Skip to main content

Genetically modified animals in molecular stroke research

  • Conference paper

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 89))

Abstract

Brain damage induced by focal interruption of blood flow can be differentiated in two pathophysiologically different categories: a hemodynamic type of injury, resulting in primary necrotic brain damage, and a molecular type of injury which leads to delayed or secondary brain injury [15]. Primary necrotic brain injury occurs when blood flow declines — and remains — below the threshold of energy failure. In anaesthetized laboratory animals, this threshold gradually increases from about 15% of control shortly after the onset of ischemia to about 30% after several hours of vascular occlusion [35].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki Y, Huang ZH, Thomas SS, Bhide PG, Huang I, Moskowitz MA, Reeves SA (2000) Increased susceptibility to ischemiainduced brain damage in transgenic mice overexpressing a dominant negative form of SHP2. FASEB J 14: 1965–1973

    Article  CAS  PubMed  Google Scholar 

  2. Asahi M, Asahi K, Jung JC, Zoppo GJd, Fini ME, Lo EH (2000) Role for matrix metalloproteinase 9 after focal cerebral ischemia: Effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 20: 1681–1689

    Article  CAS  PubMed  Google Scholar 

  3. Bilbao Fd, Guarin E, Nef P, Vallet P, Giannakopoulos P, Dubois-Dauphin M (2000) Cell death is prevented in thalamic fields but not in injured neocortical areas after permanent focal ischaemia in mice overexpressing the anti-apoptotic protein Bcl-2. Eur J Neurosci 12: 921–934

    Article  PubMed  Google Scholar 

  4. Bonventre JV, Huang ZH, Taheri MR, Oleary E, Li E, Moskowitz MA, Sapirstein A (1997) Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A(2). Nature 390: 622–625

    Article  CAS  PubMed  Google Scholar 

  5. Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK, Holtsberg FW, Mattson MP (1996) Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 2: 788–794

    Article  CAS  PubMed  Google Scholar 

  6. Brusa R (1999) Genetically modified mice in neuropharmacology. Pharmacol Res 39: 405–419

    Article  CAS  PubMed  Google Scholar 

  7. Campagne MV, Thibodeaux H, van Bruggen N, Cairns B, Gerlai R, Palmer JT, Williams SP, Lowe DG (1999) Evidence for a protective role of metallothionein-1 in focal cerebral ischemia. Proc Nat Acad Sci USA 96: 12870–12875

    Article  Google Scholar 

  8. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21: 2–14

    Article  CAS  PubMed  Google Scholar 

  9. Chan PH, Kamii H, Yang GY, Gafni J, Epstein CJ, Carlson E, Reola L (1993) Brain infarction is not reduced in SOD-1 transgenic mice after a permanent focal cerebral ischemia. Neuro-Report 5: 293–296

    CAS  Google Scholar 

  10. Chen JF, Huang ZH, Ma JY, Zhu JM, Moratalla R, Standaert D, Moskowitz MA, Fink JS, Schwarzschild MA (1999) A(2a) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci 19: 9192–9200

    CAS  PubMed  Google Scholar 

  11. Clark WM, Rinker LG, Lessov NS, Hazel K, Hill JK, Stenzel-Poore M, Eckenstein F (2000) Lack of interleukin-6 expression is not protective against focal central nervous system ischemia. Stroke 31: 1715–1720

    Article  CAS  PubMed  Google Scholar 

  12. Connolly ES, Winfree CJ, Stern DM, Solomon RA, Pinsky DJ (1996) Procedural and strain-related variables significantly affect outcome in a murine model of focal cerebral ischemia. Neurosurgery 38: 523–531

    PubMed  Google Scholar 

  13. Crumrine RC, Thomas AL, Morgan PF (1994) Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J Cereb Blood Flow Metab 14: 887–891

    Article  CAS  PubMed  Google Scholar 

  14. Dalkara T, Yoshida T, Irikura K, Moskowitz MA (1994) Dual role of nitric oxide in focal cerebral ischemia. Neuropharmacology 33: 1447–1452

    Article  CAS  PubMed  Google Scholar 

  15. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22: 391–397

    Article  CAS  PubMed  Google Scholar 

  16. Eliasson MJL, Huang ZH, Ferrante RJ, Sasamata M, Molliver ME. Snyder SH, Moskowitz MA (1999) Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci 19: 5910–5918

    CAS  PubMed  Google Scholar 

  17. Eliasson MJL, Sampei K, Mandir AS, Hum PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3: 1089–1095

    Article  CAS  PubMed  Google Scholar 

  18. Endres M, Meisel A, Biniszkiewicz D, Namura S, Prass K, Ruscher K, Lipski A, Jaenisch R, Moskowitz MA, Dirnagl U (2000) DNA methyltransferase contributes to delayed ischemic brain injury. J Neurosci 20: 3175–3181

    CAS  PubMed  Google Scholar 

  19. Ferriero DM, Holtzman DM, Black SM, Sheldon RA (1996) Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiol Dis 3: 64–71

    Article  CAS  PubMed  Google Scholar 

  20. Friedlander RM, Gagliardini V, Hara H, Fink KB, Li WW, Macdonald G, Fishman MC, Greenberg AH, Moskowitz MA, Yuan JY (1997) Expression of a dominant negative mutant of interleukin-1-beta converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawal and ischemic brain injury. J Exp Med 185: 933–940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fujii M, Hara H, Meng W, Vonsattel JP, Huang ZH, Moskowitz MA (1997) Strain-related differences in susceptibility to transient forebrain ischemia in SV129 and C57Black/6 mice. Stroke 28: 1805–1810

    Article  CAS  PubMed  Google Scholar 

  22. Fujimura M, Morita-Fujimura Y, Kawase M, Copin J-C, Calagui B. Epstein CJ, Chan PH (1999) Manganese Superoxide dismutase mediates the early release of mitochondrial cytochrome c and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J Neurosci 19: 3414–3422

    CAS  PubMed  Google Scholar 

  23. Gordon JW, Harold G, Leila Y (1993) Transgenic animal methodologies and their applications. Human Cell 6: 161–169

    CAS  PubMed  Google Scholar 

  24. Grilli M, Barbieri I, Basudev H, Brusa R, Casati C, Lozza G, Ongini E (2000) Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. Eur J Neurosci 12: 2265–2272

    Article  CAS  PubMed  Google Scholar 

  25. Grotta J (1995) Why do all drugs work in animals but none in stroke patients? 2. Neuroprotective therapy. J Inter Med 237: 89–94

    Article  CAS  Google Scholar 

  26. Guo ZH, Kindy MS, Kruman I, Mattson MP (2000) Als-linked Cu/Zn-SOD mutation impairs cerebral synaptic glucose and glutamate transport and exacerbates ischemic brain injury. J Cereb Blood Flow Metab 20: 463–468

    Article  CAS  PubMed  Google Scholar 

  27. Hara H. Fink K, Endres M, Friedlander RM, Gagliardini V, Yuan J, Moskowitz MA (1997) Attenuation of transient focal cerebral ischemic injury in transgenic mice expressing a mutant ICE inhibitory protein. J Cereb Blood Flow Metab 17: 370–375

    Article  CAS  PubMed  Google Scholar 

  28. Hara H, Huang PL, Panahian N, Fishman MC, Moskowitz MA (1996) Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cereb Blood Flow Metab 16: 605–611

    Article  CAS  PubMed  Google Scholar 

  29. Hata R. Gass P, Mies G, Wiessner C, Hossmann K-A (1998) Attenuated c-fos mRNA induction after middle cerebral artery occlusion in CREB knockout mice does not modulate focal ischemic injury. J Cereb Blood Flow Metab 18: 1325–1335

    Article  CAS  PubMed  Google Scholar 

  30. Hata R, Gillardon F, Michaelidis TM, Hossmann K-A (1999) Targeted disruption of the bcl-2 gene in mice exacerbates focal ischemic brain injury. Metabolic Brain Dis 14: 117–124

    Article  CAS  Google Scholar 

  31. Hata R, Maeda K, Hermann D, Mies G, Hossmann K-A (2000) Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20: 306–315

    Article  CAS  PubMed  Google Scholar 

  32. Hata R, Maeda K, Hermann D, Mies G, Hossmann K-A (2000) Evolution of brain infarction after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 20: 937–946

    Article  CAS  PubMed  Google Scholar 

  33. Hata R, Mies G, Wiessner C, Fritze K, Hesselbarth D, Brinker G, Hossmann K-A (1998) A reproducible model of middle cerebral artery occlusion in mice — hemodynamic, biochemical, and magnetic resonance imaging. J Cereb Blood Flow Metab 18:367–375

    Article  CAS  PubMed  Google Scholar 

  34. Holschneider DP, Scremin OU, Huynh L, Chen K, Shih JC (1999) Lack of protection from ischemic injury of monoamine oxidase B-deficient mice following middle cerebral artery occlusion. Neurosci Lett 259: 161–164

    Article  CAS  PubMed  Google Scholar 

  35. Hossmann K-A (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36: 557–565

    Article  CAS  PubMed  Google Scholar 

  36. Huang ZH, Huang PL, Ma JY, Meng W, Ayata C. Fishman MC, Moskowitz MA (1996) Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab 16: 981–987

    Article  CAS  PubMed  Google Scholar 

  37. Huang ZH, Huang PL, Panahian N, Dalkara T, Fishman MC. Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265: 1883–1885

    Article  CAS  PubMed  Google Scholar 

  38. Iadecola C, Zhang FY, Casey R, Nagayama M, Rose ME (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 17: 9157–9164

    CAS  PubMed  Google Scholar 

  39. Kadotani H, Namura S, Katsuura G, Terashima T, Kikuchi H (1998) Attenuation of focal cerebral infarct in mice lacking NMD A receptor subunit NR2C. Neuro Report 9: 471–475

    CAS  Google Scholar 

  40. Keller JN, Kindy MS, Holtsberg FW, StClair DK, Yen HC, Germeyer A, Steiner SM, Brucekeller AJ, Hutchins JB, Mattson MP (1998) Mitochondrial manganese Superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18: 687–697

    CAS  PubMed  Google Scholar 

  41. Kinouchi H, Epstein CJ, Mizui T, Carlson E, Chen SF, Chan PH (1991) Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn Superoxide dismutase. Proc Nat Acad Sci USA 88: 11158–11162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kitagawa K, Matsumoto M, Mabuchi T, Yagita Y, Ohtsuki T, Hori M, Yanagihara T (1998) Deficiency of intercellular adhesion molecule 1 attenuates microcirculatory disturbance and infarction size in focal cerebral ischemia. J Cereb Blood Flow Metab 18: 1336–1345

    Article  CAS  PubMed  Google Scholar 

  43. Kondo T, Reaume AG, Huang TT, Carlson E, Murakami K, Chen SF, Hoffman EK, Scott RW, Epstein CJ, Chan PH (1997) Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci 17: 4180–4189

    CAS  PubMed  Google Scholar 

  44. Lawrence MS, Ho DY, Sun GH, Steinberg GK, Sapolsky RM (1996) Overexpression of bcl-2 with herpes simplex virus vectors protects CNS neurons against neurological insults in vitro and in vivo. J Neurosci 16: 486–496

    CAS  PubMed  Google Scholar 

  45. Le D, Das SY, Wang YF, Yoshizawa T, Sasaki YF, Takasu M, Nemes A, Mendelsohn M, Dikkes P, Lipton SA, Nakanishi N (1997) Enhanced neuronal death from focal ischemia in AMPA-receptor transgenic mice. Mol Brain Res 52: 235–241

    Article  CAS  PubMed  Google Scholar 

  46. Lo EH, Hara H, Rogowska J, Trocha M, Pierce AR, Huang PL, Fishman MC, Wolf GL, Moskowitz MA (1996) Temporal correlation mapping analysis of the hemodynamic penumbra in mutant mice deficient in endothelial nitric oxide synthase gene expression. Stroke 27: 1381–1385

    Article  CAS  PubMed  Google Scholar 

  47. Lukkarinen JA, Grohn OHJ, Alhonen LI, Janne J, Kauppinen RA (1999) Enhanced ornithine decarboxylase activity is associated with attenuated rate of damage evolution and reduction of infarct volume in transient middle cerebral artery occlusion in the rat. Brain Res 826: 325–329

    Article  CAS  PubMed  Google Scholar 

  48. MacManus JP, Koch CJ, Jian M, Walker T, Zurakowski B (1999) Decreased brain infarct following focal ischemia in mice lacking the transcription factor E2F1. NeuroReport 10: 2711–2714

    Article  CAS  PubMed  Google Scholar 

  49. Maeda K, Hata R, Bader M, Walther T, Hossmann K-A (1999) Larger anastomoses in angiotensinogen-knockout mice attenuate early metabolic disturbances after middle cerebral artery occlusion. J Cereb Blood Flow Metab 19: 1092–1098

    Article  CAS  PubMed  Google Scholar 

  50. Maeda K, Hata R, Gillardon F, Hossmann K-A (2001) Aggravation of brain injury after transient focal ischemia in p53 deficient mice. Molecular Brain Research 88: 54–61

    Article  CAS  PubMed  Google Scholar 

  51. Maeda K, Hata R, Hossmann K-A (1998) Differences in the cerebrovascular anatomy of C57Black/6 and SV129 mice. NeuroReport 9: 1317–1319

    Article  CAS  PubMed  Google Scholar 

  52. Maeda K, Hata R, Hossmann K-A (1999) Regional metabolic disturbances and cerebrovascular anatomy after permanent middle cerebral artery occlusion in C57Black/6 and SV129 mice. Neurobiol Dis 6: 101–108

    Article  CAS  PubMed  Google Scholar 

  53. Martinou JC, Dubois-Dauphin M, Staple JK, Rodrigues I, Frankowski H, Missotten M, Albertini P, Talabot D, Catsicas S. Pietra C, Huarte J (1994) Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13: 1017–1030

    Article  CAS  PubMed  Google Scholar 

  54. Mattson MP, Culmsee C, Yu ZF (2000) Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res 301: 173–187

    Article  CAS  PubMed  Google Scholar 

  55. Mattson MP, Zhu HY, Yu J, Kindy MS (2000) Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: involvement of perturbed calcium homeostasis. J Neurosci 20: 1358–1364

    CAS  PubMed  Google Scholar 

  56. Morikawa E, Mori H. Kiyama Y, Mishina M, Asano T, Kirino T (1998) Attenuation of focal ischemic brain injury in mice deficient in the epsilonl (NR2A) subunit of NMDA receptor. J Neurosci 18:9727–9732

    CAS  PubMed  Google Scholar 

  57. Nagai N, Mol Md, Lijnen HR, Carmeliet P, Collen D (1999) Role of plasminogen system components in focal cerebral ischemic infarction. A gene targeting and gene transfer study in mice. Circulation 99: 2440–2444

    Article  CAS  PubMed  Google Scholar 

  58. Nagayama M, Aber T, Nagayama T, Ross ME, Iadecola C (1999) Age-dependent increase in ischemic brain injury in wildtype mice and in mice lacking the inducible nitric oxide synthase gene. J Cereb Blood Flow Metab 19: 661–666

    Article  CAS  PubMed  Google Scholar 

  59. Panahian N, Yoshiura M, Maines MD (1999) Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J Neuro-chem 72: 1187–1203

    CAS  Google Scholar 

  60. Paschen W, Olah L, Mies G (2000) Effect of transient focal ischemia of mouse brain on energy state and NAD levels: No evidence that NAD depletion plays a major role in secondary disturbances of energy metabolism. J Neurochem 75: 1675–1680

    Article  CAS  PubMed  Google Scholar 

  61. Pieper A A. Blackshaw S, Clements EE, Brat DJ, Krug DK, White AJ, Pinto-Garcia P, Favit A, Conover JR, Snyder SH, Verma A (2000) Poly(ADP-ribosyl)ation basally activated by DNA strand breaks reflects glutamate-nitric oxide neurotrans-mission. Proc Nat Acad Sci USA 97: 1845–1850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Rajdev S, Hara K, Kokubo Y, Mestril R, Dillmann W, Weinstein PR, Sharp FR (2000) Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann Neurol 47:782–791

    Article  CAS  PubMed  Google Scholar 

  63. Rosenbaum DM, Gupta G, D’Amore J, Singh M, Weidenheim K, Zhang H, Kessler JA (2000) Fas (CD95/APO-1) plays a role in the pathophysiology of focal cerebral ischemia. J Neurosci Res 61: 686–692

    Article  CAS  PubMed  Google Scholar 

  64. Sampei K, Goto S, Alkayed NJ, Crain BJ, Korach KS, Traystman RJ, Demas GE, Nelson RJ, Hum PD (2000) Stroke in estrogen receptor-alpha-deficient mice. Stroke 31: 738–743

    Article  CAS  PubMed  Google Scholar 

  65. Schauwecker PE, Steward O (1997) Genetic determinants of susceptibility to excitotoxic cell death: Implications for gene targeting approaches. Proc Natl Acad Sci USA 94: 4103–4108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Schielke GP, Yang GY, Shivers BD, Betz AL (1998) Reduced ischemic brain injury in interleukin-1-beta converting enzymedeficient mice. J Cereb Blood Flow Metab 18: 180–185

    Article  CAS  PubMed  Google Scholar 

  67. Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M (1999) NF-kappa B is activated and promotes cell death in focal cerebral ischemia. Nat Med 5: 554–559

    Article  CAS  PubMed  Google Scholar 

  68. Sharp FR (1998) Stress genes protect brain. Ann Neuro 44: 581–583

    Article  CAS  Google Scholar 

  69. Sheng H, Bart RD, Oury TD, Pearlstein RD, Crapo JD, Warner DS (1999) Mice overexpressing extracellular Superoxide dismutase have increased resistance to focal cerebral ischemia. Neuroscience 88: 185–191

    Article  CAS  PubMed  Google Scholar 

  70. Soriano SG, Coxon A, Wang YF, Frosch MP, Lipton SA, Hickey PR, Mayadas TN (1999) Mice deficient in MAC-1 (CD11B/CD18) are less susceptible to cerebral ischemia/ reperfusion injury. Stroke 30: 134–139

    Article  CAS  PubMed  Google Scholar 

  71. Soriano SG, Lipton SA, Wang YMF, Xiao M, Springer TA, Gutierrez-Ramos JC, Hickey PR (1996) Intercellular adhesion molecule-1-deficient mice are less susceptible to cerebral ischemia — reperfusion injury. Ann Neurol 39: 618–624

    Article  CAS  PubMed  Google Scholar 

  72. Tabrizi P, Wang L, Seeds N, McComb JG, Yamada S, Griffin JH, Carmeliet P, Weiss MH, Zlokovic BV (1999) Tissue plasminogen activator (tPa) deficiency exacerbates cerebrovascular fibrin deposition and brain injury in a murine stroke model. Studies in tPa-deficient mice and wild-type mice on a matched genetic background. Arterioscl Thromb Vase Biol 19: 2801–2806

    Article  CAS  Google Scholar 

  73. Takagi Y, Mitsui A, Nishiyama A, Nozaki K, Sono H, Gon Y, Hashimoto N, Yodoi J (1999) Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. Proc Nat Acad Sci USA 96: 4131–4136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51: 503–512

    Article  CAS  PubMed  Google Scholar 

  75. Wälder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, Curnutte JT, Thomas GR (1997) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28: 2252–2258

    Article  PubMed  Google Scholar 

  76. Wang YMF, Tsirka SE, Strickland S, Stieg PE, Soriano SG, Lipton SA (1998) Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat Med 4: 228–231

    Article  CAS  PubMed  Google Scholar 

  77. Weisbrot-Lefkowitz M, Reuhl K, Perry B, Cahn PH, Inouye M, Mirochnitchenko O (1998) Overexpression of human glutathione peroxidase protects transgenic mice against focal cerebral ischemia/reperfusion damage. Mol Brain Res 53: 333–338

    Article  CAS  PubMed  Google Scholar 

  78. Wiessner C, Allegrini PR, Rupalla K, Sauer D, Oltersdorf T, McGregor AL, Bischoff S, Böttiger BW, Putten Hvd (1999) Neuron-specific transgene expression of BCI-XL but not Bcl-2 genes reduced lesion size after permanent middle cerebral artery occlusion in mice. Neurosci Lett 268: 119–122

    Article  CAS  PubMed  Google Scholar 

  79. Yang GY, Schielke GP, Gong C, Mao Y, Ge HL, Liu XH, Betz AL (1999) Expression of tumor necrosis factor-alpha and intercellular adhesion molecule-1 after focal cerebral ischemia in interleukin-1 beta converting enzyme deficient mice. J Cereb Blood Flow Metab 19: 1109–1117

    Article  CAS  PubMed  Google Scholar 

  80. Zhang FY, Eckman C, Younkin S, Hsiao KK, Iadecola C (1997) Increased susceptibility to ischemic brain damage in transgenic mice overexpressing the amyloid precursor protein. J Neurosci 17: 7655–7661

    CAS  PubMed  Google Scholar 

  81. Zhao X, Haensel C, Araki E, Ross ME, Iadecola C (2000) Gene-dosing effect and persistence of reduction in ischemic brain injury in mice lacking inducible nitric oxide synthase. Brain Res 872:215–218

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this paper

Cite this paper

Hossmann, KA. (2004). Genetically modified animals in molecular stroke research. In: Baethmann, A., Eriskat, J., Lehmberg, J., Plesnila, N. (eds) Mechanisms of Secondary Brain Damage from Trauma and Ischemia. Acta Neurochirurgica Supplements, vol 89. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0603-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0603-7_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7206-3

  • Online ISBN: 978-3-7091-0603-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics