Polymer Crystallization

  • Wenbing HuEmail author


Crystalline states offer hardness and toughness necessary to polymer materials. The liquid crystalline state sometimes occurs as a stable or metastable mesophase during phase transitions. The mean-field lattice theory predicts the properties of equilibrium melting points. The intramolecular nucleation model describes the initiation and growth of chain-folded lamellar crystals. The final metastable morphology of crystallites is controlled by both the crystal nucleation and growth. The Avrami equation is commonly employed to treat the time evolution of crystallinity, even during nonisothermal crystallization processes.


Entropy Cellulose Crystallization Starch Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Avrami M (1939) Kinetics of phase change. I General theory. J Chem Phys 7:1103–1112CrossRefGoogle Scholar
  2. Avrami M (1940) Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224CrossRefGoogle Scholar
  3. Avrami M (1941) Kinetics of phase change. III Granulation, phase change, and microstructure kinetics of phase change. J Chem Phys 9:177–184CrossRefGoogle Scholar
  4. Bassett DC, Frank FC, Keller A (1959) Evidence for distinct sectors in polymer single crystals. Nature (London) 184:810–811CrossRefGoogle Scholar
  5. Becker R, Döring W (1935) Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann Physik 24:719–752CrossRefGoogle Scholar
  6. Bravais A (1849) Etudes crystallographiques, Part 1: Du Cristal considéré comme un simple assemblage de points, Paris, pp 101–194Google Scholar
  7. Colson JP, Eby RK (1966) Melting temperatures of copolymers. J Appl Phys 37:3511–3514CrossRefGoogle Scholar
  8. Evans UR (1945) The laws of expanding circles and spheres in relation to the lateral growth of surface films and the grain-size of metals. Trans Faraday Soc 41:365–374CrossRefGoogle Scholar
  9. Fischer EW (1957) Stufen- und spiralförmiges Kristallwachstum bei Hochpolymeren. Z Naturforsch 12a:753–754Google Scholar
  10. Fischer EW, Schmidt GF (1962) Über Langperioden bei verstrecktem Polyäthylen. Angew Chem 74:551–562CrossRefGoogle Scholar
  11. Fischer EW (1978) Studies of structure and dynamics of solid polymers by elastic and inelastic neutron scattering. Pure Appl Chem 50:1319–1341CrossRefGoogle Scholar
  12. Flory PJ (1949) Thermodynamics of crystallization in high polymers. IV. A theory of crystalline states and fusion in polymers, copolymers, and their mixtures with diluents. J Chem Phys 17:223–240CrossRefGoogle Scholar
  13. Flory PJ (1954) Theory of crystallization in copolymers. Trans Faraday Soc 51:848–857CrossRefGoogle Scholar
  14. Flory PJ (1956) Statistical thermodynamics of semi-flexible chain molecules. Proc R Soc London A234:60–73Google Scholar
  15. Flory PJ (1962) On the morphology of the crystalline state in polymers. J Am Chem Soc 84:2857–2867CrossRefGoogle Scholar
  16. Flory PJ, Vrij A (1963) Melting points of linear chain homologues. The normal paraffin hydrocarbons. J Am Chem Soc 85:3548–3553CrossRefGoogle Scholar
  17. Flory PJ, Yoon DY (1978) Molecular morphology in semicrystalline polymers. Nature (London) 272:226–229CrossRefGoogle Scholar
  18. Hashimoto T, Murase H, Ohta Y (2010) A new scenario of flow-induced shish-kebab formation in entangled polymer solutions. Macromolecules 43:6542–6548CrossRefGoogle Scholar
  19. Herrmann K, Gerngross O, Abitz W (1930) Zur Rontgenographischen Strukturforschung des Gelatinemicells. Z Phys Chem B10:371–394Google Scholar
  20. Hoffman JD, Lauritzen JI (1961) Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites. J Res Natl Bur Stand 65A:297–336CrossRefGoogle Scholar
  21. Hoffman JD, Guttman CM, DiMarzio EA (1979) On the problem of crystallization of polymers from the melt with chain folding. Faraday Discuss Chem Soc 68:177–197CrossRefGoogle Scholar
  22. Hoffman JD (1983) Regime III crystallization in melt-crystallized polymers: The variable cluster model of chain folding. Polymer 24:3–26CrossRefGoogle Scholar
  23. Hu WB, Frenkel D, Mathot VBF (2002) Simulation of shish-kebab crystallites induced by a single pre-aligned macromolecule. Macromolecules 35:7172–7174CrossRefGoogle Scholar
  24. Hu WB, Frenkel D (2005) Polymer crystallization driven by anisotropic interactions. Adv Polym Sci 191:1–35CrossRefGoogle Scholar
  25. Hu WB, Mathot VBF, Frenkel D (2003a) Lattice model study of the thermodynamic interplay of polymer crystallization and liquid-liquid demixing. J Chem Phys 118:10343–10348CrossRefGoogle Scholar
  26. Hu WB, Frenkel D, Mathot VBF (2003b) Sectorization of a lamellar polymer crystal studied by dynamic Monte Carlo simulations. Macromolecules 36:549–552CrossRefGoogle Scholar
  27. Hu WB, Frenkel D, Mathot VBF (2003c) Intramolecular nucleation model for polymer crystallization. Macromolecules 36:8178–8183CrossRefGoogle Scholar
  28. Hu WB (2005) Molecular segregation in polymer melt crystallization: simulation evidence and unified-scheme interpretation. Macromolecules 38:8712–8718CrossRefGoogle Scholar
  29. Hu WB, Cai T (2008) Regime transitions of polymer crystal growth rates: molecular simulations and interpretation beyond Lauritzen-Hoffman model. Macromolecules 41:2049–2061CrossRefGoogle Scholar
  30. Jeziorny A (1971) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer 12:150–158CrossRefGoogle Scholar
  31. Johnson WA, Mehl RT (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Pet Eng 135:416–441Google Scholar
  32. Keller A (1957) A note on single crystals in polymers: evidence for a folded chain configuration. Philos Mag 2:1171–1175CrossRefGoogle Scholar
  33. Kolmogorov AN (1937) On the statistical theory of metal crystallization (in Russian). Izvest Akad Nauk SSSR Ser Mat 3:335–360Google Scholar
  34. Lauritzen JI, Hoffman JD (1960) Theory of formation of polymer crystals with folded chains in dilute solution. J Res Natl Bur Stand 64A:73–102CrossRefGoogle Scholar
  35. Liu JP, Mo ZS (1991) Crystallization kinetics of polymers. Polym Bull 4:199–207Google Scholar
  36. Maier W, Saupe A (1958) Eine einfache molekulare theorie des nematischen kristallinflussigen zustandes. Z Naturforsch A 13:564–566Google Scholar
  37. Maier W, Saupe A (1959) Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase. Z Naturforsch A 14:882–900, 15, 287–292 (1960)Google Scholar
  38. Mandelkern L (2002) Crystallization of polymers, vol 1, 2nd edn, Equilibrium concept. Cambridge University Press, Cambridge, p 77CrossRefGoogle Scholar
  39. Meyer KH, Mark H (1928) Über den Bau des kristallisierten Anteils der Zellulose. Ber Deutsch Chem Ges 61:593–613CrossRefGoogle Scholar
  40. Mo ZS (2008) A method for the non-isothermal crystallization kinetics of polymers. Acta Polymerica Sinica 7:656–661CrossRefGoogle Scholar
  41. Mullin N, Hobbs J (2011) Direct imaging of polyethylene films at single-chain resolution with torsional tapping atomic force microscopy. Phys Rev Lett 107:197801CrossRefGoogle Scholar
  42. Murase H, Ohta Y, Hashimoto T (2011) A new scenario of Shish-Kebab formation from homogeneous solutions of entangled polymers: visualization of structure evolution along the fiber spinning line. Macromolecules 44:7335–7350CrossRefGoogle Scholar
  43. Natta G, Corradini P (1960) Structure and properties of isotactic polypropylene. Nuovo Cimento Suppl 15:40–67CrossRefGoogle Scholar
  44. Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann N Y Acad Sci 51:627–659CrossRefGoogle Scholar
  45. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158CrossRefGoogle Scholar
  46. Pennings AJ, van der Mark JMAA, Kiel AM (1970) Hydrodynamically induced crystallization of polymers from solution. III. Morphology. Kolloid Z Z Polym 237:336–358CrossRefGoogle Scholar
  47. Phillips PJ (1990) Polymer crystals. Rep Prog Phys 53:549–604CrossRefGoogle Scholar
  48. Ren YJ, Ma AQ, Li J, Jiang XM, Ma Y, Toda A, Hu W-B (2010) Melting of polymer single crystals studied by dynamic Monte Carlo simulations. Eur Phys J E 33:189–202CrossRefGoogle Scholar
  49. Storks KH (1938) An electron diffraction examination of some linear high polymers. J Am Chem Soc 60:1753–1761CrossRefGoogle Scholar
  50. Till PH Jr (1957) The growth of single crystals of linear polyethylene. J Polym Sci 24:301–306CrossRefGoogle Scholar
  51. Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17:71–73CrossRefGoogle Scholar
  52. Volmer M, Weber A (1926) Nucleus formation in supersaturated systems. Z Phys Chem (Leipzig) 119:277–301Google Scholar
  53. Wittmann JC, Lotz B (1985) Polymer decoration: the orientation of polymer folds as revealed by the crystallization of polymer vapors. J Polym Sci, Polym Phys Ed 23:205–211CrossRefGoogle Scholar
  54. Wunderlich B, Grebowig J (1984) Thermotropic mesophases and mesophase transitions of linear, flexible macromolecules. Adv Polym Sci 60/61:1–59CrossRefGoogle Scholar
  55. Zhou QF, Li HM, Feng XD (1987) Synthesis of liquid-crystalline polyacrylates with laterally substituted mesogens. Macromolecules 20:233–234CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Department of Polymer Science and Engineering School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina, People’s Republic

Personalised recommendations