Skip to main content

Mapping of the Neuronal Networks of Human Cortical Brain Functions

  • Chapter

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 28))

Abstract

Objective. The principles and methodology of event-related fMRI, electromagnetic source imaging and intracranial evoked potentials will be described along with some examples of the mapping of the neuronal networks of human cortical brain functions with the use of these techniques.

Introduction. Functional brain mapping using PET or fMRI has provided clues on the functioning brain and notably on the functional neuro-anatomy of cognitive functions. These mapping possibilities can be used to delineate in an individual patient the brain areas subserving a cerebral function that might be compromised by a surgery in a nearby location, or to target a functional neurosurgical procedure.

Background. Brain functions and notably “higher brain functions” are served by a complex network of interrelating brain regions. Deeper insights into the functioning of a neuronal network can be gained by adding dynamic, i.e. temporal, information to the functional maps. This will demonstrate the orchestration of the activation of the different brain areas constituting the network, which gives clues to the information processing and therefore to the functioning of the different modules of the network. In order to track the flow of information and the sequential activation of the different brain regions constituting the network, brain activity has to be recorded at the speed of transfer of activation from one neuronal population to the other. The temporal resolution needed to achieve this is not in the range of traditional subtractive or comparative PET or fMRI techniques.

New Developments. Novel fMRI methods that record haemodynamic signal changes after single events (event-related fMRI) are now able to determine sequential neural processing by distinguishing the relative onsettime of activity between different areas. The temporal resolution of event-related (ER) fMRI is sufficient to detect changes of mental activity within the order of several hundreds of milliseconds. This allows the exploration of a broad range of cognitive functions. Nevertheless, this technique is currently not rapid enough to observe the transient coordinations and oscillations of neuronal activities occurring across certain cortical areas during the performance of cognitive tasks. The temporal resolution needed for that is within the order of tens or a few milliseconds and is only accessible by EEG or MEG that allow true real-time measurements of the neuronal activity elicited by a stimulus. Surface recordings of multichannel EEG or MEG combined with novel electromagnetic source localisation algorithms allow a relatively precise estimation of the activated areas. A more direct localisation of electric activity is achieved by intracranial recordings in patients having implanted electrodes for diagnostic reasons. In these cases, a high temporal and spatial resolution is achieved but with a limited sampling of brain regions.

Conclusion. Although the temporal resolution of ER fMRI is due to improve, the temporal measures provided by EEG, MEG or intracranial event-related potentials (ERPs) are absolute, which remains a unique feature of these techniques. Therefore, ER fMRI and electromagnetic source imaging are complementary. The maps obtained with ER fMRI may be refined by electromagnetic ERPs that provide further insights into the temporal coordination or orchestration between the cortical areas already detected by ER fMRI and constituting a neuronal network, and ER fMRI can be used to precisely locate the areas coarsely situated and delineated by electromagnetic source imaging. Thus, the combination of ER fMRI and electromagnetic ERPs is essential in order to produce a mapping method with a millimetre spatial resolution and a millisecond temporal resolution. Future applications should combine these techniques to localise precisely and non-invasively relevant sensory, motor and cognitive processes in order to adequately tailor any brain surgery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre GK, Zarahn E, D’Esposito M (1998) The variability of human BOLD hemodynamic reponses. NeuroImage 8: 360–369

    PubMed  CAS  Google Scholar 

  2. Alarcon G, Guy CN, Binnie CD, Walker SR, Elwes RDC, Polkey CE (1994) Intracerebral propagation of interictal activity in partial epilepsy: implications for source localisation. J Neuro Neurosurg Psychiatry 57: 435–449

    CAS  Google Scholar 

  3. Allison T, Puce A, Spencer DD, McCarthy G (1999) Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. Cereb Cortex 9: 415–430

    PubMed  CAS  Google Scholar 

  4. Anogianakis G, Badier JM, Barrett G, Erne S, Fenici R, Fenwick P, Grandori F, Hari R, Illmoniemi R, Mauguiere F, Lehmann D, Perrin F, Peters M, Romani GL, Rossini PM (1992) A consensus statement of relative merits of EEG and MEG. Electroencephalogr Clin Neurophysiol 82: 317–319

    Google Scholar 

  5. Apkarian AV, Darbar A, Krauss BR, Gelnar PA, Szeverenyi NM (1999) Differentiating cortical areas related to pain perception from stimulus identification: temporal analysis of fMRI activity. J Neurophysiol 81: 2956–2963

    PubMed  CAS  Google Scholar 

  6. Babiloni F, Babiloni C, Carducci F, Fattorini L, Onorati F, Urbano A (1996) Spline Laplacian estimate of EEG potentials over a realistic magnetic resonance-constructed scalp surface model. Electroencephalogr Clin Neurophysiol 98: 363–373

    PubMed  CAS  Google Scholar 

  7. Baddeley A (1995) Working memory. In: Gazzaniga MS (ed) The cognitive neurosciences. The MIT Press, Cambridge, London, pp 755–764

    Google Scholar 

  8. Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Res Med 30: 161–173

    CAS  Google Scholar 

  9. Bandettini PA, Binder JR, DeYoe EA, Rao SM, Jesmanowicz A, Hammeke TA, Haughton VM, Wong EC, Hyde JS (1995) Functional MR imaging using the BOLD approach. In: Le Bihan D (ed) Diffusion and perfusion magnetic resonance imaging. Raven Press, New York, 351–362

    Google Scholar 

  10. Bandettini PA, Cox RW (2000) Event-related fMRI contrast when using constant interstimulus interval: theory and experiment. Magn Res Med 43: 540–548

    CAS  Google Scholar 

  11. Barch DM, Braver TS, Sabb FW, Noll DC (2000) Anterior cingulate and the monitoring of response conflict: evidence from an fMRI study of overt verb generation. J Cogn Neurosci 12: 298–309

    PubMed  CAS  Google Scholar 

  12. Blamire AM, Ogawa S, Ugurbil K, Rothman D, McCarthy G, Ellermann J, Hyder F, Rattner Z, Shulman RG (1992) Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc Natl Acad Sci USA 89: 11069–11073

    PubMed  CAS  Google Scholar 

  13. Blanke O, Morand S, Michel CM, Thut G, Spinelli L, Landis T, Seeck M (1999) Visual activity in the human frontal eye field. NeuroReport 10: 925–930

    PubMed  CAS  Google Scholar 

  14. Boynton GM, Engle SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human VI. J Neurosci 16: 4207–4221

    PubMed  CAS  Google Scholar 

  15. Brandeis D, Lehmann D, Michel CM, Mingrone W (1995) Mapping event-related potential microstates to sentence endings. Brain Topography 8: 145–159

    PubMed  CAS  Google Scholar 

  16. Buchner H, Gobbele R, Wagner M, Fuchs M, Waberski TD, Beckmann R (1997) Fast visual evoked potential input into human area V5. NeuroReport 8: 2419–2422

    PubMed  CAS  Google Scholar 

  17. Buckner RL, Bandettini PA, O’Craven K, Savoy R, Petersen S, Raichle M, Rosen B (1996) Detection of cortical activation during averaged single trials of cognitive task using functional magnetic resonance imaging. Proc Natl Acad Sci USA 93: 14878–14883

    PubMed  CAS  Google Scholar 

  18. Buckner RL, Goodman J, Burock M, Rotte M, Koutstaal W, Schacter D, Rosen B, Dale AM (1998) Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI. Neuron 20: 285–296

    PubMed  CAS  Google Scholar 

  19. Buckner RL, Koutstaal W (1998) Functional neuroimaging studies of encoding, priming and explicit memory retrieval. Proc Natl Acad Sci USA 95: 891–898

    PubMed  CAS  Google Scholar 

  20. Buckner RL, Braver TS (1999) Event-related functional MRI. In: Moonen CTW, Bandettini PA (eds) Functional MRI, Springer, Germany, pp 441–452

    Google Scholar 

  21. Burock MA, Buckner RL, Woldorff MG, Rosen BR, Dale AM (1998) Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. NeuroReport 9: 3735–3739

    PubMed  CAS  Google Scholar 

  22. Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood flow and oxygenation changes during activation: the balloon model. Magn Res Med 39: 855–864

    CAS  Google Scholar 

  23. Carpenter PA, Just MA, Keller TA, Eddy WF, Thulbom KR (1999) Time course of fMRI-activation in language and spatial networks during sentence comprehension. NeuroImage 10: 216–224

    PubMed  CAS  Google Scholar 

  24. Carter CS, Botvinick MM, Cohen JD (1999) The contribution of the anterior cingulate cortex to executive processes in cognition. Rev Neurosci 10: 49–57

    PubMed  CAS  Google Scholar 

  25. Clark VP, Maisog JM, Haxby JV (1998) FMRI study of face perception and memory using random stimulus sequences. J Neurophysiol 79: 3257–3265

    PubMed  CAS  Google Scholar 

  26. Clark VP, Fannon S, Lai S, Benson R, Bauer L (2000) Responses to rare visual target and distractor stimuli using event-related fMRI. J Neurophysiol 83: 3133–3139

    PubMed  CAS  Google Scholar 

  27. Clarke CJS, Ioannides AA, Bolton JPR (1989) Localized and distributed source solutions for the biomagnetic inverse problem. In: Williamson SJ, Hoke M, Stroink G, Kotani M (eds) Advances in biomagnetism. Plenum, New York, pp 587-590

    Google Scholar 

  28. Cohen D, Cuffin BN, Yunokuchi K, Maniewski R, Purcell C, Cosgrove R, Ives J, Kennedy JG, Schomer DL (1990) MEG versus EEG localization test using implanted sources in the human brain. Ann Neurol 28: 811–817

    PubMed  CAS  Google Scholar 

  29. Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE (1997) Temporal dynamics of brain activation during a working memory task. Nature 386: 604–608

    PubMed  CAS  Google Scholar 

  30. Cohen MS, Weisskoff RM (1991) Ultra-fast imaging. Magn Res Imag 9: 137

    Google Scholar 

  31. Cohen MS (1997) Parametric analysis of fMRI data using linear systems methods. NeuroImage 6: 93–103

    PubMed  CAS  Google Scholar 

  32. Coull JT, Frith CD, Buchel C, Nobre AC (2000) Orienting attention in time: behavioural and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychol 38: 808–819

    CAS  Google Scholar 

  33. Courtney SM, Ungerleider LG, Keil K, Haxby JV (1997) Transient and sustained activity in a distributed neural system for human working memory. Nature 386: 608–611

    PubMed  CAS  Google Scholar 

  34. Crease RP (1991) Images of conflict: MEG vs EEG. Science 253: 374–375

    PubMed  CAS  Google Scholar 

  35. Cuffin BN (1996) EEG localization accuracy improvements using realistically shaped head models. IEEE Trans Biomed Eng 43: 299–303

    PubMed  CAS  Google Scholar 

  36. Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5: 162–176

    Google Scholar 

  37. Dale AM, Buckner RL (1997) Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp 5: 329–340

    PubMed  CAS  Google Scholar 

  38. Dalkara T, Irikura K, Huang Z, Panahian N, Moskowitz MA (1995) Cerebrovascular responses under controlled and monitored physiological conditions in the anesthetized mouse. J Cereb Blood Flow Metab 15: 631–638

    PubMed  CAS  Google Scholar 

  39. Damasio AR, Damasio H, Van Hoesen GW (1982) Prosopagnosia: anatomic basis and behavioral mechanisms. Neurology 32: 331–341

    PubMed  CAS  Google Scholar 

  40. D’Esposito M, Postle BR, Ballard D, Lease J (1999) Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain Cogn 41: 66–86

    PubMed  Google Scholar 

  41. D’Esposito M, Zarahn E, Aguirre GK (1999) Event-related functional MRI: implications for cognitive psychology. Psychol Bull 125: 155–164

    PubMed  Google Scholar 

  42. D’Esposito M, Postle BR, Rypma B (2000) Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Exp Brain Res 133: 3–11

    PubMed  Google Scholar 

  43. DeYoe EA, Neitz J, Bandettini PA, Wong EC, Hyde JS (1992) Time course of event-related MR signal enhancement in visual and motor cortex. In: 11th Ann Mtg of SMRM, Berlin, Germany, p 1824

    Google Scholar 

  44. Dinse HR, Kruger K (1994) The timing of processing along the visual pathway in the cat. NeuroReport 5: 893–897

    PubMed  CAS  Google Scholar 

  45. Disbrow EA, Slutsky DA, Roberts TPL, Krubitzer LA (2000) Functional MRI at 1.5 tesla: a comparison of the blood oxygenation level-dependant signal and electrophysiology. Proc Natl Acad Sci USA 97: 9718–9723

    PubMed  CAS  Google Scholar 

  46. Downar J, Crawley AP, Mikulis DJ, Davis KD (2000) A multimodal cortical network for the detection of changes in the sensory environment. Nature Neurosci 3: 277–283

    PubMed  CAS  Google Scholar 

  47. Ducati A, Fava E, Motti EDF (1988) Neuronal generators of the visual evoked potentials: intracerebral recording in awake humans. Electroencephalogr Clin Neurophysiol 71: 89–99

    PubMed  CAS  Google Scholar 

  48. Echallier JF, Perrin F, Pernier J (1992) Computer-assisted placement of electrodes on the human head. Electroencephalogr Clin Neurophysiol 82: 160–163

    PubMed  CAS  Google Scholar 

  49. Engel SA, Glover GH, Wandell BA (1997) Retinotopic organisation in human visual cortex and the spatial precision of fMRI. Cereb Cortex 7: 181–192

    PubMed  CAS  Google Scholar 

  50. Erwin RJ, Rao SM (2000) Convergence of functional magnetic resonance imaging and event-related potential methodologies. Brain Cogn 42: 53–55

    PubMed  CAS  Google Scholar 

  51. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in primate cerebral cortex. Cereb Cortex 1: 1–47

    PubMed  CAS  Google Scholar 

  52. Fender DH (1987) Source localization of brain electrical activity. In: Gevins AS, Rernond A (eds) Handbook of electroencephalography and clinical neurophysiology, Vol 1: Methods of analysis of brain electrical and magnetic signals. Elsevier, Amsterdam, pp 355–399

    Google Scholar 

  53. Ffytche DH, Guy CN, Zeki S (1995) The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex. Brain 118: 1375–1394

    PubMed  Google Scholar 

  54. Friederici AD, Meyer M, von Cramon DY (2000) Auditory language comprehension: an event-related fMRI study on the processing of syntactic and lexical information. Brain Lang 74: 289–300

    PubMed  CAS  Google Scholar 

  55. Friederici AD, Opitz B, von Cramon DY (2000) Segregating semantic and syntactic aspects of processing in the human brain: an fMRI investigation of different word types. Cereb Cortex 10: 698–705

    PubMed  CAS  Google Scholar 

  56. Friston KJ, Jezzard P, Turner R (1994) Analysis of functional MRI timeseries. Hum Brain Mapp 1: 153–171

    Google Scholar 

  57. Friston KJ, Flechter P, Josephs O, Holmes A, Rugg MD, Turner R (1998) Event-related fMRI: characterizing differential responses. NeuroImage 7: 30–40

    PubMed  CAS  Google Scholar 

  58. Friston KJ, Mechelli A, Turner R, Price CJ (2000) Nonlinear responses in fMRI: the balloon model, volterra kernels and other hemodynamics. NeuroImage 12: 466–477

    PubMed  CAS  Google Scholar 

  59. Frodl T, Juckel G, Gallinat J, Bottlender R, Riedel M, Preuss U, Moller HJ, Hegerl U (2000) Dipole localization of P300 and normal aging. Brain Topogr 13: 3–9

    PubMed  CAS  Google Scholar 

  60. Fuchs M, Wagner M, Kohler T, Wischmann H-A (1999) Linear and non-linear current density reconstructions. J Clin Neurophysiol 16: 267–295

    PubMed  CAS  Google Scholar 

  61. Garavan H, Ross TJ, Stein EA (1999) Right hemispheric dominance of inhibitory control: en event-related functional MRI study. Proc Natl Acad Sci USA 96: 8301–8306

    PubMed  CAS  Google Scholar 

  62. Gevins AS (1995) Electrophysiological imaging of brain functions. In: Toga AW, Mazziotta JC (eds) Brain mapping, the methods. Academic Press, San Diego, pp 259-276

    Google Scholar 

  63. Gevins AS (1987) Obstacles to progress. In: Gevins AS, Remond A (eds) Handbook of electroencephalography and clinical neurophysiology, Vol 1: Methods of analysis of brain electrical and magnetic signals. Elsevier, Amsterdam, pp 665–673

    Google Scholar 

  64. Gevins AS (1990) Distributed neuroelectric patterns of human neocortex during simple cognitive tasks. In: Uylings HBM, Van Eden CG, de Bruin JPC, Corner MA, Feenstra MGP (eds) Progress in brain research, Vol 85. Elsevier, Amsterdam, pp 354–355

    Google Scholar 

  65. Gevins AS, Leong H, Smith ME, Le J, Du R (1995) Mapping cognitive brain function with modern high-resolution electroencephalography. Trends Neurosci 18: 429–436

    PubMed  CAS  Google Scholar 

  66. Glover GH (1999) Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage 9: 416–429

    PubMed  CAS  Google Scholar 

  67. Goel V, Buchel C, Frith C, Dolan RJ (2000) Dissociation of mechanisms underlying syllogistic reasoning. NeuroImage 12: 504–514

    PubMed  CAS  Google Scholar 

  68. Gorodnitsky IF, George JS, Rao BD (1995) Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroencephalogr Clin Neurophysiol 95: 231–251

    PubMed  CAS  Google Scholar 

  69. Grave de Peralta R, Hauk O, Gonzalez Andino S, Vogt H, Michel CM (1997) Linear inverse solutions with optimal resolution kernels applied to the electromagnetic tomography. Hum Brain Mapp 5: 454–467

    Google Scholar 

  70. Grave de Peralta Menendez R, Gonzalez Andino SL (1998) Distributed source models: standard solutions and new developments. In: Uhl C (ed) Analysis of neurophysiological brain functioning. Springer Verlag, Heidelberg, pp 176-201

    Google Scholar 

  71. Guillem F, N’kaoua B, Rougier A, Claverie B (1996) Differential involvement of the human temporal lobe structures in short-and long-term memory processes assessed by intracranial ERPs. Psychophysiol 33: 720–730

    CAS  Google Scholar 

  72. Guillem F, N’kaoua B, Rougier A, Claverie B (1996) Funtional heteroge neity of the frontal lobe: evidence from intracranial memory ERPs. Int J Psychophysiol 21: 107–119

    PubMed  CAS  Google Scholar 

  73. Hamalainen MS, Ilmoniemi RJ (1984) Interpreting measured magnetic fields of the brain: estimates of current distributions. Tech Rep TKK-F-A559, Helsinki University of Technology, Espoo

    Google Scholar 

  74. Hamalainen MS, Sarvas J (1989) Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans Biomed Eng 36: 165–171

    PubMed  CAS  Google Scholar 

  75. Hamalainen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain — minimum norm estimates. Med Biol Eng Com put 32: 35–42

    CAS  Google Scholar 

  76. Harris IM, Egan GF, Sonkkila C, Tochon-Danguy HJ, Paxinos G, Watson JD (2000) Selective right parietal lobe activation during mental rotation: a parametric PET study. Brain 123: 65–73

    PubMed  Google Scholar 

  77. Henson RN, Rugg MD, Shallice T, Josephs O, Dolan RJ (1999) Recollection and familiarity in recognition memory: an event-related functional magnetic resonance imaging study. J Neurosci 19: 3962–3972

    PubMed  CAS  Google Scholar 

  78. Hoogenraad FG, Hofman MB, Pouwels PJ, Reichenbach JR, Rombouts SA, Haacke EM (1999) Sub-millimeter fMRI at 1.5 tesla: correlation of high resolution with low resolution measurements. J Magn Res Imag 9: 475–482

    CAS  Google Scholar 

  79. Hopfinger JB, Buonocore MH, Mangun GR (2000) The neural mechanisms of top-down attentional control. Nature Neurosci 3: 284–291

    PubMed  CAS  Google Scholar 

  80. Hu X, Le TH, Ugurbil K (1997) Evaluation of the early response in fMRI in individual subjects using short stimulus duration. Magn Res Med 37: 877–884

    CAS  Google Scholar 

  81. Jackson SR, Jackson GM, Roberts M (1999) The selection and suppression of action: ERP correlates of executive control in humans. NeuroReport 10: 861–865

    PubMed  CAS  Google Scholar 

  82. Jodo E, Kayama Y (1992) Relation of a negative ERP component to response inhibition in a go/no-go task. Electroencephalogr Clin Neurophysiol 82: 477–482

    PubMed  CAS  Google Scholar 

  83. Joliot M, Mawyer B (1998) Neuro-imagerie cognitive. Ann Inst Pasteur 9: 163–179

    Google Scholar 

  84. Josephs O, Turner R, Friston K (1997) Event-related fMRI. Hum Brain Mapp 5: 243–248

    PubMed  CAS  Google Scholar 

  85. Josephs O, Henson RNA (1999) Event-related functional magnetic resonance imaging: modelling, inference and optimization. Phil Trans R Soc Lond B 354: 1215–1228

    CAS  Google Scholar 

  86. Khateb A, Annoni JM, Landis T, Pegna AJ, Custodi M-C, Fonteneau E, Morand SM, Michel CM (1999) Spatio-temporal analysis of electric brain activity during semantic and phonological word processing. Int J Psychophysiol 32: 215–231

    PubMed  CAS  Google Scholar 

  87. Khateb A, Michel CM, Pegna AJ, Landis T, Annoni JM (2000) New insights into the Stroop effect: a spatio-temporal analysis of electric brain activity. NeuroReport 11: 1849–1855

    PubMed  CAS  Google Scholar 

  88. Khateb A, Michel CM, Pegna AJ, Thut G, Landis T, Annoni JM (2001) The time course of semantic category processing in the cerebral hemispheres: an electrophysiological study. Brain Res Cogn Brain Res 10: 251–264

    PubMed  CAS  Google Scholar 

  89. Kiehl KA, Liddle PF, Hopfinger JB (2000) Error processing and the rostral anterior cingulate: an event-related fMRI study. Psychophysiol 37: 216–223

    CAS  Google Scholar 

  90. Kim DS, Duong TQ, Kim SG (2000) High-resolution mapping of iso-orientation columns by fMRI. Nature Neurosci 3: 164–169

    PubMed  CAS  Google Scholar 

  91. Kirchhoff BA, Wagner AD, Maril A, Stem CE (2000) Prefront al-temporal circuity for episodic encoding and subsequent memory. J Neurosci 20: 6173–6180

    PubMed  CAS  Google Scholar 

  92. Knierim JJ, Van Essen DC (1992) Neuronal responses to static texture patterns in area VI of the alert macaque monkey. J Neurophysiol 67: 961–980

    PubMed  CAS  Google Scholar 

  93. Konishi S, Nakajima K, Uchida I, Sekihara K, Miyashita Y (1998) No-go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. Eur J Neurosci 10: 1209–1213

    PubMed  CAS  Google Scholar 

  94. Konishi S, Nakajima K, Uchida I, Kikyo H, Kameyama M, Miyashita Y (1999) Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain 122: 981–991

    PubMed  Google Scholar 

  95. Kutas M, Hillyard SA (1980) Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207: 203–205

    PubMed  CAS  Google Scholar 

  96. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89: 5675–5679

    PubMed  CAS  Google Scholar 

  97. Landis T, Regard M, Bliestle A, Kleihus P (1988) Prosopagnosia and agnosia for noncanonical views. Brain 111: 1287–1297

    PubMed  Google Scholar 

  98. Lazeyras F, Blanke O, Perrig S, Zimine I, Golay X, Delavelle J, Michel CM, de Tribolet N, Villemure J-G, Seeck M (2000) EEG-triggered functional MRI in patients with pharmacoresistant epilepsy. J Magn Reson Imag 12: 177–185

    CAS  Google Scholar 

  99. Lee AT, Glover GH, Meyer CH (1995) Discrimination of large venous vessels in time-course spiral blood-oxygenation-level-dependent magnetic-resonance functional neuroimaging. Magn Res Med 33: 745–754

    CAS  Google Scholar 

  100. Lee KM, Chang KH, Roh JK (1999) Subregions within the supplementary motor area activated at different stages of movement preparation and execution. NeuroImage 9: 117–123

    PubMed  CAS  Google Scholar 

  101. Lehmann D (1971) Multichannel topography of human alpha EEG fields. Electroencephalogr Clin Neurophysiol 31: 439–449

    PubMed  CAS  Google Scholar 

  102. Lehmann D (1987) Principles of spatial analysis. In: Gevins AS, Remond A (eds) Handbook of electroencephalography and clinical neurophysiology, Vol 1: Methods of analysis of brain electrical and magnetic signals. Elsevier, Amsterdam, pp 309–354

    Google Scholar 

  103. Lehmann D, Michel CM, Pal I, Pascual-Marqui RD (1994) Event-related potential maps depend on pre-stimulus brain electric microstate map. Int J Neurosci 74: 239–248

    PubMed  CAS  Google Scholar 

  104. Leung HC, Skudlarski P, Gatenby JC, Peterson BS, Gore JC (2000) An event-related functional MRI study of the Stroop color-word interference task. Cereb Cortex 10: 552–560

    PubMed  CAS  Google Scholar 

  105. Livingstone M, Hubel D (1988) Segregation of form, color, movement and depth: anatomy, physiology and perception. Science 240: 740–749

    PubMed  CAS  Google Scholar 

  106. Lopes da Silva FH, Wieringa HJ, Peters MJ (1991) Source localization of EEG versus MEG: empirical comparison using visually evoked responses and theoretical considerations. Brain Topography 4: 133–142

    PubMed  CAS  Google Scholar 

  107. MacDonald AW 3rd, Cohen JD, Stenger VA, Carter CS (2000) Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288: 1835–1838

    PubMed  CAS  Google Scholar 

  108. Malmivuo J, Suihko V, Eskola H (1997) Sensitivity distributions of EEG and MEG measurements. IEEE Trans Biomed Eng 44: 196–208

    PubMed  CAS  Google Scholar 

  109. Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, Wong EC, Hinrichs H, Heinze HJ, Hillyard SA (1999) Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neurosci 2: 364–369

    PubMed  CAS  Google Scholar 

  110. Maunsell JHR, Gibson J (1992) Visual response latencies in the striate cortex of the macaque monkey. J Neurophysiol 68: 1332–1343

    Google Scholar 

  111. McCarthy G, Wood CC, Williamson PD, Spencer DD (1989) Taskdependent field potentials in human hippocampal formation. J Neurosci 9: 4253–4268

    PubMed  CAS  Google Scholar 

  112. McCarthy G, Nobre AC, Bentin S, Spencer DD (1995) Language-related field potentials in the anterior-medial temporal lobe: I. Intracranial distribution and neural generators. J Neurosci 15: 1080–1089

    PubMed  CAS  Google Scholar 

  113. McCarthy G, Puce A, Belger A, Allison T (1999) Electrophysiological studies of human face perception. II: Response properties of face-specific potentials generated in occipitotemporal cortex. Cereb Cortex 9: 431–444

    PubMed  CAS  Google Scholar 

  114. McCarthy G (1999) Event-related potentials and functional MRI: a comparison of localization in sensory, perceptual and cognitive tasks. Eletroencephalogr Clin Neurophysiol Suppl 49: 3–12

    CAS  Google Scholar 

  115. Mecklinger A, Maess B, Opitz B, Pfeifer E, Cheyne D, Weinberg H (1998) A MEG analysis of the P300 in visual discrimination tasks. Electroencephalogr Clin Neurophysiol 108: 45–56

    PubMed  CAS  Google Scholar 

  116. Menon RS, Ogawa S, Hu X, Strupp JP, Anderson P, Ugurbil K (1995) BOLD based functional MRI at 4T includes capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn Res Med 33: 453–459

    CAS  Google Scholar 

  117. Menon RS, Ogawa S, Strupp JP, Ugurbil K (1997) Ocular dominance columns in human VI demonstrated by functional magnetic resonance imaging. J Neurophysiol 77: 2780–2787

    PubMed  CAS  Google Scholar 

  118. Menon RS, Luckowsky DL, Gati JS (1998) Mental chronometry using latency-resolved functional magnetic resonance imaging. Proc Natl Acad Sci USA 95: 10902–10907

    PubMed  CAS  Google Scholar 

  119. Menon RS, Kim SG (1999) Spatial and temporal limits in cognitive neuroimaging with fMRI. Trends Cogn Sci 3: 207–216

    PubMed  Google Scholar 

  120. Menon V, Ford JM, Lim KO, Glover GH, Pfefferbaum A (1997) Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection. NeuroReport 8: 3029–3037

    PubMed  CAS  Google Scholar 

  121. Merigan WH, Maunsell JHR (1993) How parallel are the primate visual pathways? Annu Rev Neurosci 16: 369–402

    PubMed  CAS  Google Scholar 

  122. Mesulam MM (1985) Patterns in behavioral neuroanatomy: association areas, the limbic system and hemispheric specialization. In: Mesulam MM (ed) Principles of behavioral neurology. FA Davis, Philadelphia, pp 170

    Google Scholar 

  123. Mesulam MM (1994) Neurocognitive networks and selectively distributed processing. Rev Neurol 150: 564–569

    PubMed  CAS  Google Scholar 

  124. Mesulam MM (1998) From sensation to cognition. Brain 121: 1013–1052

    PubMed  Google Scholar 

  125. Meyer M, Friederici AD, von Cramon DY (2000) Neurocognition of auditory sentence comprehension: event-related fMRI reveals sensitivity to syntactic violations and task demands. Brain Res Cogn Brain Res 9: 19–33

    PubMed  CAS  Google Scholar 

  126. Michel CM, Seeck M, Landis T (1999) Spatio-temporal dynamics of human cognition. News Physiol Sci 14: 206–214

    PubMed  Google Scholar 

  127. Michel CM, Grave de Peralta R, Lantz G, Gonzalez Andino S, Spinelli L, Blanke O, Landis T, Seeck M (1999) Spatio-temporal EEG analysis and distributed source estimation in presurgical epilepsy evaluation. J Clin Neurophysiol 16: 239–266

    PubMed  CAS  Google Scholar 

  128. Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL (2000) Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage 11: 735–759

    Google Scholar 

  129. Morand S, Thut G, de Peralta RG, Clarke S, Khateb A, Landis T, Michel CM (2000) Electrophysiological evidence for fast visual processing through the human koniocellular pathway when stimuli move. Cereb Cortex 10: 817–825

    PubMed  CAS  Google Scholar 

  130. Ni W, Constable RT, Mencl WE, Pugh KR, Fulbright RK, Shaywitz SE, Shaywitz BA, Gore JC, Shankweiler D (2000) An event-related neuroimaging study distinguishing form and content in sentence processing. J Cogn Neurosci 12: 120–133

    PubMed  CAS  Google Scholar 

  131. Noachtar S, Hashimoto T, Luders H (1993) Pattern visual evoked potentials recorded from human occipital cortex with chronic subdural electrodes. Electroencephalogr Clin Neurophysiol 88: 435–446

    PubMed  CAS  Google Scholar 

  132. Nobre AC, Allison T, McCarthy G (1994) Word recognition in the human inferior temporal lobe. Nature 372: 260–263

    PubMed  CAS  Google Scholar 

  133. Nobre AC, McCarthy G (1995) Language-related field potentials in the anterior-medial temporal lobe: II. Effects of word type and semantic priming. J Neurosci 15: 1090–1098

    PubMed  CAS  Google Scholar 

  134. Nolde SF, Johnson MK, D’Esposito M (1998) Left prefrontal activation during episodic remembering: an event-related fMRI study. NeuroReport 9: 3509–3514

    PubMed  CAS  Google Scholar 

  135. Noll DC (1995) Methodologic considerations for spiral k-space functional MRI. Int J Imag Syst Technol 6: 175–183

    Google Scholar 

  136. Nowak LG, Munk M, Girard P, Bullier J (1995) Visual latencies in areas V1 and V2 of the macaque monkey. Vis Neurosci 12: 371–384

    PubMed  CAS  Google Scholar 

  137. Nowak LG, Bullier J (1997) The timing of information transfer in the visual system. In: Rockland KS, Kaas JH, Peters A (eds) Cerebral Cortex, Vol 12: Extrastriate cortex in primates. Plenum Press, New York, pp 205–241

    Google Scholar 

  138. Nuttin B, Cosyns P, Demeulemeester H, Gybels J, Meyerson B (1999) Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 354: 1526

    PubMed  CAS  Google Scholar 

  139. Ogawa S, Lee T, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87: 9868–9872

    PubMed  CAS  Google Scholar 

  140. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89: 5951–5955

    PubMed  CAS  Google Scholar 

  141. Ogawa S, Menon RS, Kim SG, Ugurbil K (1998) On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct 27: 447–474

    PubMed  CAS  Google Scholar 

  142. Ogawa S, Lee TM, Stepnoski R, Chen W, Zhu XH, Ugurbil K (2000) An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds. Proc Natl Acad Sci USA 97: 11026–11031

    PubMed  CAS  Google Scholar 

  143. Paller KA, McCarthy G, Roessler E, Allison T, Wood CC (1992) Potentials evoked in human and monkey medial temporal lobe during auditory and visual oddball paradigms. Electroencephalogr Clin Neurophysiol 84: 269–279

    PubMed  CAS  Google Scholar 

  144. Pasqual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method to localize electrical activity in the brain. Int J Psychophysiol 18: 49–65

    Google Scholar 

  145. Pegna AJ, Khateb A, Spinelli L, Seeck M, Landis T, Michel CM (1997) Unraveling the cerebral dynamics of mental imagery. Hum Brain Mapp 5: 410–421

    PubMed  CAS  Google Scholar 

  146. Pinel P, Le Clec HG, van de Moortele PF, Naccache L, Le Bihan D, Dehaene S (1999) Event-related fMRI analysis of the cerebral circuit for number comparison. NeuroReport 10: 1473–1479

    PubMed  CAS  Google Scholar 

  147. Polich J, Herbst KL (2000) P300 as a clinical assay: rationale, evaluation and findings. Int J Psychophysiol 38: 3–19

    PubMed  CAS  Google Scholar 

  148. Price CJ, Veltman DJ, Ashburner J, Josephs O, Friston KJ (1999) The critical relationship between the timing of stimulus presentation and data acquisition in blocked designs with fMRI. NeuroImage 10: 36–44

    PubMed  CAS  Google Scholar 

  149. Puce A, Andrewes DG, Berkovic S, Bladin PF (1991) Visual recognition memory. Neurophysiological evidence for the role of temporal white matter in man. Brain 114: 1647–1666

    PubMed  Google Scholar 

  150. Puce A, Allison T, McCarthy G (1999) Electrophysiological studies of human face perception. III: Effects of top-down processing on face-specific potentials. Cereb Cortex 9: 445–458

    PubMed  CAS  Google Scholar 

  151. Ragot RA, Remond A (1978) EEG field mapping. Electroencephalogr Clin Neurophysiol 45: 417–421

    PubMed  CAS  Google Scholar 

  152. Raiguel SE, Lagae L, Gulyas B, Orban GA (1989) Response latencies of visual cells in macaque areas V1, V2 and V5. Brain Res 493: 155–159

    PubMed  CAS  Google Scholar 

  153. Rajapakse JC, Kruggel F, Maisog JM, von Cramon DY (1998) Modelling hemodynamic response for analysis of functional MRI time-series. Hum Brain Mapp 6: 283–300

    PubMed  CAS  Google Scholar 

  154. Reinvang I, Magnussen S, Greenlee MW, Larsson PG (1998) Electrophysiological localization of brain regions involved in perceptual memory. Exp Brain Res 123: 481–484

    PubMed  CAS  Google Scholar 

  155. Richter W, Ugurbil K, Georgopoulos A, Kim SG (1997) Time-resolved fMRI of mental rotation. NeuroReport 8: 3697–3702

    PubMed  CAS  Google Scholar 

  156. Richter W, Somorjai R, Summers R, Jarmasz M, Menon RS, Gati JS, Georgopoulos AP, Tegeler C, Ugurbil K, Kim SG (2000) Motor area activity during mental rotation studied by time-resolved single-trial fMRI. J Cogn Neurosci 12: 310–320

    PubMed  CAS  Google Scholar 

  157. Robson MD, Dorosz JL, Gore JC (1998) Measurements of the temporal fMRI response of the human auditory cortex to trains of tones. NeuroImage 7: 185–198

    PubMed  CAS  Google Scholar 

  158. Rosen BR, Buckner RL, Dale AM (1998) Event-related functional MRI: past, present and future. Proc Natl Acad Sci USA 95: 773–780

    PubMed  CAS  Google Scholar 

  159. Salin PA, Bullier J (1995) Corticocortical connections in the visual system: structure and function. Physiol Rev 75: 107–154

    PubMed  CAS  Google Scholar 

  160. Savoy RL, Bandettini PA, O’Craven KM, Kwong KK, Davis TL, Baker JR, Weisskoff RM, Rosen BR (1995) Pushing the temporal resolution of fMRI: studies of very brief visual stimuli, onset variability and asynchrony, and stimulus-correlated changes in noise. In: 3rd Ann Mtg of SMR and 12th Ann Mtg of ESMRMB, Nice, France, p 450

    Google Scholar 

  161. Schacter DL, Buckner RL, Koutstaal W, Dale AM, Rosen BR (1997) Late onset of anterior prefrontal activity during true and false recognition: an event-related fMRI study. NeuroImage 6: 259–269

    PubMed  CAS  Google Scholar 

  162. Schad LR, Weiner E, Baudendistel KT, Muller E, Lorenz WJ (1995) Event-related fMRI of visual cortex stimulation at high temporal resolution using a standard 1.5 T imager. Magn Res Imag 13: 899–901

    Google Scholar 

  163. Scherg M (1989) Fundamentals of dipole source potential analysis. In: Hoke M, Grandori F, Romani GL (eds) Auditory evoked magnetic fields and potentials. Advances in audiology, Vol 6. Karger, Basel, pp 40–69

    Google Scholar 

  164. Schmitt F, Stehling MK, Turner R (1998) Echo-Planar Imaging: theory, technique and application. Springer, Berlin

    Google Scholar 

  165. Schomer DL, Bonmassar G, Lazeyras F, Seeck M, Blum A, Anami K, Schwartz D, Belliveau JW, Ives J (2000) EEG-linked functional magnetic resonance imaging in epilepsy and cognitive neuropsychology. J Clin Neurophysiol 17: 43–58

    PubMed  CAS  Google Scholar 

  166. Seeck M, Mainwaring N, Ives J, Blume H, Dubuisson D, Cosgrove R, Mesulam MM, Schomer DL (1993) Differential neural activity in the human temporal lobe evoked by faces of family members and friends. Ann Neurol 34: 369–372

    PubMed  CAS  Google Scholar 

  167. Seeck M, Mainwaring N, Cosgrove R, Blume H, Dubuisson D, Mesulam MM, Schomer DL (1997) Neurophysiologic correlates of implicit face memory in intracranial visual evoked potentials. Neurology 49: 1312–1316

    PubMed  CAS  Google Scholar 

  168. Seeck M, Michel CM, Mainwaring N, Cosgrove R, Blume H, Ives J, Landis T, Schomer DL (1997) Evidence for rapid face recognition from scalp and intracranial electrodes. NeuroReport 8: 2749–2754

    PubMed  CAS  Google Scholar 

  169. Seeck M, Lazeyras F, Michel CM, Blanke O, Gericke G, Ives J, Delavelle J, Golay X, Haenggeli CA, de Tribolet N, Landis T (1998) Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography. Electroencephalogr Clin Neurophysiol 106: 508–512

    PubMed  CAS  Google Scholar 

  170. Seghier M, Dojat M, Delon-Martin C, Rubin C, Wamking J, Segebarth C, Bullier J (2000) Moving illusory contours activate primary visual cortex: an fMRI study. Cereb Cortex 10: 663–670

    PubMed  CAS  Google Scholar 

  171. Simos PG, Basile LF, Papanicolaou AC (1997) Source localization of the N400 response in a sentence-reading paradigm using evoked magnetic fields and magnetic resonance imaging. Brain Res 11: 29–39

    Google Scholar 

  172. Smith ME, Halgren E, Sokolik M, Baudena P, Musolino A, Liegeois-Chauvel C, Chauvel P (1990) The intracranial topography of the P3 event-related potential elicited during auditory oddball. Electroencephalogr Clin Neurophysiol 76: 235–248

    PubMed  CAS  Google Scholar 

  173. Spitzer AR, Cohen LG, Fabrikant J, Hallett M (1989) A method for determining optimal interelectrode spacing for cerebral topographic mapping. Electroencephalogr Clin Neurophysiol 72: 355–361

    PubMed  CAS  Google Scholar 

  174. Srinivasan R, Nunez PL, Tucker DM, Silberstein RB, Cadusch PJ (1996) Spatial sampling and filtering of EEG with spline laplacians to estimate cortical potentials. Brain Topography 8: 355–366

    PubMed  CAS  Google Scholar 

  175. Strange BA, Henson RN, Friston KJ, Dolan RJ (2000) Brain mechanisms for detecting perceptual, semantic and emotional deviance. NeuroImage 12: 425–433

    PubMed  CAS  Google Scholar 

  176. Tarkka IM, Stokic DS, Basile LF, Papanicolaou AC (1995) Electric source localization of the auditory P300 agrees with magnetic source localization. Electroencephalogr Clin Neurophysiol 96: 538–45

    PubMed  CAS  Google Scholar 

  177. Thierry G, Boulanouar K, Kherif F, Ranjeva JP, and Dernonet JF (1999) Temporal sorting of neural components underlying phonological processing. NeuroReport 10: 2599–2603

    PubMed  CAS  Google Scholar 

  178. Thut G, Hauert CA, Blanke O, Morand S, Seeck M, Gonzalez SL, Grave de Peralta R, Spinelli L, Khateb A, Landis T, Michel CM (2000) Visually induced activity in human frontal motor areas during simple visuomotor performance. NeuroReport 11: 2843–2848

    PubMed  CAS  Google Scholar 

  179. Tranel D, Damasio AR (1985) Autonomic recognition of familiar faces by prosopagnosics: evidence for knowledge without awareness. Neurology 35: 119–120

    Google Scholar 

  180. Ungerleider LG, Mishkin M (1982) Two cortical systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behaviour. MIT Press, Cambridge MA, pp 549–586

    Google Scholar 

  181. Vazquez AL, Noll DC (1998) Nonlinear aspects of the BOLD responses in functional MRI. NeuroImage 7: 108–118

    PubMed  CAS  Google Scholar 

  182. Weiskrantz L, Warrington EK, Sanders MD, Marshall J (1974) Visual capacity in the hemianopic field following a restricted cortical ablation. Brain 97: 709–728

    PubMed  CAS  Google Scholar 

  183. Wessberg J, Stambaugh CR, Kralik JD, Beck PO, Laubach M, Chapin JK, Kim J, Biggs SJ, Srinivasan MA, Nicolelis MAL (2000) Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408: 361–365

    PubMed  CAS  Google Scholar 

  184. Wikswo JP, Gevins A, Williamson SJ (1993) The future of EEG and MEG. A review article. Electroencephalogr Clin Neurophysiol 87: 1–9

    Google Scholar 

  185. Wilson CL, Babb TL, Halgren E, Crandall PH (1983) Visual receptive fields and response properties of neurons in human temporal lobe and visual pathways. Brain 106: 473–502

    Google Scholar 

  186. Woolsey TA, Rovainen CM, Cox SB, Henegar MH, Liang GE, Liu D, Moskalenko YE, Sui J, Wei L (1996) Neuronal units linked to microvascular modules in cerebral cortex: response clements for imaging the brain. Cereb Cortex 6: 647–660

    PubMed  CAS  Google Scholar 

  187. Yang X, Hyder F, Shulman RG (1997) Functional MRI BOLD signal coincides with electrical activity in the rat whisker barrels. Magn Res Med 38: 874–877

    CAS  Google Scholar 

  188. Yingling CD, Hosobushi Y (1983) A subcortical correlate of P300 in man. Electroencephalogr Clin Neurophysiol 59: 72–76

    Google Scholar 

  189. Yvert B, Bertrand O, Echallier JF, Pernier J (1996) Improved dipole localization using local mesh refinement of realistic head geometries: an EEG simulation study. Electroencephalogr Clin Neurophysiol 99: 79–89

    PubMed  CAS  Google Scholar 

  190. Zarahn E, Aguirre G, D’Esposito M (1997) A trial-based experimental design for fMRI. NeuroImage 6: 122–138

    PubMed  CAS  Google Scholar 

  191. Zeki SM, Shipp S (1988) The functional logic of cortical connections. Nature 335: 311–317

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Momjian, S., Seghier, M., Seeck, M., Michel, C.M. (2003). Mapping of the Neuronal Networks of Human Cortical Brain Functions. In: Pickard, J.D., et al. Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 28. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0641-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0641-9_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7217-9

  • Online ISBN: 978-3-7091-0641-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics