Skip to main content

Kinetic Models for Chemotaxis and their Drift-Diffusion Limits

  • Conference paper
Nonlinear Differential Equation Models

Abstract

Kinetic models for chemotaxis, nonlinearly coupled to a Poisson equation for the chemoattractant density, are considered. Under suitable assumptions on the turning kernel (including models introduced by Othmer, Dunbar and Alt), convergence in the macroscopic limit to a drift-diffusion model is proven. The drift-diffusion models derived in this way include the classical Keller-Segel model. Furthermore, sufficient conditions for kinetic models are given such that finite-time-blow-up does not occur. Examples are given satisfying these conditions, whereas the macroscopic limit problem is known to exhibit finite-time-blow-up. The main analytical tools are entropy techniques for the macroscopic limit as well as results from potential theory for the control of the chemo-attractant density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt W (1980) Orientation of cells migrating in a chemotactic gradient. In: Biological Growth and Spread (Proc Conf Heidelberg, 1979). Lect Notes Biomath 38: 353–366. Berlin Heidelberg New York: Springer

    Google Scholar 

  2. Alt W (1980) Biased random walk models for chemotaxis and related diffusion approximations. J Math Biol 9:147–177

    Article  MathSciNet  MATH  Google Scholar 

  3. Bren A, Eisenbach M (2000) How signals are heard during bacterial chemotaxis: protein—protein interaction in sensory signal propagation. J Bacteriol 182: 6865–6873

    Article  Google Scholar 

  4. Brenner MP, Constantin P, Kadanoff LP, Schenkel A, Venkataramani SC (1999) Diffusion, attraction and collapse. Nonlinearity 12: 1071–1098

    Article  MathSciNet  MATH  Google Scholar 

  5. Dautray R, Lions J-L (1988) Analyse Mathématique et cacul numérique pour les sciences et les techniques, Ch. XXI Paris: Masson

    Google Scholar 

  6. Folland GB (1995) Introduction to Partial Differential Equations. Princeton: Univ Press

    MATH  Google Scholar 

  7. Foxman EF, Kunkel EJ, Butcher EC (1999) Integrating conflicting chemotactic signals: The role of memory in leukocyte navigation. J Cell Biol 147: 577–587

    Article  Google Scholar 

  8. Herrero MA, Medina E, Velázquez JJL (1997) Finite-time aggregation into a single point in a reaction-diffusion system. Nonlinearity 10: 1739–1754

    Article  MathSciNet  MATH  Google Scholar 

  9. Herrero MA, Medina E, Velázquez JJL (1998) Self-similar blow-up for a reaction-diffusion system. J Comp Appl Math 97: 99–119

    Article  MATH  Google Scholar 

  10. Herrero MA, Velázquez JJL (1996) Chemotactic collapse for the Keller-Segel model. J Math Biol 35: 177–194

    Article  MathSciNet  MATH  Google Scholar 

  11. Hillen T, Othmer HG (2000) The diffusion limit of transport equations derived from velocity-jump processes. SIAM J Appl Math 61: 751–775

    Article  MathSciNet  MATH  Google Scholar 

  12. Hillen T, Painter K (2001) Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv Appl Math 26: 280–301

    Article  MathSciNet  MATH  Google Scholar 

  13. Hillen T, Stevens A (2000) Hyperbolic models for chemotaxis in 1-D. Nonlinear Anal Real World Appl 1: 409–433

    Article  MathSciNet  MATH  Google Scholar 

  14. Hillen T, Rohde C, Lutscher F (2001) Existence of weak solutions for a hyperbolic model of chemosensitive movement. J Math Anal Appl 260: 173–199

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang Y, Levine H, Glazier J (1998) Possible Cooperation of Differential Adhesion and Chemotaxis in Mound Formation of Dictyostelium. Biophys J 75: 2615–2625

    Article  Google Scholar 

  16. Keller EF (1980) Assessing the Keller-Segel model: how has it fared? In: Biological Growth and Spread (Proc Conf Heidelberg, 1979). Lect Notes Biom 38: 379–387. Berlin Heidelberg New York: Springer

    Google Scholar 

  17. Keller EF, Segel LA (1970) Initiation of slide mold aggregation viewed as an instability. J Theor Biol 26: 399–415

    Article  Google Scholar 

  18. Keller EF, Segel LA (1971) Model for chemotaxis. J Theor Biol 30: 225–234

    Google Scholar 

  19. Keller EF, Segel LA (1971) Traveling Bands of Chemotactic Bacteria: A Theoretical Analysis. J Theor Biol 30: 235–248

    Article  Google Scholar 

  20. Nagai T (1997) Global existence of solutions to a parabolic system for chemotaxis in two space dimensions. In: Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996), volume 30, pp 5381–5388

    Google Scholar 

  21. Othmer HG, Dunbar SR, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26: 263–298

    Article  MathSciNet  MATH  Google Scholar 

  22. Othmer HG, Hillen T (2002) The diffusion limit of transport equations II: chemotaxis equations. SIAM J Appl Math 62: 1222–1250

    Article  MathSciNet  MATH  Google Scholar 

  23. Othmer HG, Stevens A (1997) Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks. SIAM J Appl Math 57: 1044–1081

    Article  MathSciNet  MATH  Google Scholar 

  24. Patlak CS (1953) Random walk with persistence and external bias. Bull Math Biophys 15: 311–338

    Article  MathSciNet  MATH  Google Scholar 

  25. Pazy A (1983) Semigroups of linear operators and applications to partial differential equations. New York: Springer

    Book  MATH  Google Scholar 

  26. Poupaud F, Soler J (2000) Parabolic limit and stability of the Vlasov-Poisson-Fokker-Planck system. Math Mod Meth Appl Sci 10: 1027–1045

    MathSciNet  MATH  Google Scholar 

  27. Sánchez-Madrid F, Pozo MA (1999) Leukocyte polarization in cell migration and immune interactions. The EMBO J 18: 501–511

    Article  Google Scholar 

  28. Stein EM (1970) Singular Integrals and Differentiability Properties of Functions. Princeton: Univ Press

    MATH  Google Scholar 

  29. Stevens A (2000) The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems. SIAM J Appl Math 61: 183–212

    Article  MathSciNet  MATH  Google Scholar 

  30. Stock A (1999) A nonlinear stimulus-response relation in bacterial chemotaxis. Proc Nat Acad Sci USA 96: 10945–10947

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this paper

Cite this paper

Chalub, F.A.C.C., Markowich, P.A., Perthame, B., Schmeiser, C. (2004). Kinetic Models for Chemotaxis and their Drift-Diffusion Limits. In: Jüngel, A., Manasevich, R., Markowich, P.A., Shahgholian, H. (eds) Nonlinear Differential Equation Models. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0609-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0609-9_10

  • Received:

  • Accepted:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7208-7

  • Online ISBN: 978-3-7091-0609-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics