Polymer Deformation

  • Wenbing HuEmail author


Integration of Brownian motions of monomers opens a wide time window for the relaxation of large deformation in the rubber state of polymers. Therefore, the conventional glass transition splits into a fluid-rubber transition and a rubber-glass transition. Dynamic mechanical analysis and conventional mechanical analysis reveal the hierarchical relaxation in the separate time scales. A significant amount of energy will be absorbed upon large deformation of bulk solid polymers, resulting in their ductile breaking and tacky adhesion.


Glass Transition Glass Transition Temperature Free Volume Permanent Deformation Characteristic Relaxation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146CrossRefGoogle Scholar
  2. Angell CA (1985) Spectroscopy, simulation, and the medium range order problem in glass. J Non-Cryst Solids 73:1–17CrossRefGoogle Scholar
  3. Angell CA, Dworkin A, Figuiere P, Fuchs A, Szwarc H (1985) Strong and fragile plastic crystals. J de Chimie Phys, Phys-Chim Biol 82:773–779Google Scholar
  4. Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Phys Chem (Leipzig) 4:226–248Google Scholar
  5. Boehmer R, Ngai KL, Angell CA, Plazek DJ (1993) Non-exponential relaxations in strong and fragile glass formers. J Chem Phys 99:4201–4209CrossRefGoogle Scholar
  6. Boltzmann L (1874) Zur Theorie des elastischen Nachwirkung. Sitzungsber Kaiserlich Akad Wiss (Wien) Math Naturwiss Classe 70(II):275–306, Ann Phys Chem 7: 624–654 (1876)Google Scholar
  7. Boyer RF (1979) Contributions of torsional braid analysis to "Tll". Polym Eng Sci 19:732–748CrossRefGoogle Scholar
  8. Boyer RF (1980) Dynamics and thermodynamics of the liquid state g (T > Tg) of amorphous polymers. J Macromol Sci, Phys B18:461–553CrossRefGoogle Scholar
  9. Boyer RF (1981) T11 of anionic polystyrenes from zero-shear melt viscosity. Eur Polym J 17:661–673CrossRefGoogle Scholar
  10. Bucknall C, Smith R (1965) Stress whitening in high-impact polystyrene. Polymer 6:437–446CrossRefGoogle Scholar
  11. Burgers JM (1935) Mechanical considerations, model systems, phenomenological theories of relaxation and of viscosity. In: Burgers JM (ed) First report on viscosity and plasticity. Nordemann Publishing Company, New YorkGoogle Scholar
  12. Considère AG (1885) Memoire sur l’Emploi du Fer et de l’Acier dans les Constructions. Annales des Ponts et Chausses 6(9):574–775Google Scholar
  13. Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622CrossRefGoogle Scholar
  14. Debye P (1913) Zur Theorie der anomalen Dispersion im Gebiete der langwelligen elektrischen Strahlung. Berichte der Deutschen physikalischen Gesellschaft 15:777–793Google Scholar
  15. DiMarzio EA, Yang AJM (1997) Configurational entropy approach to the kinetics of glasses. J Res NIST 102:135–157Google Scholar
  16. Doolittle AK (1951) The dependence of the viscosity of liquids on free space. J Appl Phys 22:1471–1475CrossRefGoogle Scholar
  17. Ediger MD (2000) Spatially heterogeneous dynamics in supercooled liquids. Annu Rev Phys Chem 51:99–128CrossRefGoogle Scholar
  18. Ferry JD (1950) Mechanical properties of substances of high molecular weight. VI Dispersion in concentrated polymer solutions and its dependence on temperature and concentration. J Am Chem Soc 72:3746–3752CrossRefGoogle Scholar
  19. Fetters LJ, Lohse DJ, Graessley WW (1999) Chain dimension and entanglement spacings in dense macromolecular systems. J Polym Sci, Polym Phys Ed 37:1023–1033CrossRefGoogle Scholar
  20. Fischer EW, Bakai A, Patkowski AW, Steffen W, Reinhardt L (2002) Heterophase fluctuations in supercooled liquids and polymers. J Non-Cryst Solids 307–310:584–601CrossRefGoogle Scholar
  21. Flory PJ (1956) Statistical thermodynamics of semi-flexible chain molecules. Proc R Soc London A234:60–73Google Scholar
  22. Flory PJ, Fox TG (1951) Treatment of intrinsic viscosities. Intrinsic viscosity relationships for polystyrene. J Am Chem Soc 73:1904–1908, 1915–1920CrossRefGoogle Scholar
  23. Fox TG (1956) Influence of diluent and copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc 1:123–125Google Scholar
  24. Fox TG, Flory PJ (1950) Second-order transition temperatures and related properties of polystyrene. 1. Influence of molecular weight. J Appl Phys 21:581–591CrossRefGoogle Scholar
  25. Fox TG, Loshaek S (1955) Influence of molecular weight and degree of crosslinking on the specific volume and glass temperature of polymers. J Polym Sci 15:371–390CrossRefGoogle Scholar
  26. Fulcher GS (1925) Analysis of recent measurements of viscosity of glasses. J Am Ceram Soc 8:339–355CrossRefGoogle Scholar
  27. Gibbs JH (1956) The nature of the glass transition. J Chem Phys 25:185–186CrossRefGoogle Scholar
  28. Gibbs JH, DiMarzio EA (1958) Nature of the glass transition and the glassy state. J Chem Phys 28:373–383CrossRefGoogle Scholar
  29. Goldstein M (1969) Viscous liquids and the glass transition: a potential energy barrier picture. J Chem Phys 51:3728–3739CrossRefGoogle Scholar
  30. Gordon M, Taylor J (1952) Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline polymers. J Appl Chem 2:493–500CrossRefGoogle Scholar
  31. Götze W (2009) Complex dynamics of glass forming liquids: a mode-coupling theory. Oxford University Press, OxfordGoogle Scholar
  32. Götze W, Sjögren L (1992) Relaxation processes in supercooled liquids. Rep Prog Phys 55:241–376CrossRefGoogle Scholar
  33. Kauzmann W (1948) The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev 43:219–256CrossRefGoogle Scholar
  34. Kelvin L (Thompson W) (1875) Mathematical and physical papers, vol 3, Cambridge University Press, Cambridge, p 27Google Scholar
  35. Kohlrausch R (1854) Theorie des elektrischen Rückstandes in der Leidner Flasche. Poggendorff 91:56–82, 179–213Google Scholar
  36. Lin T (1987) Number of entanglement strands per cubed tube diameter, a fundamental aspect of topological universality in polymer viscoelasticity. Macromolecules 20:3080–3083CrossRefGoogle Scholar
  37. Lin YW (2011) Polymer viscoelasticity, 2nd edn. World Scientific, SingaporeGoogle Scholar
  38. Maxwell JC (1867) On the dynamical theory of gases. Philos Trans R Soc Lond 157:49–88CrossRefGoogle Scholar
  39. Men Y, Rieger J, Endeler H-F, Lilge D (2003a) Mechanical α-process in polyethylene. Macromolecules 36:4689–4691CrossRefGoogle Scholar
  40. Men Y, Rieger J, Strobl G (2003b) Role of the entangled amorphous network in tensile deformation of semicrystalline polymers. Phys Rev Lett 91:955021–955024CrossRefGoogle Scholar
  41. Men Y, Strobl G (2002) Evidence for a mechanically active high temperature relaxation process in syndiotactic polypropylene. Polymer 43:2761–2768CrossRefGoogle Scholar
  42. Plazek DJ, Chay I, Ngai KL, Roland CM (1995) Visoelastic properties of polymers. 4. Thermorheological complexity of the softening dispersion in polyisobutylene. Macromolecules 28:6432–6436CrossRefGoogle Scholar
  43. Rault J (2000) Origin of the Vogel-Fulcher-Tammann law in glass-forming materials: The α-β bifurcation. J Non-Cryst Solids 271:177–217CrossRefGoogle Scholar
  44. Richert R, Angell CA (1998) Dynamics of glass-forming liquids. IV: on the link between molecular dynamics and configurational entropy. J Chem Phys 108:9016–9026CrossRefGoogle Scholar
  45. Schmidt-Rohr K, Spiess HW (1991) Chain diffusion between crystalline and amorphous regions in polyethylene detected by 2D exchange carbon-13 NMR. Macromolecules 24:5288–5293CrossRefGoogle Scholar
  46. Simon F (1931) Ueber den Zustand der unterkuehlten Fluessigkeiten und Glaeser. Z Anorg Allg Chem 203:219–227CrossRefGoogle Scholar
  47. Takayanagi M (1978) Midland macromolecular monographs. In: Meier DJ (ed) Molecular basis of transition and relaxations, vol 4. Gordon and Breach, London, p 117Google Scholar
  48. Tammann G, Hesse W (1926) The dependence of viscosity upon the temperature of supercooled liquids. Z Anorg Allg Chem 156:245–257CrossRefGoogle Scholar
  49. Tanaka H, Kawasaki T, Shintani H, Watanabe K (2010) Critical-like behaviour of glass-forming liquids. Nat Mater 9:324–331CrossRefGoogle Scholar
  50. Tobolsky AV, Andrews RD (1945) Systems manifesting superposed elastic and viscous behavior. J Chem Phys 13:3–27CrossRefGoogle Scholar
  51. Ueberreiter K (1943) The thermal behavior of micro- and macromolecular substances and their modification. Kolloid Z 102:272–291CrossRefGoogle Scholar
  52. Ueberreiter K, Kanig G (1950) Second-order transitions and mesh distribution functions of cross-linked polystyrenes. J Chem Phys 18:399–406CrossRefGoogle Scholar
  53. Vogel H (1921) The law of the relation between the viscosity of liquids and the temperature. Phys Z 22:645–646Google Scholar
  54. Voigt W (1892) Ueber innere Reibung fester Korper, insbesondere der Metalle. Ann Phys 283:671–693CrossRefGoogle Scholar
  55. Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function. Trans Faraday Soc 66:80–85CrossRefGoogle Scholar
  56. Williams ML, Landel RR, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707CrossRefGoogle Scholar
  57. Wood LA (1958) Glass transition temperatures of copolymers. J Polym Sci 28:319–330CrossRefGoogle Scholar
  58. Wu SH (1985) Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer 26:1855–1863CrossRefGoogle Scholar
  59. Wunderlich B (2003) Reversible crystallization and the rigid amorphous phase in semicrystalline macromolecules. Prog Polym Sci 28:383–450CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Department of Polymer Science and Engineering School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina, People’s Republic

Personalised recommendations