Skip to main content

General aspects of neurodegeneration

  • Conference paper
Advances in Research on Neurodegeneration

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 65))

Summary

Neurodegenerative diseases are morphologically featured by progressive cell loss in specific vulnerable neuronal populations of the central nervous system, often associated with cytoskeletal protein aggregates forming intracytoplasmic and/or intranuclear inclusions in neurons and/or glial cells. Most neurodegenerative disorders are now classified either according to the hitherto known genetic mechanisms or to the major components of their cellular protein inclusions. The major basic processes inducing neuro-degeneration are considered multifactorial ones caused by genetic, environ-mental, and endogenous factors. They include abnormal protein dynamics with defective protein degradation and aggregation, many of them related to the ubiquitin-proteasomal system, oxidative stress and free radical formation, impaired bioenergetics and mitochondrial dysfunctions, and “neuroinflam-matory” processes. These mechanisms that are usually interrelated in complex vitious circles finally leading to programmed cell death cascades are briefly discussed with reference to their pathogenetic role in many, albeit diverse neurodegenerative diseases, like Alzheimer disease, synucleino-pathies, tauopathies, and polyglutamine disorders. The impact of protein inclusions on cell dysfunction, activation or prevention of cell death cascades are discussed, but the molecular basis for the underlying disease mechanisms remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramova EB, Sharova NP, Karpov VL (2002) The proteasome: destroy to live. Mol Biol 36: 613–624

    CAS  Google Scholar 

  • Albers DS, Beal MF (2000) Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm [Suppl] 59: 133–154

    CAS  Google Scholar 

  • Albers DS, Swerdlow RH, Manfredi G, Gajewski C, Yang L, Parker WD Jr, Beal MF (1999) Further evidence for mitochondrial dysfunction in progressive supranuclear palsy. Exp Neurol 168: 196–198

    Google Scholar 

  • Alim MA, Hossain MS, Arima K, Takeda K, Izumiyama Y, Nakamura M, Kaji H, Shinoda T, Hisanaga S, Ueda K (2002) Tubulin seeds α-synuclein fibril formation. J Biol Chem 277: 2112–2117

    PubMed  CAS  Google Scholar 

  • Appel SH, Smith RG (2001) The pathogenesis of amyotrophic lateral sclerosis. In: Mattson MP (ed) Pathogenesis of neurodegenerative disorders. Human Press, Totowa, pp 149–171

    Google Scholar 

  • Arai Y, Yamazaki M, Mori O, Muramatsu H, Asano G, Katayama Y (2001) α-Synuclein-positive structures in cases with sporadic Alzheimer’s disease: morphology and its relationship to tau aggregation. Brain Res 888: 287–296

    PubMed  CAS  Google Scholar 

  • Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295: 865–868

    PubMed  CAS  Google Scholar 

  • Beal MF (2000a) Energetics in the pathogenesis of neurodegenerative diseases. TINS 23: 298–304

    PubMed  CAS  Google Scholar 

  • Beal MF (2000b) Mitochondria and the pathogenesis of ALS. Brain 123: 1291–1292

    PubMed  Google Scholar 

  • Beckman JS, Estevez AG, Crow JP, Barbeito L (2001) Superoxide dismutase and the death of motoneurons in ALS. TINS 24[Suppl]: S15–S20

    PubMed  CAS  Google Scholar 

  • Bence N, Roopal M (2001) Impairment of the ubiquitin-protease system by protein aggregation. Science 292: 1552–1554

    PubMed  CAS  Google Scholar 

  • Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292: 1552–1555

    PubMed  CAS  Google Scholar 

  • Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK (2002) Glutathione, iron and Parkinson’s disease. Biochem Pharmacol 64: 1037–1048

    PubMed  CAS  Google Scholar 

  • Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHD A, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65: 135–172

    PubMed  CAS  Google Scholar 

  • Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF (2001) Increased oxidative damage to DNA in a transgenic mouse model of Huntington’s disease. J Neurochem 79: 1246–1249

    PubMed  CAS  Google Scholar 

  • Borghi R, Giliberto L, Assini A, Delacourte A, Perry G, Smith MA, Strocchi P, Zaccheo D, Tabaton M (2002) Increase of cdk5 is related to neurofibrillary pathology in progressive supranuclear palsy. Neurology 58: 589–592

    PubMed  CAS  Google Scholar 

  • Borthwick GM, Johnson MA, Ince PG, Shaw PJ, Turnbull DM (1999) Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann Neurol 46: 787–790

    PubMed  CAS  Google Scholar 

  • Boutajangout A, Leroy K, Touchet N, Authelet M, Blanchard V, Tremp G, Pradier L, Brion JP (2002) Increased tau phosphorylation but absence of formation of neurofibrillary tangles in mice double transgenic for human tau and Alzheimer mutant (M146L) presenilin-1. Neurosci Lett 318: 29–33

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82: 239–259

    PubMed  CAS  Google Scholar 

  • Bratton SB, Cohen GM (2001) Apoptotic death sensor: an organelle’s alter ego? Trends Pharmacol Sci 22: 306–315

    PubMed  CAS  Google Scholar 

  • Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416: 507–511

    PubMed  CAS  Google Scholar 

  • Burke RF (2002) Apoptosis. In: Factor SA, Weiner WJ (eds) Parkinson’s disease. Diagnosis and management. Demos, New York, pp 291–298

    Google Scholar 

  • Butterfield D (2002) Amyloid (3-peptide (l-42)-induced oxidative stress and neurotoxicity: Implications for neurodegeneration in Alzheimer disease brain. Free Radic Res 36: 1307–1313

    PubMed  CAS  Google Scholar 

  • Calingasan NY, Park LC, Calo LL, Trifiletti RR, Gandy SE, Gibson GE (1998) Induction of nitric oxide synthase and microglial responses precede selective cell death induced by chronic impairment of oxidative metabolism. Am J Pathol 153: 599–610

    PubMed  CAS  Google Scholar 

  • Castellani RJ, Perry G, Siedlak SL, Nunomura A, Shimohama S, Zhang J, Montine T, Sayre LM, Smith MA (2002) Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans. Neurosci Lett 319: 25–28

    PubMed  CAS  Google Scholar 

  • Castellani RJ, Siedlak SL, Perry G, Smith MA (2000) Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol 100: 111–114

    PubMed  CAS  Google Scholar 

  • Cattaneo E, Rigamonti D, Goffredo D, Zuccato C, Squitieri F, Sipione S (2001) Loss of normal huntingtin function: new developments in Huntington’s disease research. Trends Neurosci 24:182–188

    PubMed  CAS  Google Scholar 

  • Chan HY, Warrick JM, Gray-Board GL, Paulson HL, Bonini NM (2000) Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum Mol Genet 9: 2811–2820

    PubMed  CAS  Google Scholar 

  • Chiti F, Calamai M, Taddei N, Stefani M, Ramponi G, Dobson CM (2002) Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proc Natl Acad Sci USA 99Suppl 4: 16419–16426

    PubMed  CAS  Google Scholar 

  • Chung KKK, Dawson VL, Dawson TM (2001) The role of the ubiquitin-proteasomal pathway in Parkinson’s disease and other neurodegenerative disorders. TINS 24[Suppl]: S7–S14

    PubMed  CAS  Google Scholar 

  • Citron BA, Suo Z, SantaCruz K, Davies PJ, Qin F, Festoff BW (2001) Protein crosslinking, tissue transglutaminase, alternative splicing and neurodegeneration. Neurochem Int 40: 69–78

    Google Scholar 

  • Clarke G, Collins RA, Leavitt BR, Andrews DF, Hayden MR, Lumsden CJ, Mclnnes RR (2000) A one-hit model of cell death in inherited neuronal degenerations. Nature 406: 195–199

    PubMed  CAS  Google Scholar 

  • Clayton DF, George JM (1999) Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res 58: 120–129

    PubMed  CAS  Google Scholar 

  • Cluskey S, Ramsden DB (2001) Mechanisms of neurodegeneration in amyotrophic lateral sclerosis. Mol Pathol 54: 386–392

    PubMed  CAS  Google Scholar 

  • Dickson DW (2001) Progressive supranuclear palsy and corticobasal degeneration. In: Hof RR, Mobbs LCK (eds) Functional neurobiology of aging. Academic Press, San Diego, pp 155–171

    Google Scholar 

  • Dikranian K, Ishimaru MJ, Tenkova T, Labruyere J, Qin YQ, Ikonomidou C, Olney JW (2001) Apoptosis in the in vivo mammalian forebrain. Neurobiol Dis 8: 359–379

    PubMed  CAS  Google Scholar 

  • Double KL, Ben-Shachar D, Youdim MB, Zecca L, Riederer P, Gerlach M (2002) Influence of neuromelanin on oxidative pathways within the human substantia nigra. Neurotoxicol Teratol 24: 621–628

    PubMed  CAS  Google Scholar 

  • Duda JE, Lee VMY, Trojanowski JQ (2000) Neuropathology of synuclein aggregates. New insights into mechanism of neurodegenerative diseases. J Neurosci Res 61:121–127

    PubMed  CAS  Google Scholar 

  • Egana JT, Zambrano C, Nunez MT, Gonzalez-Billault C, Maccioni RB (2003) Iron-induced oxidative stress modify tau phosphorylation patterns in hippocampal cell cultures. Biometals 16: 215–223

    PubMed  CAS  Google Scholar 

  • Elkon H, Don J, Melamed E, Ziv I, Shirvan A, Offen D (2002) Mutant and wild-type α-synuclein interact with mitochondrial cytochrome C oxidase. J Mol Neurosci 18: 229–238

    PubMed  CAS  Google Scholar 

  • Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404: 394–398

    PubMed  CAS  Google Scholar 

  • Ferreira ST, De Felice FG (2001) PABMB Lecture. Protein dynamics, folding and misfolding: from basic physical chemistry to human conformational diseases. FEBS Lett 498: 129–134

    PubMed  CAS  Google Scholar 

  • Ferrer I, Blanco R, Carmona M, Puig B, Barrachina M, Gomez C, Ambrosio S (2001) Active, phosphorylation-dependent mitogen-activated protein kinase (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 kinase expression in Parkinson’s disease and Dementia with Lewy bodies. J Neural Transm 108: 1383–1396

    PubMed  CAS  Google Scholar 

  • Floyd RA (1999) Neuroinflammatory processes are important in neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radic Biol Med 26: 1346–1355

    PubMed  CAS  Google Scholar 

  • Forloni G, Terreni L, Bertani I, Fogliarino S, Invernizzi R, Assini A, Ribizzi G, Negro A, Calabrese E, Volonte MA, Mariani C, Franceschi M, Tabaton M, Bertoli A (2002) Protein misfolding in Alzheimer’s and Parkinson’s disease: genetics and molecular mechanisms. Neurobiol Aging 23: 957–976

    PubMed  CAS  Google Scholar 

  • Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) α-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4: 160–164

    PubMed  CAS  Google Scholar 

  • Furukawa Y, Vigouroux S, Wong H, Guttman M, Rajput AH, Ang L, Briand M, Kish SJ, Briand Y (2002) Brain proteasomal function in sporadic Parkinson’s disease and related disorders. Ann Neurol 51: 779–782

    PubMed  Google Scholar 

  • Gai WP, Yuan HX, Li XQ, Power JT, Blumbergs PC, Jensen PH (2000) In situ and in vitro study of colocalization and segregation of α-synuclein, ubiquitin, and lipids in Lewy bodies. Exp Neurol 166: 324–333

    PubMed  CAS  Google Scholar 

  • Galvin JE, Lee VM, Trojanowski JQ (2001) Synucleinopathies: clinical and pathological implications. Arch Neurol 58: 186–190

    PubMed  CAS  Google Scholar 

  • Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81: 1285–1297

    PubMed  CAS  Google Scholar 

  • Gatto EM, Riobo NA, Carreras MC, Chernavsky A, Rubio A, Satz ML, Poderoso JJ (2000) Overexpression of neutrophil neuronal nitric oxide synthase in Parkinson’s disease. Nitric Oxide 4: 534–539

    PubMed  CAS  Google Scholar 

  • Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM (2000) Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 290: 985–989

    PubMed  CAS  Google Scholar 

  • Giasson BI, Ischiropoulos H, Lee VM, Trojanowski JQ (2002) The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer’s and Parkinson’s diseases. Free Radic Biol Med 32: 1264–1275

    PubMed  CAS  Google Scholar 

  • Gleckman AM, Jiang Z, Liu Y, Smith TW (1999) Neuronal and glial DNA fragmentation in Pick’s disease. Acta Neuropathol 98: 55–61

    PubMed  CAS  Google Scholar 

  • Goedert M, Jakes R, Crowther RA, Spillantini MG (2001) Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy as α-synucleinopathies. In: Mouradian MM (ed) Parkinson’s disease: methods and protocols. Humana Press Inc., Totawa, pp 33–59

    Google Scholar 

  • Golbe LI (2002) Neurodegeneration in the age of molecular biology. BMJ 324:1467–1468

    PubMed  Google Scholar 

  • Goldberg MS, Lansbury PT Jr (2000) Is there a cause-and-effect relationship between a-synuclein fibrillization and Parkinson’s disease? Nat Cell Biol 2: E115–E119

    PubMed  CAS  Google Scholar 

  • Gómez-Tortosa E, Gonzalo I, Newell K, Yébenes JG, Vonsattel JP, Hyman BT (2002) Patterns of protein nitration in dementia with Lewy bodies and striatonigral degeneration. Acta Neuropathol 103: 495–500

    PubMed  Google Scholar 

  • Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P3011 tau transgenic mice induced by Aβ 42 fibrils. Science 293: 1491–1495

    PubMed  CAS  Google Scholar 

  • Greenamyre JT, MacKenzie G, Peng TI, Stephans SE (1999) Mitochondrial dysfunction in Parkinson’s disease. Biochem Soc Symp 66: 85–97

    PubMed  CAS  Google Scholar 

  • Griffin WS, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, Roberts GW, Mrak RE (1998) Glial-neuronal interactions in Alzheimer’s disease: the potential role of a “cytokine cycle” in disease progression. Brain Pathol 8: 65–72

    PubMed  CAS  Google Scholar 

  • Grimaldi LM, Casadei VM, Ferri C, Veglia F, Licastro F, Annoni G, Biunno I, De Bellis G, Sorbi S, Mariani C, Canal N, Griffin WS, Franceschi M (2000) Association of early-onset Alzheimer’s disease with an interleukin-1alpha gene polymorphism. Ann Neurol 47: 361–365

    PubMed  CAS  Google Scholar 

  • Gu G, Reyes PE, Golden GT, Woltjer RL, Hulette C, Montine TJ, Zhang J (2002) Mitochondrial DNA deletions/rearrangements in parkinson disease and related neurodegenerative disorders. J Neuropathol Exp Neurol 61: 634–639

    PubMed  CAS  Google Scholar 

  • Guo Q, Sebastian L, Sopher BL, Miller MW, Glazner GW, Ware CB, Martin GM, Mattson MP (1999) Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. Proc Natl Acad Sci USA 96: 4125–4130

    PubMed  CAS  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18: 685–716

    PubMed  CAS  Google Scholar 

  • Hansen L, Masliah E (2001) Neurobiology of disorders with Lewy bodies. In: Hof RR, Mobbs LCK (eds) Functional neurobiology of aging. Academic Press, San Diego, pp 173–182

    Google Scholar 

  • Hartmann A, Mouatt-Prigent A, Vila M, Abbas N, Perier C, Faucheux BA, Vyas S, Hirsch EC (2002) Increased expression and redistribution of the antiapoptotic molecule Bcl-xL in Parkinson’s disease. Neurobiol Dis 10: 28–32

    PubMed  CAS  Google Scholar 

  • Hartmann-Petersen R, Hendil KB, Gordon C (2003) Ubiquitin binding proteins protect ubiquitin conjugates from disassembly. FEBS Lett 535: 77–81

    PubMed  CAS  Google Scholar 

  • Hasegawa M, Fujiwara H, Nonaka T, Wakabayashi K, Takahashi H, Lee VM, Trojanowski JQ, Mann D, Iwatsubo T (2002) Phosphorylated α-synuclein is ubiquitinated in α-synucleinopathy lesions. J Biol Chem 277: 49071–49076

    PubMed  CAS  Google Scholar 

  • Hashimoto M, Masliah E (1999) α-Synuclein in Lewy body disease and Alzheimer’s disease. Brain Pathol 9: 707–720

    PubMed  CAS  Google Scholar 

  • Henry JM, Jellinger KA (2003) Postencephalitic parkinsonism. In: Dickson DW et al (eds) Neurodegeneration and dementias. ISN Neuropathology Press, Los Angeles (in press)

    Google Scholar 

  • Ho L, Pieroni C, Winger D, Purohit DP, Aisen PS, Pasinetti GM (1999) Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer’s disease. J Neurosci Res 57: 295–303

    PubMed  CAS  Google Scholar 

  • Hoffner G, Djian P (2002) Protein aggregation in Huntington’s disease. Biochimie 84: 273–278

    PubMed  CAS  Google Scholar 

  • Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J, Takenoucnik T, Hashimoto M, Masliah E (2000) α-Synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157: 401–440

    PubMed  CAS  Google Scholar 

  • Iha N, Jurma OP, Lalli G, Liu Y, Pettus EH, Greenamyre JT, Liu RM, Forman HJ, Andersen JK (2000) Gluthathione depletion in PC12 results in selective inhibitation of mitochondrial complex I activity: implications for Parkinson’s disease. J Biol Chem 275: 26096–26101

    Google Scholar 

  • Ince PG, McKeith IG (2003) Dementia with Lewy bodies. In: Dickson DW et al (eds) Neurodegeneration and dementias. ISN Neuropathology Press, Los Angeles (in press)

    Google Scholar 

  • Iwata A, Maruyama M, Kanazawa I, Nukina N (2001) α-Synuclein affects the MAPK pathway and accelerates cell death. J Biol Chem 276: 45320–45329

    PubMed  CAS  Google Scholar 

  • Jellinger KA (2001) Cell death mechanisms in neurodegeneration. J Cell Mol Med 5: 1–17

    PubMed  CAS  Google Scholar 

  • Jellinger KA (2003a) Apoptosis vs. non-apoptotic mechanisms in neurodegeneration. In: Wood PL (ed) Neuroinflammation, 2nd ed. Humana Press, Totowa, pp 29–88

    Google Scholar 

  • Jellinger KA (2003b) Experimental models of synucleinopathies. In: Dickson DW et al (eds) Neurodegeneration and dementias. ISN Neuropathology Press, Los Angeles (in press)

    Google Scholar 

  • Jellinger KA, Duda J (2003) Neuroaxonal dystrophies. In: Dickson DW et al (eds) Neurodegeneration and dementias. ISN Neuropathology Press, Los Angeles (in press)

    Google Scholar 

  • Jellinger KA, Mizuno Y (2003) Parkinson disease. In: Dickson DW et al (eds) Neurodegeneration and dementias. ISN Neuropathology Press, Los Angeles (in press)

    Google Scholar 

  • Johnson WG (2001) Late-onset neurodegenerative diseases—the role of protein insolubility. J Anat 196: 609–616

    Google Scholar 

  • Kaiser P, Flick K, Wittenberg C, Reed SI (2000) Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4. Cell 102: 303–314

    PubMed  CAS  Google Scholar 

  • Katayama S, Watanabe C, Kohriyama T, Yamamura Y, Mao JJ, Ohishi H, Nishisaka T, Inai K, Tanaka E, Nakamura S (2000) Gallyas-positive argyrophilic and ubiquitinated filamentous inclusions in rapidly progressive motor neuron disease: immunohistochemical and electron microscopic studies. Acta Neuropathol 100: 221–227

    PubMed  CAS  Google Scholar 

  • Ke Y, Qian ZM (2003) Iron misregulation in the brain: a primary cause of neurodegenerative disorders. Lancet Neurol 2: 246–252

    PubMed  CAS  Google Scholar 

  • Kikuchi A, Takeda A, Onodera H, Kimpara T, Hisanaga K, Sato N, Nunomura A, Castellani RJ, Perry G, Smith MA, Itoyama Y (2002) Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis 9: 244–248

    PubMed  CAS  Google Scholar 

  • Kim HT, Russell RL, Raina AK, Harris PL, Siedlak SL, Zhu X, Petersen RB, Shimohama S, Smith MA, Perry G (2000) Protein disulfide isomerase in Alzheimer disease. Antioxid Redox Signal 2: 485–489

    PubMed  CAS  Google Scholar 

  • Kim KS, Choi SY, Kwon HY, Won MH, Kang TC, Kang JH (2002) The ceruloplasmin and hydrogen peroxide system induces alpha-synuclein aggregation in vitro. Biochimie 84: 625–631

    PubMed  CAS  Google Scholar 

  • Kim SH, Creemers JW, Chu S, Thinakaran G, Sisodia SS (2002) Proteolytic processing of familial British dementia-associated BRI variants: evidence for enhanced intracellular accumulation of amyloidogenic peptides. J Biol Chem 277: 1872–1877

    PubMed  CAS  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605–608

    PubMed  CAS  Google Scholar 

  • Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB, Zoghbi HY, Orr HT (1998) Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95: 41–53

    PubMed  CAS  Google Scholar 

  • Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10: 524–350

    PubMed  CAS  Google Scholar 

  • Kovacs GG, Kloppel S, Fischer I, Dorner S, Lindeck-Pozza E, Birner P, Botefur IC, Pilz P, Volk B, Budka H (2003) Nucleus-specific alteration of raphe neurons in human neurodegenerative disorders. Neuroreport 14: 73–76

    PubMed  CAS  Google Scholar 

  • Krieger C, Duchen MR (2002) Mitochondria, Ca(2+) and neurodegenerative disease. Eur J Pharmacol 447: 177–188

    PubMed  CAS  Google Scholar 

  • Kril JJ, Halliday GM (2001) Alzheimer’s disease: its diagnosis and pathogenesis. Int Rev Neurobiol 48: 167–217

    PubMed  CAS  Google Scholar 

  • Lantos PL, Quinn N (2003) Dementia with Lewy bodies. In: Dickson DW et al (eds) Neurodegeneration and dementias. ISN Neuropathology Press, Los Angeles (in press)

    Google Scholar 

  • Lassmann H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, Wisniewski HM (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol 89: 35–41

    PubMed  CAS  Google Scholar 

  • Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405: 360–364

    PubMed  CAS  Google Scholar 

  • Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24: 1121–1159

    PubMed  CAS  Google Scholar 

  • Linert W, Jellinger KA (2001) Cell death mechanisms and the role of iron in neurodegeneration. In: Segura-Aquilar J (ed) Mechanisms of degeneration and protection of the dopaminergic system. FP Graham Publishing, Johnson City, pp 21–65

    Google Scholar 

  • Lippa CF (2003) Lewy bodies in conditions other than disorders of α-synuclein. In: Dickson DW et al (eds) Neurodegeneration and dementias. ISN Neuropathology Press, Los Angeles (in press)

    Google Scholar 

  • Lotharius J, Brundin P (2002) Impaired dopamine storage resulting from α-synuclein mutations may contribute to the pathogenesis of Parkinson’s disease. Hum Mol Genet 11: 2395–2407

    PubMed  CAS  Google Scholar 

  • Lovestone S, McLoughlin DM (2002) Protein aggregates and dementia: is there a common toxicity? J Neurol Neurosurg Psychiatry 72: 152–161

    PubMed  CAS  Google Scholar 

  • Lovestone S, Reynolds CH (1997) The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. Neuroscience 78: 309–324

    PubMed  CAS  Google Scholar 

  • Mager P, Penke B, Walter R, Harkany T, Hartig W (2002) Pathological peptide folding in Alzheimer disease and other conformational disorders. Curr Med Chem 9: 1763–1780

    CAS  Google Scholar 

  • Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA (2002) The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice: paraquat and α-synuclein. J Biol Chem 277: 1641–1644

    PubMed  CAS  Google Scholar 

  • Markesbery WR, Montine DJ, Lovell MA (2001) Oxidative alterations in neurodegenerative diseases, In: Mattson MP (ed) Pathogenesis of neurodegenerative disorders. Humana Press, Totowa, pp 21–51

    Google Scholar 

  • Marx J (2001) New leads on the ‘how’ of Alzheimer’s. Science 293: 2192–4219

    PubMed  CAS  Google Scholar 

  • Masliah E, Rockenstein E, Veinbergs I, Sagara Y, Mallory M, Hashimoto M, Mucke L (2001) β-amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc Natl Acad Sci USA 98: 12245–12250

    PubMed  CAS  Google Scholar 

  • Mattson MP (2001) Inflammation, free radicals, glycation, metabolism and apoptosis, heavy metals. In: Hof RR, Mobbs LCK (eds) Functional neurobiology of aging. Academic Press, San Diego, pp 349–371

    Google Scholar 

  • Mattson MP (2001) Mechanisms of neuronal apoptosis and excitotoxicity. In: Mattson MP (ed) Pathogenesis of neurodegenerative disorders. Humana Press, Totowa, pp 1–20

    Google Scholar 

  • McGeer PL, McGeer EG (2000) Autotoxicity and Alzheimer disease. Arch Neurol 57: 789–790

    PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG (2002) Polymorphisms in inflammatory genes enhance the risk of Alzheimer disease. Alzheimer Research Forum, February 11, 2002

    Google Scholar 

  • McGeer PL, Yasojima K, McGeer EG (2001) Inflammation in Parkinson’s disease. Adv Neurol 86: 83–89

    PubMed  CAS  Google Scholar 

  • McMurray CT (2001) Huntington’s disease: new hope for therapeutics. TINS 24[Suppl]: S32–S37

    PubMed  CAS  Google Scholar 

  • McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat Rev Neurosci 2: 589–594

    PubMed  CAS  Google Scholar 

  • McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 179: 38–46

    PubMed  CAS  Google Scholar 

  • McNaught KS, Shashidharan P, Perl DP, Jenner P, Olanow CW (2002) Aggresome-related biogenesis of Lewy bodies. Eur J Neurosci 16: 2136–2148

    PubMed  Google Scholar 

  • Merlini G, Bellotti V, Andreola A, Palladini G, Obici L, Casarini S, Perfetti V (2001) Protein aggregation. Clin Chem Lab Med 39: 1065–1075

    PubMed  CAS  Google Scholar 

  • Miake H, Mizusawa H, Iwatsubo T, Hasegawa M (2002) Biochemical characterization of the core structure of α-synuclein filaments. J Biol Chem 277: 19213–19219

    PubMed  CAS  Google Scholar 

  • Miller RJ, Wilson SM (2003) Neurological disease: UPS stops delivering! Trends Pharmacol Sci 24: 18–23

    PubMed  CAS  Google Scholar 

  • Morris HR, Katzenschlager R, Janssen JC, Brown JM, Ozansoy M, Quinn N, Revesz T, Rossor MN, Daniel SE, Wood NW, Lees AJ (2002) Sequence analysis of tau in familial and sporadic progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 72: 388–390

    PubMed  CAS  Google Scholar 

  • Morsch R, Simon W, Coleman PD (1999) Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 58: 188–197

    PubMed  CAS  Google Scholar 

  • Mrak RE, Griffin WS (2000) Interleukin-1 and the immunogenetics of Alzheimer disease. J Neuropathol Exp Neurol 59: 471–476

    PubMed  CAS  Google Scholar 

  • Mudher A, Lovestone S (2002) Alzheimer’s disease-do tauists and baptists finally shake hands? Trends Neurosci 25: 22–26

    PubMed  CAS  Google Scholar 

  • Münch G, Luth HJ, Wong A, Arendt T, Hirsch E, Ravid R, Riederer P (2000) Crosslinking of α-synuclein by advanced glycation endproducts — an early pathophysiological step in Lewy body formation? J Chem Neuroanat 20: 253–257

    PubMed  Google Scholar 

  • Myung J, Kim KB, Crews CM (2001) The ubiquitin-proteasome pathway and proteasome inhibitors. Med Res Rev 21: 245–273

    PubMed  CAS  Google Scholar 

  • Nicoll JA, Mrak RE, Graham DI, Stewart J, Wilcock G, MacGowan S, Esiri MM, Murray LS, Dewar D, Love S, Moss T, Griffin WS (2000) Association of interleukin-1 gene polymorphisms with Alzheimer’s disease. Ann Neurol 47: 365–368

    PubMed  CAS  Google Scholar 

  • Nicotera P (2002) Apoptosis and age-related disorders: role of caspase-dependent and caspase-independent pathways. Toxicol Lett 127: 189–195

    PubMed  CAS  Google Scholar 

  • Nicotera P, Leist M, Fava E, Berliocchi L, Volbracht C (2000) Energy requirement for caspase activation and neuronal cell death. Brain Pathol 10: 276–282

    PubMed  CAS  Google Scholar 

  • Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60: 759–767

    PubMed  CAS  Google Scholar 

  • Odetti P, Garibaldi S, Norese R, Angelini G, Marinelli L, Valentini S, Menini S, Traverso N, Zaccheo D, Siedlak S, Perry G, Smith MA, Tabaton M (2000) Lipoperoxidation is selectively involved in progressive supranuclear palsy. J Neuropathol Exp Neurol 59: 393–397

    PubMed  CAS  Google Scholar 

  • Orth M, Schapira AHV (2001) Mitochondria and degenerative disorders. Am J Med Genet 106: 27–36

    PubMed  CAS  Google Scholar 

  • Perez R, Waymire J, Lin E, Guo F, Zigmond M (2002) α-Synuclein as a regulator of dopamine synthesis. Abstract, 8th Int Conf on Alzheimer disease

    Google Scholar 

  • Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ (2002) A role for α-synuclein in the regulation of dopamine biosynthesis. J Neurosci 22: 3090–3099

    PubMed  CAS  Google Scholar 

  • Perry G, Liu Q, Wataya T, Shimohama S, Nunomura A, Siedlak SL, Sayre LL, Smith MA (2002) Neurofilament proteins are major targets of oxidative damage in the nervous system. J Neuropathol Exp Neurol 61: 456

    Google Scholar 

  • Perry G, Srinivas R, Nunomura A, Smith MA (2003) Oxidative mechanisms in neurodegenerative diseases. In: Dickson DW et al (eds) Neurodegeneration and dementias. ISN Neuropathology Press, Los Angeles (in press)

    Google Scholar 

  • Perry G, Zhu X, Atwood CS, Numamura A, Smith MA (2002) Oxidative abnormalities as a window to Alzheimer disease. 8th International Conference on Alzheimer disease and Related Disorders, July 19–25, 2002, Abstr. # 4235

    Google Scholar 

  • Perry VH, Newman TA, Cunningham C (2003) The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci 4: 103–112

    PubMed  CAS  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70: 503–533

    PubMed  CAS  Google Scholar 

  • Radisky DC, Babcock MC, Kaplan J (1999) The yeast frataxin homologue mediates mitochondrial iron efflux. Evidence for a mitochondrial iron cycle. J Biol Chem 274: 4497–4499

    PubMed  CAS  Google Scholar 

  • Raina AK, Hochman A, Zhu X, Rottkamp CA, Nunomura A, Siedlak SL, Boux H, Castellani RJ, Perry G, Smith MA (2001) Abortive apoptosis in Alzheimer’s disease. Acta Neuropathol 101: 305–310

    PubMed  CAS  Google Scholar 

  • Raina AK, Sayre LM, Atwood CS, Rottkamp CA, Hochman Y, Zhu X, Obrenovic ME, Shimohama S, Numamura A, Takeda A, Perry G, Smith MA (2002) Apoptotic and oxidative indicators in Alzheimer disease. In: LeBlanc AC (ed) Apoptosis: Techniques and Protocols, 2nd ed. Humana Press, Totowa, NJ, pp. 225–246

    Google Scholar 

  • Reddy PH, Williams M, Charles V, Garrett L, Pike-Buchanan L, Whetsell WO Jr, Miller G, Tagle DA (1998) Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat Genet 20: 198–202

    PubMed  CAS  Google Scholar 

  • Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 157: 1415–1430

    PubMed  CAS  Google Scholar 

  • Riederer P, Reichmann H, Janetzky B, Sian J, Lesch KP, Lange KW, Double KL, Nagatsu T, Gerlach M (2001) Neural degeneration in Parkinson’s disease. Adv Neurol 86: 125–136

    PubMed  CAS  Google Scholar 

  • Rohn TT, Head E, Nesse WH, Cotman CW, Cribbs DH (2001) Activation of caspase-8 in the Alzheimer’s disease brain. Neurobiol Dis 8: 1006–1016

    PubMed  CAS  Google Scholar 

  • Roth KA (2001) Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion. J Neuropathol Exp Neurol 60: 829–838

    PubMed  CAS  Google Scholar 

  • Rottkamp CA, Raina AK, Zhu X, Gaier E, Bush AI, Atwood CS, Chevion M, Perry G, Smith MA (2001) Redox-active iron mediates amyloid-β, toxicity. Free Radie Biol Med 30: 447–150

    CAS  Google Scholar 

  • Saha AR, Ninkina NN, Hanger DP, Anderton BH, Davies AM, Buchman VL (2000) Induction of neuronal death by a-synuclein. Eur J Neursoci 12: 3073–3077

    CAS  Google Scholar 

  • Sakamoto M, Uchihara T, Hayashi M, Nakamura A, Kikuchi E, Mizutani T, Mizusawa H, Hirai S (2002) Heterogeneity of nigral and cortical Lewy bodies differentiated by amplified triple-labeling for a-synuclein, ubiquitin, and thiazin red. Exp Neurol 177: 88–94

    PubMed  CAS  Google Scholar 

  • Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95: 55–66

    PubMed  CAS  Google Scholar 

  • Sayre LM, Smith MA, Perry G (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8: 721–738

    PubMed  CAS  Google Scholar 

  • Schlossmacher MG, Frosch MP, Gai WP, Medina M, Sharma N, Forno L, Ochiishi T, Shimura H, Sharon R, Hattori N, Langston JW, Mizuno Y, Hyman BT, Selkoe DJ, Kosik KS (2002) Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. Am J Pathol 160: 1655–1667

    PubMed  CAS  Google Scholar 

  • Schmidt T, Lindenberg KS, Krebs A, Schöls L, Laccone F, Herms J, Rechsteiner M, Riess O, Landwehrmeyer GB (2002) Protein surveillance machinery in brains with spinocerebellar ataxia type 3: Redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions. Ann Neurol 51: 302–310

    PubMed  CAS  Google Scholar 

  • Schwab C, Schulzer M, Steele JC, McGeer PL (1999) On the survival time of a tangled neuron in the hippocampal CA4 region in parkinsonism dementia complex of Guam. Neurobiol Aging 20: 57–63

    PubMed  CAS  Google Scholar 

  • Sharma N, Hewett J, Ozelius LJ, Ramesh V, McLean PJ, Breakefield XO, Hyman BT (2001) A close association of torsinA and a-synuclein in Lewy bodies: a fluorescence resonance energy transfer study. Am J Pathol 159: 339–344

    PubMed  CAS  Google Scholar 

  • Sherman MY, Goldberg AL (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29: 15–32

    PubMed  CAS  Google Scholar 

  • Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ (2001) Ubiquitination of a new form of a-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293: 263–269

    PubMed  CAS  Google Scholar 

  • Shringarpure R, Grune T, Mehlhase J, Davies KJ (2003) Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem 278: 311–318

    PubMed  CAS  Google Scholar 

  • Sieradzan KA, Mechan AO, Jones L, Wanker EE, Nukina N, Mann DM (1999) Huntington’s disease intranuclear inclusions contain truncated, ubiquitinated huntingtin protein. Exp Neurol 156: 92–99

    PubMed  CAS  Google Scholar 

  • Silva MT, Schapira AHV (2001) Parkinson’s disease. In: Mattson MP (ed) Pathogenesis of neurodegenerative disorders. Human Press, Totowa, pp 53–79

    Google Scholar 

  • Simon DK, Beal MF (2002) Pathogenesis: oxidative stress, mitochondrial dysfunction and excitotoxicity. In: Factor SA, Weiner WJ (eds) Parkinson’s disease. Diagnosis and management. Demos, New York, pp 281–290

    Google Scholar 

  • Sly LM, Krzesicki RF, Brashler JR, Buhl AE, McKinley DD, Carter DB, Chin JE (2001) Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccha-ride are elevated in the Tg2576 transgenic mouse model of Alzheimer’s disease. Brain Res Bull 56: 581–588

    PubMed  CAS  Google Scholar 

  • Soto C (2001) Protein misfolding and disease; protein refolding and therapy. FEBS Lett 498: 204–207

    PubMed  CAS  Google Scholar 

  • Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4: 49–60

    PubMed  CAS  Google Scholar 

  • Stadelmann C, Deckwerth TL, Srinivasan A, Bancher C, Bruck W, Jellinger K, Lassmann H (1999) Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease. Evidence for apoptotic cell death. Am J Pathol 155: 1459–1466

    PubMed  CAS  Google Scholar 

  • Stewart VC, Heales SJ (2003) Nitric oxide-induced mitochondrial dysfunction: implications for neurodegeneration. Free Radie Biol Med 34: 287–303

    CAS  Google Scholar 

  • Tabner BJ, Turnbull S, El-Agnaf OM, Allsop D (2002) Formation of hydrogen peroxide and hydroxyl radicals from Aβ and a-synuclein as a possible mechanism of cell death in Alzheimer’s disease and Parkinson’s disease. Free Radie Biol Med 32: 1076–1083

    CAS  Google Scholar 

  • Takahashi M, Weidenheim KM, Dickson DW, Ksiezak-Reding H (2002) Morphological and biochemical correlations of abnormal tau filaments in progressive supranuclear palsy. J Neuropathol Exp Neurol 61: 33–45

    PubMed  CAS  Google Scholar 

  • Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H, Beal MF, Xu H, Greengard P, Gouras GK (2002) Intraneuronal Alzheimer Aβ42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 161: 1869–1879

    PubMed  CAS  Google Scholar 

  • Tatton NA (2000) Increased caspase-3 and BAX immunoreactivity accompanying nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 166: 29–43

    PubMed  CAS  Google Scholar 

  • Tatton WG, Olanow CW (1999) Apoptosis in neurodegenerative disease: The role of mitochondria. Biochem Biophys Acta 1410: 195–214

    PubMed  CAS  Google Scholar 

  • Teismann P, Tieu K, Cohen O, Choi DK, Wu du C, Marks D, Vila M, Jackson-Lewis V, Przedborski S (2003) Pathogenic role of glial cells in Parkinson’s disease. Mov Disord 18: 121–129

    PubMed  Google Scholar 

  • Thal DR, Rüb U, Schultz C, Sassin I, Ghebremedhin E, Del Tredici K, Braak E, Braak H (2000) Sequence of Aβ-protein deposition in the human medial temporal lobe. J Neuropathol Exp Neurol 59: 733–748

    PubMed  CAS  Google Scholar 

  • Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58: 1781–1800

    Google Scholar 

  • Thompson KJ, Shoham S, Connor JR (2001) Iron and neurodegenerative disorders. Brain Res Bull 55: 155–164

    PubMed  CAS  Google Scholar 

  • Tiranti V, Jaksch M, Hofmann S, Galimberti C, Hoertnagel K, Lulli L, Freisinger P, Bindoff L, Gerbitz KD, Comi GP, Uziel G, Zeviani M, Meitinger T (1999) Loss-of-function mutations of SURF-1 are specifically associated with Leigh syndrome with cytochrome c oxidase deficiency. Ann Neurol 46: 161–166

    PubMed  CAS  Google Scholar 

  • Tompkins MM, Hill WD (1997) Contribution of somal Lewy bodies to neuronal death. Brain Res 775: 24–29

    PubMed  CAS  Google Scholar 

  • Trojanowski J (2003) Protein aggregation. In: Dickson DW et al (eds) Neurodegeneration and dementias. ISN Neuropathology Press, Los Angeles (in press)

    Google Scholar 

  • Trojanowski JQ, Lee VM (2000) “Fatal attractions” of proteins. A comprehensive hypothetical mechanism underlying Alzheimer’s disease and other neurodegenerative disorders. Ann NY Acad Sci 924: 62–67

    PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Lee VM (2001) Parkinson’s disease and related neurodegenerative synucleinopathies linked to progressive accumulations of synuclein aggregates in brain. Parkinsonism Relat Disord 7: 247–251

    PubMed  Google Scholar 

  • Trojanowski JQ, Goedert M, Iwatsubo T, Lee VMY (1998) Fatal attractions — abnormal protein aggregation and neuron death in Parkinson’s disease and Lewy body-dementia. Cell Death Different 5: 832–837

    CAS  Google Scholar 

  • Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269: 2–12

    PubMed  CAS  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human a-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276: 44284–44296

    PubMed  CAS  Google Scholar 

  • Vielhaber S, Winkler K, Kirches E, Kunz D, Buchner M, Feistner H, Elger CE, Ludolph AC, Riepe MW, Kunz WS (1999) Visualization of defective mitochondrial function in skeletal muscle fibers of patients with sporadic amyotrophic lateral sclerosis. J Neurol Sci 169: 133–139

    PubMed  CAS  Google Scholar 

  • Vila M, Wu DC, Przedborski S (2001) Engineered modeling and the secrets of Parkinson’s disease. TINS 24[Suppl]: S49–S55

    PubMed  CAS  Google Scholar 

  • Walker LC, Le Vine H 3rd (2002) The cerebral proteopathies. Neurobiol Aging 2000;21: 559–561

    Google Scholar 

  • Wang KKW (2000) Calpain and caspase; can you tell the difference? Trends Neurol Sci 23: 20–26

    Google Scholar 

  • Watanabe M, Dykes-Hoberg M, Culotta VC, Price DL, Wong PC, Rothstein JD (2001) Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol Dis 8: 933–941

    PubMed  CAS  Google Scholar 

  • Williams A (2002) Defining neurodegenerative diseases. BMJ 324: 1465–1466

    PubMed  Google Scholar 

  • Wilson CA, Doms RW, Lee VM (1999) Intracellular APP processing and Aβ production in Alzheimer disease. J Neuropathol Exp Neurol 58: 787–794

    PubMed  CAS  Google Scholar 

  • Wolozin B, Behl C (2000) Mechanisms of neurodegenerative disorders, part 1. Protein aggregates. Arch Neurol 57: 793–796

    PubMed  CAS  Google Scholar 

  • Wong A, Luth HJ, Deuther-Conrad W, Dukic-Stefanovic S, Gasic-Milenkovic J, Arendt T, Munch G (2001) Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res 920: 32–40

    PubMed  CAS  Google Scholar 

  • Yamamoto A, Shin RW, Hasegawa K, Naiki H, Sato H, Yoshimasu F, Kitamoto T (2002) Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem 82: 1137–1147

    PubMed  CAS  Google Scholar 

  • Youdim MBH, Drigues N, Mandel S (2001) Oxidative stress indices in Parkinson’s disease. In: Mouradian MM (ed) Parkinson’s disease: methods and protocols. Humana Press, Totowa, pp 137–153

    Google Scholar 

  • Zemaitaitis MO, Kim SY, Halverson RA, Troncoso JC, Lee JM, Muma NA (2003) Transglutaminase activity, protein, and mRNA expression are increased in progressive supranuclear palsy. J Neuropathol Exp Neurol 62: 173–184

    PubMed  CAS  Google Scholar 

  • Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154: 1423–1429

    PubMed  CAS  Google Scholar 

  • Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ (2001) A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 28: 345–349

    PubMed  CAS  Google Scholar 

  • Zhou W, Schaack J, Zawada WM, Freed CR (2002) Overexpression of human a-synuclein causes dopamine neuron death in primary human mesencephalic culture. Brain Res 926: 42–50

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this paper

Cite this paper

Jellinger, K.A. (2003). General aspects of neurodegeneration. In: Horowski, R., et al. Advances in Research on Neurodegeneration. Journal of Neural Transmission. Supplementa, vol 65. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0643-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0643-3_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83907-2

  • Online ISBN: 978-3-7091-0643-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics