Skip to main content

NEMO 1-D: the first NEGF-based TCAD tool

  • Conference paper

Abstract

The fundamentally sound non-Equilibrium Green’s function (NEGF) approach provides the theoretical basis for NEMO 1-D as the first nanoelectronic TCAD tool. Effects of quantum charging, bandstructure and incoherent scattering from alloy disorder, interface roughness, acoustic phonons, and polar optical phonons are modeled. Engineers and experimentalists who desire a black-box design tool as well as theorists who are interested in a detailed investigation of the physics have found NEMO useful. Access to this comprehensive theoretical framework is accommodated by a graphical user interface (GUI) which configures the usage of a collection of models that trade off physical content with speed and memory requirements. This article describes the NEMO origin, provides modern references to NEGF, accumulates the diverse references to the NEMO results, and provides a perspective on NEGF in future TCAD tools.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. P. E. Broekaert et al., 33, 1342 (1998).

    Google Scholar 

  2. J. P. A. van der Wagt, A. C. Seabaugh, and E. Beam III, 19, 7 (1998).

    Google Scholar 

  3. R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, J. Appl. Phys. 81, 7845 (1997).

    Article  Google Scholar 

  4. S. Datta, in IEDM (IEEE, NY, 2002).

    Google Scholar 

  5. S. Datta, Nanotechnology 15, S433 (2004).

    Article  Google Scholar 

  6. R. Lake et al. http://www.ee.ucr.edu/rlake/dresden02_final_unix.pdf.

  7. http://nanohub.org — A community resource for On-line simulation and more.

  8. Supriyo Datta, on-line course, “Quantum Phenomena: From Atoms to Transistors”, http://www.nanohub.org/quantum_phenomena/quantum_phenomena.

  9. G. Klimeck et al., Appl. Phys. Lett. 67, 2539 (1995).

    Article  Google Scholar 

  10. G. Klimeck et al. in the 1995 Ann. Dev. Res. Conf. Digest, (IEEE, NJ, 1995), p. 52.

    Book  Google Scholar 

  11. R. C. Bowen et al., J. Appl. Phys 81, 3207 (1997).

    Article  Google Scholar 

  12. R. Lake et al. in the 1996 Ann. Dev. Res. Conf. Digest, (IEEE, NJ, 1996), p. 174.

    Book  Google Scholar 

  13. G. Klimeck et al. in the 1997 Ann. Dev. Res. Conf. Digest, (IEEE, NJ, 1997), p. 92.

    Book  Google Scholar 

  14. C. Bowen et al. in IEDM 1997 (IEEE, New York, 1997), pp. 869–872.

    Google Scholar 

  15. T. B. Boykin, Phys. Rev. B 54, 8107 (1996).

    Article  Google Scholar 

  16. T. Boykin et al., submitted to Phys. Rev. B (1997).

    Google Scholar 

  17. R. Lake et al., Superlatt. and Microstruct. 20, 279 (1996).

    Article  Google Scholar 

  18. G. Klimeck et al., in Quantum Devices and Circuits, edited by K. Ismail, S. Bandyopadhyay, and J. P. Leburton (Imperial College Press, London, 1997), pp. 154–159.

    Google Scholar 

  19. G. Klimeck et al., Phys. Stat. Sol. (b) 204, 408 (1997).

    Article  Google Scholar 

  20. R. C. Bowen, W. R. Frensley, G. Klimeck, and R. Lake, PRB 52, 2754 (1995).

    Article  Google Scholar 

  21. G. Klimeck et al., VLSI Design 6, 107 (1998).

    Article  Google Scholar 

  22. G. Klimeck et al., VLSI Design 8, 79 (1998).

    Article  Google Scholar 

  23. G. Klimeck, J. of Computational Electr. 1, 75 (2002).

    Article  Google Scholar 

  24. G. Klimeck, R. C. Bowen, and T. B. Boykin, Phys. Rev. B 63, 195310 (2001).

    Article  Google Scholar 

  25. G. Klimeck, Physica Status Solidi (b) 226, 9 (2001).

    Article  Google Scholar 

  26. G. Klimeck, J. of Computational Electr. 2, 177 (2003).

    Article  Google Scholar 

  27. J. Green et al., in CLEO/Europe 2003 (CLEO, Munich, 2003).

    Google Scholar 

  28. G. Klimeck, C. H. Salazar-Lazaro, A. Stoica, and T. Cwik, in Proc. Mat. Res. Soc. (Mat. Res. Soc, Boston, 1998), Vol. 559, p. 149.

    Google Scholar 

  29. G. Klimeck et al., Superl. and Microstr. 27, 77 (2000).

    Article  Google Scholar 

  30. T. B. Boykin, G. Klimeck, and F. Oyafuso, Phys. Rev. B. 69, 115201 (2004).

    Article  Google Scholar 

  31. G. Klimeck et al., Comp. Modeling in Eng. and Sci. (CMES) 3, 601 (2002).

    MATH  Google Scholar 

  32. H. Kosina, G. Klimeck, M. Nedjalkov, and S. Selberherr, in SISPAD 2003 (IEEE, Boston, 2003), pp. 171–174.

    Google Scholar 

  33. C. L. Gardner, G. Klimeck, and C. Ringhofer, subm. to J. of Comp. Electr. (2004).

    Google Scholar 

  34. http://www.fz-juelich.de/isg/mbe/sofrware.html./isg/mbe/sofrware.html.

  35. C. Rivas et al., Appl. Phys. Lett. 78, 814 (2001).

    Article  Google Scholar 

  36. C. Rivas et al., J. of Appl. Phys 94, 5005 (2003).

    Article  Google Scholar 

  37. R. T. T. M. Matsuto Ogawa, Takashi Sugano, Physica B 272, 167 (1999).

    Article  Google Scholar 

  38. C. Rivas and R. Lake, phys. stat. sol (a) 195, 3 (2003).

    Article  Google Scholar 

  39. C. Rivas and R. Lake, (Nanotech, San Francisco, 2003), Vol. 559, p. 149.

    Google Scholar 

  40. Z. Ren et al., IEEE T Electr. Dev. 50, 12 (2003).

    Article  Google Scholar 

  41. A. Svizhenko and M. Anantram, IEEE T. Electr. Dev 50, 8 (2003).

    Google Scholar 

  42. M. Ogawa, H. Tsuchiya, and T. Miyoshi, IEEE SISPAD 261 (2002).

    Google Scholar 

  43. P. Damle, A. Ghosh, and S. Datta, Phys. Rev.B, Rap. Comm. 201403 (2001).

    Google Scholar 

  44. M. Brandbyge et al., Phys. Rev. B. 65, 165401 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this paper

Cite this paper

Klimeck, G. (2004). NEMO 1-D: the first NEGF-based TCAD tool. In: Wachutka, G., Schrag, G. (eds) Simulation of Semiconductor Processes and Devices 2004. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0624-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0624-2_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7212-4

  • Online ISBN: 978-3-7091-0624-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics