Skip to main content

Introduction

  • Chapter
  • First Online:
  • 4761 Accesses

Abstract

Atoms unite into a giant molecule with a given name “Macromolecule”. A life system adopts it for gene inheritance, energy storage and organ construction. Physicists recognize its chain-like structure. Brownian motion makes its soft materials. The key to understand its behavior is the mimic of chain conformation to the trajectory of random walks. Therefore as the paradigms, the Gaussian function describes the entropy of single-chain conformation, and the Flory-Huggins lattice theory calculates the entropy of multi-chain conformation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Binnig G, Rohrer H (1986) Scanning tunneling microscopy. IBM J Res Dev 30:355–369

    CAS  Google Scholar 

  • Boltzmann L (1872) Weitere Studien über das Wörmegleichgewicht unter Gasmolekülen. Sitzungsberichte Akad Wiss, Vienna, part II 66:275–370

    Google Scholar 

  • Dalton J (1808) A new system of chemical philosophy. Part 1. Manchester, Printed by S. Russell for R. Bickerstaff, London

    Google Scholar 

  • de Gennes PG (1992) Soft matter. Rev Mod Phys 64:645–648

    Article  Google Scholar 

  • de Gennes PG (2005) Soft matter: more than words. Soft Matter 1:16

    Article  Google Scholar 

  • Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 17:549–560

    Article  CAS  Google Scholar 

  • Jenkins AD, Kratochvíl P, Stepto RFT, Suter UW (1996) Glossary of basic terms in polymer science. Pure Appl Chem 68:2287–2311

    Article  CAS  Google Scholar 

  • Kuhn T (1996) The structure of scientific revolutions, 3rd edn. The University of Chicago Press, Chicago

    Google Scholar 

  • Lavoisier AL (1783) Essays on the effects produced by various processes on atmospheric air: with a particular view to an investigation of the constitution of the acids (trans: Henry T). Warrington

    Google Scholar 

  • Lehn J-M (1995) Supramolecular chemistry: concepts and perspectives. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Rupp R (2005) Four elements: water air fire Earth. Profile Books Ltd, London

    Google Scholar 

  • Staudinger H (1920) Über Polymerisation. Ber dtsch Chem Ges A/B 53:1073–1085

    Article  Google Scholar 

  • Staudinger H (1953) Macromolecular chemistry: nobel lecture. The Royal Swedish Academy of Sciences, Stockholm, http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1953/staudinger-lecture.pdf

  • Wunderlich B (1990) Thermal analysis. Academic, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbing Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Hu, W. (2013). Introduction. In: Polymer Physics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0670-9_1

Download citation

Publish with us

Policies and ethics