Skip to main content

Polymer Crystallization

  • Chapter
  • First Online:
Polymer Physics

Abstract

Crystalline states offer hardness and toughness necessary to polymer materials. The liquid crystalline state sometimes occurs as a stable or metastable mesophase during phase transitions. The mean-field lattice theory predicts the properties of equilibrium melting points. The intramolecular nucleation model describes the initiation and growth of chain-folded lamellar crystals. The final metastable morphology of crystallites is controlled by both the crystal nucleation and growth. The Avrami equation is commonly employed to treat the time evolution of crystallinity, even during nonisothermal crystallization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avrami M (1939) Kinetics of phase change. I General theory. J Chem Phys 7:1103–1112

    Article  CAS  Google Scholar 

  • Avrami M (1940) Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  • Avrami M (1941) Kinetics of phase change. III Granulation, phase change, and microstructure kinetics of phase change. J Chem Phys 9:177–184

    Article  CAS  Google Scholar 

  • Bassett DC, Frank FC, Keller A (1959) Evidence for distinct sectors in polymer single crystals. Nature (London) 184:810–811

    Article  CAS  Google Scholar 

  • Becker R, Döring W (1935) Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann Physik 24:719–752

    Article  CAS  Google Scholar 

  • Bravais A (1849) Etudes crystallographiques, Part 1: Du Cristal considéré comme un simple assemblage de points, Paris, pp 101–194

    Google Scholar 

  • Colson JP, Eby RK (1966) Melting temperatures of copolymers. J Appl Phys 37:3511–3514

    Article  CAS  Google Scholar 

  • Evans UR (1945) The laws of expanding circles and spheres in relation to the lateral growth of surface films and the grain-size of metals. Trans Faraday Soc 41:365–374

    Article  CAS  Google Scholar 

  • Fischer EW (1957) Stufen- und spiralförmiges Kristallwachstum bei Hochpolymeren. Z Naturforsch 12a:753–754

    CAS  Google Scholar 

  • Fischer EW, Schmidt GF (1962) Über Langperioden bei verstrecktem Polyäthylen. Angew Chem 74:551–562

    Article  CAS  Google Scholar 

  • Fischer EW (1978) Studies of structure and dynamics of solid polymers by elastic and inelastic neutron scattering. Pure Appl Chem 50:1319–1341

    Article  CAS  Google Scholar 

  • Flory PJ (1949) Thermodynamics of crystallization in high polymers. IV. A theory of crystalline states and fusion in polymers, copolymers, and their mixtures with diluents. J Chem Phys 17:223–240

    Article  CAS  Google Scholar 

  • Flory PJ (1954) Theory of crystallization in copolymers. Trans Faraday Soc 51:848–857

    Article  Google Scholar 

  • Flory PJ (1956) Statistical thermodynamics of semi-flexible chain molecules. Proc R Soc London A234:60–73

    Google Scholar 

  • Flory PJ (1962) On the morphology of the crystalline state in polymers. J Am Chem Soc 84:2857–2867

    Article  CAS  Google Scholar 

  • Flory PJ, Vrij A (1963) Melting points of linear chain homologues. The normal paraffin hydrocarbons. J Am Chem Soc 85:3548–3553

    Article  CAS  Google Scholar 

  • Flory PJ, Yoon DY (1978) Molecular morphology in semicrystalline polymers. Nature (London) 272:226–229

    Article  CAS  Google Scholar 

  • Hashimoto T, Murase H, Ohta Y (2010) A new scenario of flow-induced shish-kebab formation in entangled polymer solutions. Macromolecules 43:6542–6548

    Article  CAS  Google Scholar 

  • Herrmann K, Gerngross O, Abitz W (1930) Zur Rontgenographischen Strukturforschung des Gelatinemicells. Z Phys Chem B10:371–394

    Google Scholar 

  • Hoffman JD, Lauritzen JI (1961) Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites. J Res Natl Bur Stand 65A:297–336

    Article  CAS  Google Scholar 

  • Hoffman JD, Guttman CM, DiMarzio EA (1979) On the problem of crystallization of polymers from the melt with chain folding. Faraday Discuss Chem Soc 68:177–197

    Article  Google Scholar 

  • Hoffman JD (1983) Regime III crystallization in melt-crystallized polymers: The variable cluster model of chain folding. Polymer 24:3–26

    Article  CAS  Google Scholar 

  • Hu WB, Frenkel D, Mathot VBF (2002) Simulation of shish-kebab crystallites induced by a single pre-aligned macromolecule. Macromolecules 35:7172–7174

    Article  CAS  Google Scholar 

  • Hu WB, Frenkel D (2005) Polymer crystallization driven by anisotropic interactions. Adv Polym Sci 191:1–35

    Article  CAS  Google Scholar 

  • Hu WB, Mathot VBF, Frenkel D (2003a) Lattice model study of the thermodynamic interplay of polymer crystallization and liquid-liquid demixing. J Chem Phys 118:10343–10348

    Article  CAS  Google Scholar 

  • Hu WB, Frenkel D, Mathot VBF (2003b) Sectorization of a lamellar polymer crystal studied by dynamic Monte Carlo simulations. Macromolecules 36:549–552

    Article  CAS  Google Scholar 

  • Hu WB, Frenkel D, Mathot VBF (2003c) Intramolecular nucleation model for polymer crystallization. Macromolecules 36:8178–8183

    Article  CAS  Google Scholar 

  • Hu WB (2005) Molecular segregation in polymer melt crystallization: simulation evidence and unified-scheme interpretation. Macromolecules 38:8712–8718

    Article  CAS  Google Scholar 

  • Hu WB, Cai T (2008) Regime transitions of polymer crystal growth rates: molecular simulations and interpretation beyond Lauritzen-Hoffman model. Macromolecules 41:2049–2061

    Article  CAS  Google Scholar 

  • Jeziorny A (1971) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer 12:150–158

    Article  Google Scholar 

  • Johnson WA, Mehl RT (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Pet Eng 135:416–441

    Google Scholar 

  • Keller A (1957) A note on single crystals in polymers: evidence for a folded chain configuration. Philos Mag 2:1171–1175

    Article  CAS  Google Scholar 

  • Kolmogorov AN (1937) On the statistical theory of metal crystallization (in Russian). Izvest Akad Nauk SSSR Ser Mat 3:335–360

    Google Scholar 

  • Lauritzen JI, Hoffman JD (1960) Theory of formation of polymer crystals with folded chains in dilute solution. J Res Natl Bur Stand 64A:73–102

    Article  CAS  Google Scholar 

  • Liu JP, Mo ZS (1991) Crystallization kinetics of polymers. Polym Bull 4:199–207

    Google Scholar 

  • Maier W, Saupe A (1958) Eine einfache molekulare theorie des nematischen kristallinflussigen zustandes. Z Naturforsch A 13:564–566

    Google Scholar 

  • Maier W, Saupe A (1959) Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase. Z Naturforsch A 14:882–900, 15, 287–292 (1960)

    Google Scholar 

  • Mandelkern L (2002) Crystallization of polymers, vol 1, 2nd edn, Equilibrium concept. Cambridge University Press, Cambridge, p 77

    Book  Google Scholar 

  • Meyer KH, Mark H (1928) Über den Bau des kristallisierten Anteils der Zellulose. Ber Deutsch Chem Ges 61:593–613

    Article  Google Scholar 

  • Mo ZS (2008) A method for the non-isothermal crystallization kinetics of polymers. Acta Polymerica Sinica 7:656–661

    Article  Google Scholar 

  • Mullin N, Hobbs J (2011) Direct imaging of polyethylene films at single-chain resolution with torsional tapping atomic force microscopy. Phys Rev Lett 107:197801

    Article  Google Scholar 

  • Murase H, Ohta Y, Hashimoto T (2011) A new scenario of Shish-Kebab formation from homogeneous solutions of entangled polymers: visualization of structure evolution along the fiber spinning line. Macromolecules 44:7335–7350

    Article  CAS  Google Scholar 

  • Natta G, Corradini P (1960) Structure and properties of isotactic polypropylene. Nuovo Cimento Suppl 15:40–67

    Article  CAS  Google Scholar 

  • Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann N Y Acad Sci 51:627–659

    Article  CAS  Google Scholar 

  • Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158

    Article  CAS  Google Scholar 

  • Pennings AJ, van der Mark JMAA, Kiel AM (1970) Hydrodynamically induced crystallization of polymers from solution. III. Morphology. Kolloid Z Z Polym 237:336–358

    Article  CAS  Google Scholar 

  • Phillips PJ (1990) Polymer crystals. Rep Prog Phys 53:549–604

    Article  CAS  Google Scholar 

  • Ren YJ, Ma AQ, Li J, Jiang XM, Ma Y, Toda A, Hu W-B (2010) Melting of polymer single crystals studied by dynamic Monte Carlo simulations. Eur Phys J E 33:189–202

    Article  CAS  Google Scholar 

  • Storks KH (1938) An electron diffraction examination of some linear high polymers. J Am Chem Soc 60:1753–1761

    Article  CAS  Google Scholar 

  • Till PH Jr (1957) The growth of single crystals of linear polyethylene. J Polym Sci 24:301–306

    Article  CAS  Google Scholar 

  • Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17:71–73

    Article  CAS  Google Scholar 

  • Volmer M, Weber A (1926) Nucleus formation in supersaturated systems. Z Phys Chem (Leipzig) 119:277–301

    CAS  Google Scholar 

  • Wittmann JC, Lotz B (1985) Polymer decoration: the orientation of polymer folds as revealed by the crystallization of polymer vapors. J Polym Sci, Polym Phys Ed 23:205–211

    Article  CAS  Google Scholar 

  • Wunderlich B, Grebowig J (1984) Thermotropic mesophases and mesophase transitions of linear, flexible macromolecules. Adv Polym Sci 60/61:1–59

    Article  CAS  Google Scholar 

  • Zhou QF, Li HM, Feng XD (1987) Synthesis of liquid-crystalline polyacrylates with laterally substituted mesogens. Macromolecules 20:233–234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbing Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Hu, W. (2013). Polymer Crystallization. In: Polymer Physics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0670-9_10

Download citation

Publish with us

Policies and ethics