Polymer Phase Separation

  • Wenbing HuEmail author


The thermodynamic phase diagrams and their implications to the kinetics of phase separation in the polymer-based miscible multi-component systems have been introduced. In addition, the microphase separation in diblock copolymer systems attracts specific theoretical and experimental attention, because their self-assembly generates various geometric patterns with nano-scale resolution, served as the templates for the fabrication of functional nano-materials.


Phase Separation Diblock Copolymer Spinodal Decomposition Dissipative Particle Dynamic Microphase Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abraham FF (1974) Homogeneous nucleation theory. Academic, New YorkGoogle Scholar
  2. Bates FS, Fredrickson GH (1990) Block copolymer thermodynamics: theory and experiment. Ann Rev Phys Chem 41:525–557CrossRefGoogle Scholar
  3. Bates FS, Fredrickson GH (1999) Block copolymers-designer soft materials. Phys Today 52:32–38CrossRefGoogle Scholar
  4. Bohbot-Raviv Y, Wang ZG (2000) Discovering new ordered phases of block copolymers. Phys Rev Lett 85:3428–3431CrossRefGoogle Scholar
  5. Cahn JW (1968) Spinodal decomposition. 1967 Institute of metals lecture. Trans Met Soc AIME 242:168–180Google Scholar
  6. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial energy. J Chem Phys 28:258–266CrossRefGoogle Scholar
  7. Chen D, Jiang M (2005) Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc Chem Res 38:494–502CrossRefGoogle Scholar
  8. de Gennes PG (1970) Theory of x-ray scattering by liquid macromolecules with heavy atom labels. J Phys (Paris) 31:235–238CrossRefGoogle Scholar
  9. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, IthacaGoogle Scholar
  10. Drolet F, Fredrickson GH (1999) Combinatorial screening of complex block copolymer assembly with self-consistent field theory. Phys Rev Lett 83:4317–4320CrossRefGoogle Scholar
  11. Edwards SF (1965) The statistical mechanics of polymers with the excluded volume. Proc Phys Soc 85:613–624CrossRefGoogle Scholar
  12. Fredrickson GH, Helfand E (1987) Fluctuation effects in the theory of micro-phase separation in block copolymers. J Chem Phys 87:697–705CrossRefGoogle Scholar
  13. Gibbs JW (1878) On the equilibrium of heterogeneous substances. Trans Conn Acad Arts Sci 3:343–524Google Scholar
  14. Gibbs JW (1961) In: Bumstead HA, Van Name RG (eds) Scientific papers of J Willard Gibbs, 2 vols. Dover, New YorkGoogle Scholar
  15. Ginzburg VL, Landau LD (1950) Theory of superconductivity. J Exp Theor Phys (USSR) 20:1064–1082Google Scholar
  16. Guo M, Jiang M (2009) Non-covalently connected micelles (NCCMs): the origins and development of a new concept. Soft Matter 5:495–500CrossRefGoogle Scholar
  17. Guo ZJ, Zhang GJ, Qiu F, Zhang HD, Yang YL, Shi AC (2008) Discovering ordered phases of block copolymers: new results from a generic Fourier-space approach. Phys Rev Lett 101:028301CrossRefGoogle Scholar
  18. Helfand E (1975a) Theory of inhomogeneous polymers: fundamentals of the Gaussian random-walk model. J Chem Phys 62:999–1005CrossRefGoogle Scholar
  19. Helfand E (1975b) Block copolymer theory. III. Statistical mechanics of the microdomain structure. Macromolecules 8:552–556CrossRefGoogle Scholar
  20. Helfand E, Wasserman ZR (1976) Block copolymer theory. IV. Narrow interphase approximation. Macromolecules 9:879–888CrossRefGoogle Scholar
  21. Hilliard JE (1970) Spinodal decomposition. In: Phase transformations. American Society of Metals, Metals Park, p 497Google Scholar
  22. Hong KM, Noolandi J (1981) Theory of inhomogeneous multicomponent polymer systems. Macromolecules 14:727–736CrossRefGoogle Scholar
  23. Leibler L (1980) Theory of microphase separation in block copolymers. Macromolecules 13:1602–1617CrossRefGoogle Scholar
  24. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50CrossRefGoogle Scholar
  25. Liu J (2003) AFM applications in petrochemical polymers. Microsc Microanal 9(Suppl 2):452–453Google Scholar
  26. Matsen MW, Schick M (1994) Stable and unstable phases of a diblock copolymer melt. Phys Rev Lett 18:2660–2663CrossRefGoogle Scholar
  27. Ornstein LS, Zernike F (1914) Accidental deviations of density and opalescence at the critical point of a single substance. Proc Acad Sci (Amsterdam) 17:793–806Google Scholar
  28. Ostwald W (1896) Lehrbuch der Allgemeinen Chemie, vol 2, part 1. Engelmann, LeipzigGoogle Scholar
  29. Oxtoby DW (1998) Nucleation of first-order phase transitions. Acc Chem Res 31:91–97CrossRefGoogle Scholar
  30. Semenov AN (1985) Contribution to the theory of microphase layering in block copolymer melts. Sov Phys JEPT 61:733–742Google Scholar
  31. Strobl GR, Bendler JT, Kambour RP, Shultz AR (1986) Thermally reversible phase separation in polystyrene/poly(styrene-co-4-bromostyrene) blends. Macromolecules 19:2683–2689CrossRefGoogle Scholar
  32. Tyler CA, Morse DC (2005) Orthorhombic Fddd network in triblock and diblock copolymer melts. Phys Rev Lett 94:208302CrossRefGoogle Scholar
  33. Zhang GJ, Qiu F, Zhang HD, Yang YL, Shi AC (2010) SCFT study of tiling patterns in ABC star terpolymers. Macromolecules 43:2981–2989CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Department of Polymer Science and Engineering School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina, People’s Republic

Personalised recommendations