Suppl (Wien) 52: 137–139

    Article  CAS  Google Scholar 

  162. Turner R (1992) Magnetic resonance imaging of brain function. Am J Physiol Imaging 7: 136–145

    PubMed  CAS  Google Scholar 

  163. Urban PP, Hansen C, Baumgärtner U et al. (1999) Abolished laser-evoked potentials and normal blink reflex in midlateral medullary infarction. J Neurol 246: 347–352

    Article  PubMed  CAS  Google Scholar 

  164. Valeriani M, Restuccia D, Di Lazzaro V et al. (1999) Inhibition of the human primary motor area by painful heat stimulation of the skin. Clin Neurophysiol 110: 1475–1880

    Article  PubMed  CAS  Google Scholar 

  165. Valeriani M, Restuccia D, Le Pera D et al. (2002) Attention-related modifications of ultralate CO(2) laser evoked potentials to human trigeminal nerve stimulation. Neurosci Lett 329: 329–333

    Article  PubMed  CAS  Google Scholar 

  166. Vestergaard K, Nielsen J, Andersen G et al. (1995) Sensory abnormalities in consecutive, unselected patients with central poststroke pain. Pain 61: 177–186

    Article  PubMed  CAS  Google Scholar 

  167. Villanueva L, Le Bars D (1995) The activation of bulbo-spinal controls by peripheral nociceptive inputs: diffuse noxious inhibitory controls. Biol Res 28: 113–125

    PubMed  CAS  Google Scholar 

  168. Willer JC, Boureau F, Albe-Fessard D (1977) Role of large diameter cutaneous afferents in transmission of nociceptive messages: electrophysiological study in man. Brain Res 152: 358–364

    Article  Google Scholar 

  169. Willer JC, Bussel B (1980) Evidence for a direct spinal mechanism in morphine-induced inhibition of nociceptive reflexes in humans. Brain Res 187: 212–215

    Article  PubMed  CAS  Google Scholar 

  170. Willer JC, Dehen H, Cambier J (1986) Study of pain thresholds by recording flexor reflexes in thalamic syndromes. Rev Neurol (Paris) 142: 303–307

    CAS  Google Scholar 

  171. Willer JC, Roby A, Le Bars D (1984) Psychophysical and electrophysiological approaches to the pain-relieving effects of heterotopic nociceptive stimuli. Brain 107: 1095–1112

    Article  PubMed  Google Scholar 

  172. Willer JC (1977) Comparative study of perceived pain and nociceptive flexion reflex in man. Pain 3: 69–80

    Article  PubMed  CAS  Google Scholar 

  173. Willer JC (1983) Nociceptive flexion reflex as a tool for pain research in man. In: Desmedt JE (ed) Advances in Neurology. Raven Press, New York, pp 809–827

    Google Scholar 

  174. Willer JC (1990) Clinical exploration of nociception with the use of reflexologic techniques. Neurophysiol Clin 20: 335–356

    Article  PubMed  CAS  Google Scholar 

  175. Willoch F, Tölle TR, Wester HJ et al. (1999) Central pain after pontine infarction is associated with changes in opioid receptor binding: a PET study with 11C-diprenorphine. Am J Neuroradiol 20: 686–690

    PubMed  CAS  Google Scholar 

  176. Willoch F, Schindler F, Wester HJ et al. (2004) Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 108(3): 213–220

    Article  PubMed  CAS  Google Scholar 

  177. Wu Q, García-Larrea L, Mertens P et al. (1999) Hyperalgesia with reduced laser evoked potentials in neuropathic pain. Pain 80: 209–214

    Article  PubMed  CAS  Google Scholar 

  178. Yamamoto M, Kachi T, Igata A (1995) Pain-related and electrically stimulated somatosensory evoked potentials in patients with stroke. Stroke 26: 426–429

    Article  PubMed  CAS  Google Scholar 

  179. Yamamoto M, Kachi T, Yamada T, Nagamatsu M, Sobue G (1997) Sensory conduction study of cisplatin neuropathy: preservation of small myelinated fibers. Intern Med 36: 829–833

    Article  PubMed  CAS  Google Scholar 

  180. Zimmermann M (1968) Dorsal root potentials after C-fiber stimulation. Science 160: 896–898

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag=Wien

About this chapter

Cite this chapter

Maarrawi, J., Mertens, P., Peyron, R., Garcia-larrea, L., Sindou, M. (2011). Functional exploration for neuropathic pain. In: Pickard, J.D., et al. Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 37. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0673-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0673-0_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0672-3

  • Online ISBN: 978-3-7091-0673-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics