Skip to main content

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

Abstract

One of the most remarkable phenomena in the early days of silicon technology was the “emitterpush” effect which causes an enhanced diffusion of dopants below regions with high phosphorus concentrations (see Section 5.8.3). To explain it, it was soon concluded that some sort of farranging “interaction particle” is needed. Since other impurities as well as extended defects could be excluded, this role was equally soon attributed to the intrinsic point defects introduced in Section 1.1.3. Indeed, intrinsic point defects play important roles in nearly all theories of impurity diffusion in silicon. Therefore, before proceeding with the latter in the next chapters, the properties of intrinsic point defects will be reviewed in the following.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. R. O. Simmons and R. W. Balluffi, “Measurement of Equilibrium Vacancy Concentration in Aluminium,” Phys. Rev., vol. 117, no. 1, 52–61 (1960).

    Google Scholar 

  2. A. Seeger and M. L. Swanson, “Vacancies and Diffusion Mechanisms in Diamond-Structure Semiconductors,” in: Lattice Defects in Semiconductors, edited by R. R. Hasiguti, Tokyo: University of Tokyo Press, 93–130 (1968).

    Google Scholar 

  3. A. Seeger and K. P. Chik, “Diffusion Mechanism and Point Defects in Silicon and Germanium,” phys. stat. sol, vol. 29, 455–542 (1968).

    Google Scholar 

  4. W. Schottky, “Über den Mechanismus der Ionenbewegung in festen Elektrolyten,” Z. Phys. Chem. B, vol. 29, 335–355 (1935).

    Google Scholar 

  5. M. Lannoo and J. Bourgoin, Point Defects in Semiconductors I, Springer Series in Solid-State Sciences, vol. 22, Berlin: Springer (1981).

    Google Scholar 

  6. E. Guerrero, Verteilung von Dotierungsatomen in Silicium-Einkristallen, Ph.D. thesis, Technical University of Vienna (1984).

    Google Scholar 

  7. J. A. Van Vechten, “A Simple Man’s View of the Thermochemistry of Semiconductors,” in: Materials, Properties and Preparations, edited by S. P. Keller, Handbook on Semiconductors, vol. 3, Amsterdam: North-Holland, 1–111 (1980).

    Google Scholar 

  8. W. Shockley and J. L. Moll, “Solubility of Raws in Heavily-Doped Semiconductors,” Phys. Rev., vol. 119, no. 5, 1480–1482 (1960).

    Google Scholar 

  9. R. L. Longini and R. F. Greene, “Ionization Interaction between Impurities in Semiconductors and Insulators,” Phys. Rev., vol. 102, no. 4, 992–999 (1956).

    Google Scholar 

  10. M. W. Valenta and C. Ramasastry, “Effects of Heavy Doping on the Self-Diffusion of Germanium,” Phys. Rev., vol. 106, no. 1, 73–75 (1957).

    Google Scholar 

  11. W. Shockley and J. T. Last, “Statistics of the Charge Distribution for a Localized Flaw in a Semiconductor,” Phys. Rev., vol. 107, no. 2, 392–396 (1957).

    MATH  Google Scholar 

  12. P. M. Fahey, Point Defects and Dopant Diffusion in Silicon, Ph.D. thesis, Integrated Circuits Laboratory, Department of Electrical Engineering, Stanford University (1985).

    Google Scholar 

  13. J. A. Van Vechten and C. D. Thurmond, “Entropy of Ionization and Temperature Variation of Ionization Levels of Defects in Semiconductors,” Phys. Rev. B, vol. 14, no. 8, 3539–3550 (1976).

    Google Scholar 

  14. D. Mathiot and J. C. Pfister, “Dopant Diffusion in Silicon: A Consistent View Involving Nonequilibrium Defects,” J. Appl Phys., vol. 55, no. 10, 3518–3530 (1984).

    Google Scholar 

  15. R. B. Fair, “The Effect of Strain-Induced Band-Gap Narrowing on High Concentration Phosphorus Diffusion in Silicon,” J. Appl Phys., vol. 50, no. 2, 860–868 (1979).

    MathSciNet  Google Scholar 

  16. P. M. Fahey, P. B. Griffin, and J. D. Plummer, “Point Defects and Dopant Diffusion in Silicon,” Reviews of Modern Physics, vol. 61, no. 2, 289–384 (1989).

    Google Scholar 

  17. J. P. Hirth and J. Lothe, Theory of Dislocations, New York: McGraw-Hill (1968).

    Google Scholar 

  18. L. Borucki, “Modeling the Growth and Annealing of Dislocation Loops,” in: Proceedings NU-PADIV, New York: IEEE, 27–32 (1992).

    Google Scholar 

  19. H. Park, K. S. Jones, and M. E. Law, “A Point Defect Based Two-Dimensional Model of the Evolution of Dislocation Loops in Silicon during Oxidation,” J. Electrochem. Soc, vol. 141, no. 3, 759–765 (1994).

    Google Scholar 

  20. I. V. Peidous and K. V. Loiko, “Screening of Dislocations in Silicon by Point Defects,” in: High Purity Silicon VI, edited by C. L. Claeys, P. Rai-Choudhury, M. Watanabe, P. Stallhofer, and H. J. Dawson, Electrochem. Soc. Proc, vol. 2000-17, 145–155 (2000).

    Google Scholar 

  21. K. Tanahashi and N. Inoue, “Non-Equilibrium Thermodynamic Analysis on the Behaviour of Point Defects in Growing Silicon Crystals: Effects of Stress,” Journal of Materials Science: Materials in Electronics, vol. 10, 359–363 (1999).

    Google Scholar 

  22. K. V. Loiko, I. V. Peidous, T. E. Harrington, and W. R. Frensley, “Stress-Induced Redistribution of Point Defects in Silicon Device Structures,” in: Gettering and Defect Engineering in Semiconductor Technology GADEST 2001, edited by V. Raineri, F. Priolo, M. Kittler, and H. Richter, Solid State Phenomena, vol. 82-84, 225–230 (2002).

    Google Scholar 

  23. A. Seeger, H. Föll, and W. Frank, “Self-Interstitials, Vacancies and Their Clusters in Silicon and Germanium,” in: Radiation Effects in Semiconductors, 1976, edited by N. B. Urli and J. W. Corbett, Inst. Phys. Conf. Ser., no. 31, 12–29 (1977).

    Google Scholar 

  24. M. Budil, H. Pötzl, G. Stingeder, M. Grasserbauer, and K. Goser, “A New Model of Anomalous Phosphorus Diffusion in Silicon,” in: Defects in Semiconductors 15, edited by G. Ferenczi, Materials Science Forum, vol. 38-41, 719–724 (1989).

    Google Scholar 

  25. J. A. Van Vechten, “Enthalpy of Vacancy Migration in Si and Ge,” Phys. Rev. B, vol. 10, no. 4, 1482–1506 (1974).

    Google Scholar 

  26. Y. Nakabayashi, H. I. Osman, K. Yokota, K. Toyonaga, S. Matsumoto, J. Murota, K. Wada, and T. Abe, “Type and Charge States of Point Defects in Heavily As-and B-Doped Silicon,” Materials Science in Semiconductor Processing, vol. 6, 15–19 (2003).

    Google Scholar 

  27. S. M. Hu, “Diffusion in Silicon and Germanium,” in: Atomic Diffusion in Semiconductors, edited by D. Shaw, London: Plenum Press, 217–350 (1973).

    Google Scholar 

  28. U. Gösele and T. Y. Tan, “The Nature of Point Defects and Their Influence on Diffusion Processes in Silicon at High Temperatures,” in: Defects in Semiconductors II, edited by S. Mahajan and J. W. Corbett, Mat. Res. Soc. Symp. Proc, vol. 14, 45–59 (1983).

    Google Scholar 

  29. K. Compaan and Y. Haven, “Correlation Factors for Diffusion in Solids,” Trans. Faraday Soc, vol. 52, 786–801 (1956).

    Google Scholar 

  30. M. Yoshida, “Diffusion of Group V Impurity in Silicon,” Jpn. J. Appl. Phys., vol. 10, no. 6, 702–713 (1971).

    Google Scholar 

  31. D. Shaw, “Self-and Impurity Diffusion in Ge and Si,” phys. stat. sol (b), vol. 72, 11–39 (1975).

    Google Scholar 

  32. K. Compaan and Y. Haven, “Correlation Factors for Diffusion in Solids. Part 2 — Indirect Interstitial Mechanism“ Trans. Faraday Soc, vol. 54, 1498–1508 (1958).

    Google Scholar 

  33. S. M. Hu, “Modeling Diffusion in Silicon: Accomplishments and Challenges,” in: VLSI Science and Technology/1985, edited by W. M. Bullis and S. Broydo, Electrochem. Soc. Proc, vol. 85-5, 465–506 (1985).

    Google Scholar 

  34. S. M. Hu, “Nonequilibrium Point Defects and Diffusion in Silicon,” Materials Science and Engineering, vol. R13, 105–192 (1994).

    Google Scholar 

  35. R. F. Peart, “Self Diffusion in Intrinsic Silicon,” phys. stat. sol., vol. 15, K119–K122 (1966).

    Google Scholar 

  36. R. N. Ghoshtagore, “On the Mechanism of Substitutional Diffusion in Silicon,” phys. stat. sol., vol. 20, K89–K94 (1967).

    Google Scholar 

  37. D. L. Kendall and D. B. De Vries, “Diffusion in Silicon,” in: Semiconductor Silicon, edited by R. R. Haberecht and E. L. Kerns, Electrochem. Soc. Proc, 358–421 (1969).

    Google Scholar 

  38. S. Dannefaer, P. Mascher, and D. Kerr, “Monovacancy Formation Enthalpy in Silicon,” Phys. Rev. Lett., vol. 56, no. 20, 2195–2198 (1986).

    Google Scholar 

  39. J. A. Van Vechten, “Divacancy Binding Enthalpy and Contribution of Divacancies to Self-Diffusion in Si,” Phys. Rev. B, vol. 33, no. 4, 2674–2689 (1986).

    Google Scholar 

  40. K. C. Pandey, “Diffusion without Vacancies or Interstitials: A New Concerted Exchange Mechanism,” Phys. Rev. Lett., vol. 57, no. 18, 2287–2290 (1986).

    Google Scholar 

  41. M. I. Heggie, “Self-Diffusion, Deformation and Melting in Silicon — A Microscopic Link,” Phil. Mag. Lett., vol. 58, no. 2, 75–80 (1988).

    Google Scholar 

  42. K. C. Pandey and E. Kaxiras, “Entropy Calculation beyond the Harmonic Approximation: Application to Diffusion by Concerted Exchange in Si,” Phys. Rev. Lett., vol. 66, no. 7, 915–918 (1991).

    Google Scholar 

  43. P. E. Blöchl, E. Smargiassi, R. Car, D. B. Laks, W. Andreoni, and S. T. Pantelides, “First-Principles Calculation of Self-Diffusion Constants in Silicon,” Phys. Rev. Lett., vol. 70, no. 16, 2435–2438 (1993).

    Google Scholar 

  44. E. Kaxiras and K. C. Pandey, “Contribution of Concerted Exchange to the Entropy of Self-Diffusion in Si,” Phys. Rev. B, vol. 47, no. 3, 1659–1662 (1993).

    Google Scholar 

  45. A. Antonelli, S. Ismail-Beigi, E. Kaxiras, and K. C. Pandey, “Free Energy of the Concerted-Exchange Mechanism for Self-Diffusions in Silicon,” Phys. Rev. B, vol. 53, no. 3, 1310–1314 (1996).

    Google Scholar 

  46. W.-K. Leung, R. J. Needs, G. Rajagopal, S. Itoh, and S. Ihara, “Calculations of Silicon Self-Interstitial Defects,” Phys. Rev. Lett., vol. 83, no. 12, 2351–2354 (1999).

    Google Scholar 

  47. R. J. Needs, “First-Principles Calculations of Self-Interstitial Defect Structures and Diffusion Paths in Silicon,” J. Phys.: Condens. Matter, vol. 11, 10437–10450 (1999).

    Google Scholar 

  48. A. Ural, P. B. Griffin, and J. D. Plummer, “Experimental Study of Self-Diffusion in Silicon Using Isotopically Enriched Structures,” in: Si Front-End Processing — Physics and Technology of Dopant-Defect Interactions, edited by H.-J. L. Gossmann, T. E. Haynes, M. E. Law, A. Nylandsted Larsen, and S. Odanaka, Mat. Res. Soc Symp. Proc, vol. 568, 97–102 (1999).

    Google Scholar 

  49. A. Ural, P. B. Griffin, and J. D. Plummer, “Fractional Contributions of Microscopic Diffusion Mechanisms for Common Dopants and Self-Diffusion in Silicon,” J. Appl. Phys., vol. 85, no. 9, 6440–6446 (1999).

    Google Scholar 

  50. I. D. Sharp, H. A. Bracht, H. H. Silvestri, S. P. Nicois, J. W. Beeman, J. L. Hansen, A. Nylandsted Larsen, and E. E. Haller, “Self-and Dopant Diffusion in Extrinsic Boron Doped Isotopically Controlled Silicon Multilayer Structures,” in: Defect and Impurity Engineered Semiconductors and Devices III, edited by S. Ashok, J. Chevallier, N. M. Johnson, B. L. Sopori, and H. Okushi, Mat. Res. Soc. Symp. Proc., vol. 719, F13.11.1–F13.11.6 (2002).

    Google Scholar 

  51. H. Bracht, E. E. Haller, and R. Clark-Phelps, “Silicon Self-Diffusion in Isotope Heterostructures,” Phys. Rev. Lett., vol. 81, no. 2, 393 (1998).

    Google Scholar 

  52. H. Bracht, E. E. Haller, K. Eberl, M. Cardona, and R. Clark-Phelps, “Self-Diffusion in Isotopically Controlled Heterostructures of Elemental and Compound Semiconductors,” in: Diffusion Mechanisms in Crystalline Materials, edited by Y. Mishin, G. Vogl, N. Cowern, R. Catlow, and D. Farkas, Mat. Res. Soc. Symp. Proc, vol. 527, 335–346 (1998).

    Google Scholar 

  53. A. Ural, P. B. Griffin, and J. D. Plummer, “Self-Diffusion in Silicon: Similarity between the Properties of Native Point Defects,” Phys. Rev. Lett., vol. 83, no. 17, 3454–3457 (1999).

    Google Scholar 

  54. Y. Nakabayashi, H. I. Osman, T. Segawa, K. Saito, S. Matsumoto, J. Murota, K. Wada, and T. Abe, “Self-Diffusion in Extrinsic Silicon Using Isotopically Enriched 30Si Layer,” Jpn. J. Appl. Phys., Part 2, vol. 40, no. 3A, L181–L182 (2001).

    Google Scholar 

  55. Y Nakabayashi, H. I. Osman, K. Toyonaga, K. Yokota, S. Matsumoto, J. Murota, K. Wada, and T. Abe, “Self-Diffusion in Intrinsic and Extrinsic Silicon Using Isotopically Pure 30Silicon/Natural Silicon Heterostructures,” Jpn. J. Appl. Phys., Part 1, vol. 42, no. 6A, 3304–3310 (2003).

    Google Scholar 

  56. R. N. Ghoshtagore, “Method for Determining Silicon Diffusion Coefficients in Silicon and in Some Silicon Compounds,” Phys. Rev. Lett., vol. 16, no. 20, 890–892 (1966).

    Google Scholar 

  57. J. M. Fairfield and B. J. Masters, “Self-Diffusion in Intrinsic and Extrinsic Silicon,” J. Appl. Phys., vol. 38, no. 8, 3148–3154 (1967).

    Google Scholar 

  58. H. J. Mayer, H. Mehrer, and K. Maier, “Self-Diffusion in Silicon between 1320 K and 1660 K,” in: Radiation Effects in Semiconductors, 1976, edited by N. B. Urli and J. W. Corbett, Inst. Phys. Conf. Ser., no. 31, 186–193 (1977).

    Google Scholar 

  59. J. Hirvonen and A. Anttila, “Self-Diffusion in Silicon As Probed by the (P, γ) Resonance Broadening Method,” Appl. Phys. Lett, vol. 35, no. 9, 703–705 (1979).

    Google Scholar 

  60. L. Kalinowski and R. Seguin, “Self-Diffusion in Intrinsic Silicon,” Appl. Phys. Lett., vol. 35, no. 3, 211–212 (1979).

    Google Scholar 

  61. L. Kalinowski and R. Seguin, “Erratum: Self-Diffusion in Intrinsic Silicon [Appl. Phys. Lett. 35, 211 (1979)],” Appl. Phys. Lett., vol. 36, no. 2, 171 (1980).

    Google Scholar 

  62. F. J. Demond, S. Kalbitzer, H. Mannsperger, and H. Damjantschitsch, “Study of Self-Diffusion by Nuclear Techniques,” Physics Letters, vol. 93A, no. 9, 503–506 (1983).

    Google Scholar 

  63. A. Strohm, T. Voss, W. Frank, P. Laitinen, and J. Räisänen, “Self-Diffusion of 71Ge and 31Si in Si-Ge Alloys,” Z. Metallkd., vol. 93, no. 7, 737–744 (2002).

    Google Scholar 

  64. T. Y. Tan and U. Gösele, “Point Defects, Diffusion Processes, and Swirl Defect Formation in Silicon,” Appl. Phys. A, vol. 37, 1–17 (1985).

    Google Scholar 

  65. M. J. Aziz, E. Nygren, W. H. Christie, C. W. White, and D. Turnbull, “Effect of Pressure on Self Diffusion in Crystalline Silicon,” in: Impurity Diffusion and Gettering in Silicon, edited by R. B. Fair, C. Pearce, and J. Washburn, Mat. Res. Soc. Symp. Proc, vol. 36, 101–104 (1985).

    Google Scholar 

  66. M. J. Aziz, “Stress Effects on Defects and Dopant Diffusion in Si,” Materials Science in Semiconductor Processing, vol. 4, 397–403 (2001).

    MathSciNet  Google Scholar 

  67. G. Hettich, H. Mehrer, and K. Maier, “Tracer Diffusion of 71 Ge and 31 Si in Intrinsic and Doped Silicon,” in: Defects and Radiation Effects in Semiconductors, 1978, edited by J. H. Albany, Inst. Phys. Conf. Ser., no. 46, 500–507 (1979).

    Google Scholar 

  68. A. Ural, P. B. Griffin, and J. D. Plummer, “Silicon Self-Diffusion under Extrinsic Conditions,” Appl. Phys. Lett., vol. 79, no. 26, 4328–330 (2001).

    Google Scholar 

  69. H. I. Osman, Y. Nakabayashi, S. Tomohisa, K. Toyonaga, S. Matsumoto, J. Murota, K. Wada, and T. Abe, “Effect of Vacancy Double Acceptor Level on Si Self-Diffusion under Heavy Doping Conditions,” in: Semiconductor Silicon 2002, edited by H. R. Huff, L. Fabry, and S. Kishino, Electrochem. Soc. Proc, vol. 2002-2, 248–253 (2002).

    Google Scholar 

  70. H. H. Silvestri, I. D. Sharp, H. A. Bracht, S. P. Niçois, J. W. Beeman, J. Hansen, A. Nylandsted-Larsen, and E. E. Haller, “Dopant and Self-Diffusion in Extrinsic n-Type Silicon Isotopically Controlled Heterostructures,” in: Defect and Impurity Engineered Semiconductors and Devices III, edited by S. Ashok, J. Chevallier, N. M. Johnson, B. L. Sopori, and H. Okushi, Mat. Res. Soc. Symp. Proc, vol. 719, F13.10.1–F13.10.6 (2002).

    Google Scholar 

  71. G. L. McVay and A. R. DuCharme, “The Diffusion of Germanium in Silicon,” J. Appl. Phys., vol. 44, no. 3, 1409–1410 (1973).

    Google Scholar 

  72. F. Morehead, N. A. Stolwijk, W. Meyberg, and U. Gösele, “Self-Interstitial and Vacancy Contribution to Silicon Self-Diffusion Determined from the Diffusion of Gold in Silicon,” Appl. Phys. Lett., vol. 42, no. 8, 690–692 (1983).

    Google Scholar 

  73. H. Kitagawa and M. Yoshida, “On the Distinction between the Dissociative and Kick-Out Mechanisms for Site Exchange in Silicon,” Jpn. J. Appl. Phys., Part I, vol. 31, no. 9A, 2859–2963 (1992).

    Google Scholar 

  74. H. Bracht and E. E. Haller, “Comment on “Self-Diffusion in Silicon: Similarity between the Properties of Native Point Defects”,” Phys. Rev. Lett., vol. 85, no. 22, 4835 (2000).

    Google Scholar 

  75. A. Ural, P. B. Griffin, and J. D. Plummer, “Reply: Ural, Griffin, and Plummer,” Phys. Rev. Lett., vol. 85, no. 22, 4836 (2000).

    Google Scholar 

  76. H. Bracht, N. A. Stolwijk, and H. Mehrer, “Properties of Intrinsic Point Defects in Silicon Determined by Zinc Diffusion Experiments under Nonequilibrium Conditions,” Phys. Rev. B, vol. 52, no. 23, 16542–16560 (1995).

    Google Scholar 

  77. H.-J. Gossmann, P. A. Stolk, D. J. Eaglesham, C. S. Rafferty, and J. M. Poate, “Fast Metal Diffusers in Si in the Presence of Si Self-Interstitial Traps,” Appl. Phys. Lett., vol. 67, no. 21, 3135–3137 (1995).

    Google Scholar 

  78. P. Pichler, “A Reinterpretation of Platinum-Diffusion Experiments,” in: ESSDERC98, edited by A. Touboul, Y. Danto, J. P. Klein, and H. Grünbacher, Paris: Edition Frontières, 348–351 (1998).

    Google Scholar 

  79. P. Pichler, “Extraction of Vacancy Parameters from Outdiffusion of Zinc from Silicon,” in: Gettering and Defect Engineering in Semiconductor Technology GADEST’99, edited by H. G. Grimmeiss, L. Ask, M. Kleverman, M. Kittler, and H. Richter, Solid State Phenomena, vol. 69-70, 455–460 (1999).

    Google Scholar 

  80. D. Mathiot, “Diffusion Modeling from a Fundamental Viewpoint,” in: Semiconductor Silicon, edited by H. R. Huff, T. Abe, and B. Kolbesen, Electrochem. Soc. Proc, vol. 86-4, 556–570 (1986).

    Google Scholar 

  81. D. Mathiot, “Gold, Self-, and Dopant Diffusion in Silicon,” Phys. Rev. B, vol. 45, no. 23, 13345–13355 (1992).

    Google Scholar 

  82. M. Yoshida and K. Saito, “Dissociative Diffusion of Nickel in Silicon and Self-Diffusion of Silicon,” Jpn. J. Appl. Phys., vol. 6, no. 5, 573–581 (1967).

    Google Scholar 

  83. V. V. Voronkov, “The Mechanism of Swirl Defects Formation in Silicon,” J. Crystal Growth, vol. 59, 625–643 (1982).

    Google Scholar 

  84. K. Wada and N. Inoue, “Depth Profile of Bulk Stacking Fault Radius in Czochralski Silicon,” J. Appl. Phys., vol. 58, no. 3, 1183–1186 (1985).

    Google Scholar 

  85. M. Budil, E. Guerrero, T. Brabec, S. Selberherr, and H. Pötzl, “A New Model for the Determination of Point Defect Equilibrium Concentrations in Silicon,” in: NUMOS I, edited by J. J. H. Miller, Dun Laoghaire: Boole Press, 37–44 (1986).

    Google Scholar 

  86. T. Brabec, E. Guerrero, M. Budil, and H. W. Pötzl, “Simulation of Retarded Diffusion of Antimony and Enhanced Diffusion of Phosphorus in Silicon,” Z. Phys. B, vol. 67, 415–420 (1987).

    Google Scholar 

  87. P. B. Griffin, Physics and Modeling of Two-Dimensional Diffusion in SUPREM-IV, Ph.D. thesis, Integrated Circuits Laboratory, Department of Electrical Engineering, Stanford University (1989).

    Google Scholar 

  88. H. Zimmermann, A. Strauß, and H. Ryssel, “The Modeling of Platinum Diffusion in Silicon,” in: Process Physics and Modeling in Semiconductor Technology, edited by G. R. Srinivasan, J. D. Plummer, and S. T. Pantelides, Electrochem. Soc. Proc, vol. 91-4, 337–344 (1991).

    Google Scholar 

  89. M. E. Law, “Parameters for Point-Defect Diffusion and Recombination,” IEEE Trans. Computer-Aided Design, vol. 10, no. 9, 1125–1131 (1991).

    Google Scholar 

  90. S. T. Dunham, “A Quantitative Model for the Coupled Diffusion of Phosphorus and Point Defects in Silicon,” J. Electrochem. Soc, vol. 139, no. 9, 2628–2636 (1992).

    Google Scholar 

  91. H. Park and M. E. Law, “Point Defect Based Modeling of Low Dose Silicon Implant Damage and Oxidation Effects on Phosphorus and Boron Diffusion in Silicon,” J. Appl. Phys., vol. 72, no. 8, 3431–3439 (1992).

    Google Scholar 

  92. T. Okino, “Diffusivity of Self-Interstitials and Vacancies in Silicon,” Jpn. J. Appl. Phys., Part 2, vol. 32, no. 6B, L856–L858 (1993).

    Google Scholar 

  93. R. Habu, T. Iwasaki, H. Harada, and A. Tomiura, “Diffusion Behavior of Point Defects in Si Crystal during Melt Growth IV: Numerical Analysis,” Jpn. J. Appl. Phys., Part 1, vol. 33, no. 3A, 1234–1242 (1994).

    Google Scholar 

  94. T. Okino and M. Onishi, “Analysis of P and Sb Diffusion during Thermal Oxidation in Silicon,” Jpn. J. Appl. Phys., Part 1, vol. 33, no. 6A, 3362–3367 (1994).

    Google Scholar 

  95. K. Ghaderi, G. Hobler, M. Budil, L. Mader, and H. J. Schulze, “Determination of Silicon Point Defect Parameters and Reaction Barrier Energies from Gold Diffusion Experiments,” J. Appl. Phys., vol. 77, no. 3, 1320–1322 (1995).

    Google Scholar 

  96. R. Habu and A. Tomiura, “Distribution of Grown-in Crystal Defects in Silicon Crystals Formed by Point Defect Diffusion during Melt-Growth: Disappearance of the Oxidation Induced Stacking Faults-Ring,” Jpn. J. Appl. Phys., Part 1, vol. 35, no. 1A, 1–9 (1996).

    Google Scholar 

  97. W. B. Knowlton, J. T. Walton, J. S. Lee, D. Lewak, Y. K. Wong, and E. E. Haller, “Properties of Silicon Point Defects As Revealed by Lithium Ion Drift,” in: Process Physics and Modeling in Semiconductor Technology, edited by G. R. Srinivasan, C. S. Murthy, and S. T. Dunham, Electrochem. Soc. Proc, vol. 96-4, 324–336 (1996).

    Google Scholar 

  98. T. Sinno, R. A. Brown, W. von Ammon, and E. Dornberger, “On the Dynamics of the Oxidation-Induced Stacking-Fault Ring in As-Grown Czochralski Silicon Crystals,” Appl. Phys. Lett., vol. 70, no. 17, 2250–2252 (1997).

    Google Scholar 

  99. S. Chakravarthi and S. T. Dunham, “Point Defect Properties from Metal Diffusion Experiments — What Does the Data Really Tell Us?” in: Defects and Diffusion in Silicon Processing, edited by T. Diaz de la Rubia, S. Coffa, P. A. Stolk, and C. S. Rafferty, Mat. Res. Soc. Symp. Proc, vol. 469, 47–52 (1997).

    Google Scholar 

  100. K. Nakamura, T. Saishoji, T. Kubota, T. Iida, Y. Shimanuki, T. Kotooka, and J. Tomioka, “Formation Process of Grown-in Defects in Czochralski Grown Silicon Crystals,” J. Crystal Growth, vol. 180, 61–72 (1997).

    Google Scholar 

  101. J. T. Walton, E. E. Haller, W B. Knowlton, Y K. Wong, W von Ammon, and W. Zulehner, “Lithium-Ion Drifting: Application to the Study of Point Defects in Floating-Zone Silicon,” in: Diagnostic Techniques for Semiconductor Materials and Devices, edited by P. Rai-Choudhury, J. L. Benton, D. K. Schroder, and T. J. Shaffner, Electrochem. Soc Proc, vol. 97-12, 400–411 (1997).

    Google Scholar 

  102. T. Sinno, R. A. Brown, W von Ammon, and E. Dornberger, “Point Defect Dynamics and the Oxidation-Induced Stacking-Fault Ring in Czochralski-Grown Silicon Crystals,” J. Electrochem. Soc, vol. 145, no. 1, 302–318 (1998).

    Google Scholar 

  103. A. Giese, H. Bracht, J. T. Walton, and N. A. Stolwijk, “Properties of Vacancies in Silicon Determined by Out-Diffusion of Zinc from Silicon,” in: Diffusion Mechanisms in Crystalline Materials, edited by Y Mishin, G. Vogl, N. Cowern, R. Catlow, and D. Farkas, Mat. Res. Soc. Symp. Proc, vol. 527, 395–400 (1998).

    Google Scholar 

  104. E. Dornberger, T. Sinno, J. Esfandyari, J. Vanhellemont, R. A. Brown, and W. von Ammon, “Determination of Intrinsic Point Defect Properties in Silicon by Analyzing OSF Ring Dynamics and Void Formation,” in: High Purity Silicon V, edited by C. L. Claeys, P. Rai-Choudhury, M. Watanabe, P. Stallhofer, and J. J. Dawson, Electrochem. Soc. Proc, vol. 98-13, 170–187 (1998).

    Google Scholar 

  105. V. V. Voronkov and R. Falster, “Vacancy-Type Microdefect Formation in Czochralski Silicon,” J. Crystal Growth, vol. 194, 76–88 (1998).

    Google Scholar 

  106. R. Falster, V. V. Voronkov, and F. Quast, “On the Properties of the Intrinsic Point Defects in Silicon: A Perspective from Crystal Growth and Wafer Processing,” phys. stat. sol. (b), vol. 222, 219–244 (2000).

    Google Scholar 

  107. T. Mori, Z. Wang, and R. A. Brown, “Transient Simulation of Grown-in Defect Dynamics in Czochralski Crystal Growth of Silicon,” in: High Purity Silicon VI, edited by C. L. Claeys, P. Rai-Choudhury, M. Watanabe, P. Stallhofer, and H. J. Dawson, Electrochem. Soc. Proc, vol. 2000-17, 118–128 (2000).

    Google Scholar 

  108. M. Akatsuka, M. Okui, N. Morimoto, and K. Sueoka, “Effect of Rapid Thermal Annealing on Oxygen Precipitation Behavior in Silicon Wafers,” Jpn. J. Appl. Phys., Part 1, vol. 40, no. 5A, 3055–3062 (2001).

    Google Scholar 

  109. P. Pichler, “Properties of Vacancies in Silicon Determined from Laser-Annealing Experiments,” in: ESSDERC 2002, edited by G. Baccarani, E. Gnani, and M. Rudan, Bologna: University of Bologna, 335–338 (2002).

    Google Scholar 

  110. M. Okui and M. Nishimoto, “Effect of the Axial Temperature Gradient on the Formation of Grown-in Defect Regions in Czochralski Silicon Crystals; Reversion of the Defect Regions between the Inside and Outside of the Ring-OSF,” J. Crystal Growth, vol. 237-239, 1651–1656 (2002).

    Google Scholar 

  111. I. R. Sanders and P. S. Dobson, “The Application of the Loop Annealing Technique to Self Diffusion Studies in Silicon,” Journal of Materials Science, vol. 9, 1987–1993 (1974).

    Google Scholar 

  112. K. Wada and N. Inoue, “Diffusion Coefficient of Self-Interstitials Determined by Bulk Stacking Fault Growth in CZ Silicon,” in: Defects and Radiation Effects in Semiconductors, 1980, edited by R. R. Hasiguti, Inst. Phys. Conf. Sen, no. 59, 461-166 (1981).

    Google Scholar 

  113. N. A. Stolwijk, B. Schuster, J. Hölzl, H. Mehrer, and W Frank, “Diffusion and Solubility of Gold in Silicon,” in: Proceedings of the 12 th International Conference on Defects in Semiconductors, edited by C. A. J. Ammerlaan, Physica, vol. 116B, 335–342 (1983).

    Google Scholar 

  114. K. Taniguchi, D. A. Antoniadis, and Y. Matsushita, “Kinetics of Self-Interstitials Generated at the Si/Si02 Interface,” Appl. Phys. Lett., vol. 42, no. 11, 961–963 (1983).

    Google Scholar 

  115. S. Mantovani, F. Nava, and C. Nobili, “Thermal Diffusion of Pt in Silicon from PtSi,” Appl. Phys. Lett., vol. 44, no. 3, 328–330 (1984).

    Google Scholar 

  116. N. A. Stolwijk, B. Schuster, and J. Hölzl, “Diffusion of Gold in Silicon Studied by Means of Neutron-Activation Analysis and Spreading-Resistance Measurements,” Appl. Phys. A, vol. 33, 133–140 (1984).

    Google Scholar 

  117. G. B. Bronner and J. D. Plummer, “Physical Modeling of Backside Gettering,” in: Impurity Diffusion and Gettering in Semiconductors, edited by R. B. Fair, C. W. Pearce, and J. Washburn, Mat. Res. Soc. Symp. Proc, vol. 36, 49–54 (1985).

    Google Scholar 

  118. J. Hauber, N. A. Stolwijk, L. Tapfer, H. Mehrer, and W Frank, “U-and W-Shaped Diffusion Profiles of Gold in Silicon,” J. Phys. C, vol. 19, 5817–5836 (1986).

    Google Scholar 

  119. S. Mantovani, F. Nava, C. Nobili, and G. Ottaviani, “In-Diffusion of Pt from the PtSi/Si Interface,” Phys. Rev. B, vol. 33, no. 8, 5536–5544 (1986).

    Google Scholar 

  120. G. B. Bronner and J. D. Plummer, “Gettering of Gold in Silicon: A Tool for Understanding the Properties of Silicon Interstitials,” J. Appl. Phys., vol. 61, no. 12, 5286–5298 (1987).

    Google Scholar 

  121. F. F. Morehead, “The Diffusivity of Self-Interstitials in Silicon,” in: Defects in Electronic Materials, edited by M. Stavola, S. J. Pearton, and G. Davies, Mat. Res. Soc. Symp. Proc, vol. 104, 99–104 (1988).

    Google Scholar 

  122. S. Coffa, L. Calcagno, S. U. Campisano, G. Calleri, and G. Ferla, “Diffusion of Ion-Implanted Gold in p-Type Silicon,” J. Appl. Phys., vol. 64, no. 11, 6291–6295 (1988).

    Google Scholar 

  123. H. U. Jäger, T. Feudel, and S. Ulbricht, “Modeling of Defect-Phosphorus Pair Diffusion in Phosphorus-Implanted Silicon,” phys. stat. sol. (a), vol. 116, 571–581 (1989).

    Google Scholar 

  124. J. Hauber, W. Frank, and N. A. Stolwijk, “Diffusion and Solubility of Platinum in Silicon,” in: Defects in Semiconductors 15, edited by G. Ferenczi, Materials Science Forum, vol. 38-41, 707–712 (1989).

    Google Scholar 

  125. M. Perret, N. A. Stolwijk, and L. Coshausz, “Kick-Out Diffusion of Zinc in Silicon at 1262 K,” J. Phys.: Condens. Matter, vol. 1, 6347–6361 (1989).

    Google Scholar 

  126. C. Boit, F. Lau, and R. Sittig, “Gold Diffusion in Silicon by Rapid Optical Annealing,” Appl. Phys. A, vol. 50, 197–205 (1990).

    Google Scholar 

  127. M. D. Giles, “Transient Phosphorus Diffusion below the Amorphization Threshold,” J. Electrochem. Soc, vol. 138, no. 4, 1160–1165 (1991).

    Google Scholar 

  128. D. Grünebaum, T. Czekalla, N. A. Stolwijk, H. Mehrer, I. Yonenaga, and K. Sumino, “Diffusion and Solubility of Zinc in Dislocation-Free and Plastically Deformed Silicon Crystals,” Appl. Phys. A, vol. 53, 65–74 (1991).

    Google Scholar 

  129. R. Y. S. Huang and R. W. Dutton, “Experimental Investigation and Modeling of the Role of Extended Defects during Thermal Oxidation,” J. Appl. Phys., vol. 74, no. 9, 5821–5827 (1993).

    Google Scholar 

  130. W. Lerch and N. A. Stolwijk, “Diffusion of Gold in Silicon during Rapid Thermal Annealing: Effectiveness of the Surface As a Sink for Self-Interstitials,” J. Appl. Phys., vol. 83, no. 3, 1312–1320 (1998).

    Google Scholar 

  131. N. E. B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom, H. G. A. Huizing, J. G. M. van Berkum, F. Cristiano, A. Claverie, and M. Jaraiz, “Cluster Ripening and Transient Enhanced Diffusion in Silicon,” Materials Science in Semiconductor Processing, vol. 2, 369–376 (1999).

    Google Scholar 

  132. H. Meyer and S. T. Dunham, “Modeling of TED and Point Defect Parameter Extraction,” in: Silicon Front-End Junction Formation Technologies, edited by D. F. Downey, M. E. Law, A. P. Claverie, and M. J. Rendon, Mat. Res. Soc. Symp. Proc, vol. 717, C4.8.1–C4.8.6 (2002).

    Google Scholar 

  133. T. Okino, T. Shimosaki, and R. Takaue, “Self-Interstitials in Silicon,” Jpn. J. Appl. Phys., Part 1, vol. 36, no. 11, 6591–6594 (1997).

    Google Scholar 

  134. G. D. Watkins, “An EPR Study of the Lattice Vacancy in Silicon,” in: Proceedings of the International Conference on Crystal Lattice Defects, 1962, J. Phys. Soc. Japan, vol. 18, Supplement II, 22–27 (1963).

    Google Scholar 

  135. G. D. Watkins, “A Review of EPR Studies in Irradiated Silicon,” in: Radiation Damage in Semiconductors, Paris: Dunod, 97–113 (1964).

    Google Scholar 

  136. G. D. Watkins, “EPR Studies of the Lattice Vacancy and Low-Temperature Damage Processes in Silicon,” in: Lattice Defects in Semiconductors, 1974, Inst. Phys. Conf. Ser, no. 23, 1–22 (1975).

    Google Scholar 

  137. G. D. Watkins, J. R. Troxell, and A. P. Chatterjee, “Vacancies and Interstitials in Silicon,” in: Defects and Radiation Effects in Semiconductors, 1978, edited by J. H. Albany, Inst. Phys. Conf Ser., no. 46, 16–30 (1979).

    Google Scholar 

  138. M. Sprenger, S. H. Muller, and C. A. J. Ammerlaan, “The Negatively Charged Vacancy in Silicon: Hyperfine Interactions from ENDOR Measurement,” in: Proceedings of the 12 th International Conference on Defects in Semiconductors, edited by C. A. J. Ammerlaan, Physica, vol. 116B, 224–229 (1983).

    Google Scholar 

  139. M. Sprenger, S. H. Muller, E. G. Sieverts, and C. A. J. Ammerlaan, “Vacancy in Silicon: Hyperfine Interactions from Electron-Nuclear Double Resonance Measurements,” Phys. Rev. B, vol. 35, no. 4, 1566–1581 (1987).

    Google Scholar 

  140. J. C. Brabant, M. Pugnet, J. Barbolla, and M. Brousseau, “Studies of Defects Introduced by Electron Irradiation at 4.2 °K in p-Silicon by Thermally Stimulated Capacitance Technique,” J. Appl. Phys., vol. 47, no. 11, 4809–4813 (1976).

    Google Scholar 

  141. L. C. Kimerling, “Defect States in Electron-Bombarded Silicon: Capacitance Transient Analyses,” in: Radiation Effects in Semiconductors, 1976, edited by N. B. Urli and J. W. Corbett, Inst. Phys. Conf. Sen, no. 31, 221–230 (1977).

    Google Scholar 

  142. L. C. Kimerling, P. Blood, and W. M. Gibson, “Defect States in Proton-Bombarded Silicon at T<300 K,” in: Defects and Radiation Effects in Semiconductors, 1978, edited by J. H. Albany, Inst. Phys. Conf. Sen, no. 46, 273–280 (1979).

    Google Scholar 

  143. G. D. Watkins and J. R. Troxell, “Negative-U Properties for Point Defects in Silicon,” Phys. Rev. Lett., vol. 44, no. 9, 593–596 (1980).

    Google Scholar 

  144. J. L. Newton, A. P. Chatterjee, R. D. Harris, and G. D. Watkins, “Negative-U Properties of the Lattice Vacancy in Silicon,” in: Proceedings of the 12 th International Conference on Defects in Semiconductors, edited by C. A. J. Ammerlaan, Physica, vol. 116B, 219–223 (1983).

    Google Scholar 

  145. P. W. Anderson, “Model for the Electronic Structure of Amorphous Semiconductors,” Phys. Rev. Lett., vol. 34, no. 15, 953–955 (1975).

    Google Scholar 

  146. G. A. Baraff, E. O. Kane, and M. Schlüter, “Silicon Vacancy: A Possible “Anderson Negative-U” System,” Phys. Rev. Lett., vol. 43, no. 13, 956–959 (1979).

    Google Scholar 

  147. G. A. Baraff, E. O. Kane, and M. Schlüter, “Simple Parameterized Model for Jahn-Teller Systems: Vacancy in p-Type Silicon,” Phys. Rev. B, vol. 21, no. 8, 3563–3570 (1980).

    Google Scholar 

  148. G. A. Baraff, E. O. Kane, and M. Schlüter, “Theory of the Silicon Vacancy: An Anderson Negative-U System,” Phys. Rev. B, vol. 21, no. 12, 5662–5686 (1980).

    Google Scholar 

  149. B. N. Mukashev, V. V. Frolov, and L. G. Koldin, “Determination of the Electrical Level of Vacancy in Electron Irradiated p-Type Silicon,” Phys. Lett., vol. 91A, no. 1, 358–360 (1982).

    Google Scholar 

  150. H. J. Hoffmann, “Negative-U Properties of the Vacancy in Si and Experimental p(l/T) Characteristics,” Phys. Lett, vol. 98A, no. 8/9, 444–446 (1983).

    Google Scholar 

  151. V V. Emtsev, T. V. Mashovets, and A. V. Dabagyan, “Equilibrium Occupancy Level of Vacancies in Silicon,” Sov. Phys. Semicond., vol. 21, no. 10, 1143–1146 (1987).

    Google Scholar 

  152. V. V. Emtsev, M. A. Margaryan, and T. V. Mashovets, “Determination of the Energy Characteristics of a Vacancy in Silicon As a Center with a Negative Correlation Energy,” Sov. Phys. Semicond., vol. 18, no. 8, 950–951 (1984).

    Google Scholar 

  153. J. A. Van Vechten, “The Entropy of Neutral and Ionized Vacancies in Si and Ge,” in: Lattice Defects in Semiconductors, 1974, Inst. Phys. Conf. Sen, no. 23, 212–220 (1975).

    Google Scholar 

  154. J. R. Troxell and G. D. Watkins, “DLTS Studies of the Isolated Vacancy in Silicon,” Bull. Am. Phys. Soc, Series II, vol. 24, no. 1, 18 (1979).

    Google Scholar 

  155. J. Mäkinen, C. Corbel, P. Hautojärvi, P. Moser, and F. Pierre, “Positron Trapping at Vacancies in Electron-Irradiated Si at Low Temperatures,” Phys. Rev. B, vol. 39, no. 14, 10162–10173 (1989).

    Google Scholar 

  156. L. C. Kimerling, H. M. De Angelis, and C. P. Carnes, “Annealing of Electron-Irradiated n-Type Silicon. I. Donor Concentration Dependence,” Phys. Rev., vol. 3, no. 2, 427–433 (1971).

    Google Scholar 

  157. N. I. Boyarkina, “Participation of the Electron Subsystem of a Crystal in the Reactions of Defect-Complex Decomposition in Semiconductors,” Semiconductors, vol. 34, no. 4, 410–414 (2000).

    Google Scholar 

  158. V V. Lukjanitsa, “Energy Levels of Vacancies and Interstitial Atoms in the Band Gap of Silicon,” Sov. Phys. Semicond., vol. 37, no. 4, 404–413 (2003).

    Google Scholar 

  159. R. B. Fair, “Recent Advances in Implementation and Diffusion Modeling for the Design and Process Control of Bipolar ICs,” in: Semiconductor Silicon 1977, edited by H. R. Huff and E. Sirtl, Electrochem. Soc. Proc, vol. 77-2, 968–987 (1977).

    Google Scholar 

  160. V. I. Gubskaya, P. V Kuchinskii, and V M. Lomako, “The Effect of the Vacancy Charge State on the Radiation Defect Formation in Silicon,” phys. stat. sol. (a), vol. 85, 585–590 (1984).

    Google Scholar 

  161. V V. Emtsev, T. V Mashovets, V. V. Mikhnovich, and N. A. Vitovskii, “Frenkel Pairs in Silicon and Germanium,” Radiation Effects, vol. 111&112, no. 1-2, 99–118 (1989).

    Google Scholar 

  162. K. Matsui and R. R. Hasiguti, “Gamma-Irradiation of High Purity p-Type Silicon with Special Reference to Single Vacancy,” J. Phys. Soc. Japan, vol. 20, no. 4, 487–90 (1965).

    Google Scholar 

  163. J. A. Naber, C. E. Mallon, and R. E. Leadon, “Charge State Dependence of Defects Produced in Electron-Irradiated Silicon,” in: Radiation Damage and Defects in Semiconductors, Inst. Phys. Conf. Sen, no. 16, 26–33 (1973).

    Google Scholar 

  164. P. F. Lugakov and T. A. Lukashevich, “Characteristic of Formation of Radiation Defects in High-Resistivity Silicon,” Sov. Phys. Semicond., vol. 23, no. 3, 365 (1989).

    Google Scholar 

  165. J. C. Brabant, M. Pugnet, J. Barbolla, and M. Brousseau, “Study by Thermally Stimulated Capacitance Techniques of Defects Introduced at Low Temperature by Electron Irradiation in p-Silicon,” in: Radiation Effects in Semiconductors, 1976, edited by N. B. Urli and J. W. Corbett, Inst. Phys. Conf. Ser., no. 31, 200–206 (1977).

    Google Scholar 

  166. N. Zangenberg, J.-J. Goubet, and A. Nylandsted Larsen, “On-Line DLTS Investigations of the Mono-and Di-Vacancy in p-Type Silicon after Low Temperature Electron Irradiation,” Nuclear Instruments and Methods in Physics Research B, vol. 186, 71–77 (2002).

    Google Scholar 

  167. O. K. Al-Mushadani and R. J. Needs, “Free-Energy Calculations of Intrinsic Point Defects in Silicon,” Phys. Rev. B, vol. 68, 235205 (2003).

    Google Scholar 

  168. S. Dannefaer, G. W. Dean, D. P. Kerr, and B. G. Hogg, “Influence of Defects and Temperature on the Annihilation of Positrons in Neutron-Irradiated Silicon,” Phys. Rev. B, vol. 14, no. 7, 2709–2714 (1976).

    Google Scholar 

  169. W. Fuhs, U. Holzhauer, S. Mantl, F. W. Richter, and R. Sturm, “Annihilation of Positron in Electron-Irradiated Silicon Crystals,” phys. stat. sol. (b), vol. 89, 69–75 (1978).

    Google Scholar 

  170. R. Würschum, W. Bauer, K. Maier, A. Seeger, and H.-E. Schaefer, “Defects in Semiconductors after Electron Irradiation or in High-Temperature Thermal Equilibrium, As Studied by Positron Annihilation,” J. Phys.: Condens. Matter, vol. 1, SA33–SA48 (1989).

    Google Scholar 

  171. P. Mascher, S. Dannefaer, and D. Kerr, “Positron Trapping Rates and Their Temperature Dependencies in Electron-Irradiated Silicon,” Phys. Rev. B, vol. 40, no. 17, 11764–11771 (1989).

    Google Scholar 

  172. S. Mäkinen, H. Rajainmäki, and S. Linderoth, “Low-Temperature Positron-Lifetime Studies of Proton-Irradiated Silicon,” Phys. Rev. B, vol. 42, no. 17, 11166–11173 (1990).

    Google Scholar 

  173. K. Saarinen, J. Nissilä, H. Kauppinen, M. Hakala, M. J. Puska, P. Hautojärvi, and C. Corbel, “Identification of Vacancy-Impurity Complexes in Highly n-Type Si,” Phys. Rev. Lett., vol. 82, no. 9, 1883–1886 (1999).

    Google Scholar 

  174. M. J. Puska, O. Jepsen, O. Gunnarsson, and R. M. Nieminen, “Electronic Structure and Positron States at Vacancies in Si and GaAs,” Phys. Rev. B, vol. 34, no. 4, 2695–2705 (1986).

    Google Scholar 

  175. M. J. Puska and C. Corbel, “Positron States in Si and GaAs” Phys. Rev. B, vol. 38, 9874–9880 (1988).

    Google Scholar 

  176. M. J. Puska, S. Mäkinen, M. Manninen, and R. M. Nieminen, “Screening of Positrons in Semiconductors and Insulators,” Phys. Rev. B, vol. 39, no. 11, 7666–7679 (1989).

    Google Scholar 

  177. M. J. Puska, “Theory of Positron Annihilation and Trapping in Semiconductors,” in: Positron Annihilation, edited by Z. Kajcsos and C. Szeles, Materials Science Forum, vol. 105-110, 419–430 (1992).

    Google Scholar 

  178. M. Saito and A. Oshiyama, “Lifetimes of Positrons Trapped at Si Vacancies,” Phys. Rev. B, vol. 53, no. 12, 7810–7814 (1996).

    Google Scholar 

  179. M. Hakala, M. J. Puska, and R. M. Nieminen, “Momentum Distributions of Electron-Positron Pairs Annihilating at Vacancy Clusters in Si,” Phys. Rev. B, vol. 57, no. 13, 7621–7627 (1998).

    Google Scholar 

  180. T. E. M. Staab, A. Sieck, M. Haugk, M. J. Puska, T. Frauenheim, and H. S. Leipner, “Stability of Large Vacancy Clusters in Silicon,” Phys. Rev. B, vol. 65, 115210 (2002).

    Google Scholar 

  181. U. Lindefelt, “Symmetric Lattice Distortions around Deep–Level Impurities in Semiconductors: Vacancy and Substitutional Cu in Silicon,” Phys. Rev. B, vol. 28, no. 8, 4510–4518 (1983).

    Google Scholar 

  182. M. Scheffler, J. P. Vigneron, and G. B. Bachelet, “Total-Energy Gradients and Lattice Distortions at Point Defects in Semiconductors,” Phys. Rev. B, vol. 31, no. 10, 6541–6551 (1985).

    Google Scholar 

  183. G. A. Samara, “Breathing-Mode Lattice Relaxation Associated with the Vacancy and Phosphorus-Vacancy-Pair (E-Center) Defect in Silicon,” Phys. Rev. B, vol. 37, no. 14, 8523–8526 (1988).

    Google Scholar 

  184. P. J. Kelly, R. Car, and S. T. Pantelides, “Theoretical Determination of the Vacancy Migration Energy in Silicon,” in: Defects in Semiconductors 14, edited by H. J. von Bardeleben, Materials Science Forum, vol. 10-12, 115–120 (1986).

    Google Scholar 

  185. A. Antonelli and J. Bernholc, “Pressure Effects on Self-Diffusion in Silicon,” Phys. Rev. B, vol. 40, no. 15, 10643–10646 (1989).

    Google Scholar 

  186. P. J. Kelly and R. Car, “Green’s-Matrix Calculation of Total Energies of Point Defects in Silicon,” Phys. Rev. B, vol. 45, no. 12, 6543–6563 (1992).

    Google Scholar 

  187. O. Sugino and A. Oshiyama, “Vacancy in Si: Successful Description within the Local-Density Approximation,” Phys. Rev. Lett., vol. 68, no. 12, 1858–1861 (1992).

    Google Scholar 

  188. J. Zhu, L. H. Yang, C. Mailhiot, T. D. de la Rubia, and G. H. Gilmer, “Ab Initio Pseudopotential Calculations of Point Defects and Boron Impurity in Silicon,” in: Computer Simulation of Radiation Effects in Solids, edited by T. Diaz de la Rubia, G. H. Gilmer, and M.-J. Caturla, Nuclear Instruments and Methods in Physics Research B, vol. 102, 29–32 (1995).

    Google Scholar 

  189. A. Oshiyama, M. Saito, and O. Sugino, “Covalency, Elasticity and Electron Correlation in Si Vacancies,” Applied Surface Science, vol. 85, 239–245 (1995).

    Google Scholar 

  190. H. Seong and L. J. Lewis, “First-Principles Study of the Structure and Energetics of Neutral Divacancies in Silicon,” Phys. Rev. B, vol. 53, no. 15, 9791–9796 (1996).

    Google Scholar 

  191. S. Ögüt, H. Kim, and J. R. Chelikowsky, “Ab Initio Cluster Calculations for Vacancies in Bulk Si,” Phys. Rev. B, vol. 56, no. 18, R11353–R11356 (1997).

    Google Scholar 

  192. J. L. Mercer, J. S. Nelson, A. F. Wright, and E. B. Stechel, “Ab Initio Calculations of the Energetics of the Neutral Si Vacancy Defect,” Modelling Simul. Mater. Sci. Eng., vol. 6, 1–8 (1998).

    Google Scholar 

  193. M. J. Puska, S. Pöykkö, M. Pesola, and R. M. Nieminen, “Convergence of Supercell Calculations for Point Defects in Semiconductors: Vacancy in Silicon,” Phys. Rev. B, vol. 58, no. 3, 1318–1325 (1998).

    Google Scholar 

  194. A. Antonelli, E. Kaxiras, and D. J. Chadi, “Vacancy in Silicon Revisited: Structure and Pressure Effects,” Phys. Rev. Lett., vol. 81, no. 10, 2088–2091 (1998).

    Google Scholar 

  195. J. Xie and S. P. Chen, “Interaction Potentials for Vacancy-Assisted As Diffusion in Silicon,” J. Phys.: Condens. Matter, vol. 11, no. 38, 7219–7226 (1999).

    Google Scholar 

  196. S. Ögüt and J. R. Chelikowsky, “Ab Initio Investigation of Point Defects in Bulk Si and Ge Using a Cluster Method,” Phys. Rev. B, vol. 64, 245206 (2001).

    Google Scholar 

  197. M. I. J. Probert and M. C. Payne, “Improving the Convergence of Defect Calculations in Supercells: An Ab Initio Study of the Neutral Silicon Vacancy,” Phys. Rev. B, vol. 67, 075204 (2003).

    Google Scholar 

  198. N. H. Nachtrieb and G. S. Handler, “A Relaxed Vacancy Model for Diffusion in Crystalline Metals,” Acta Metallurgica, vol. 2, 797–802 (1954).

    Google Scholar 

  199. J. A. Van Vechten, “Extended Amorphous Vacancies, an Alternative to the Self-Interstitial in Si,” in: Thirteenth International Conference on Defects in Semiconductors, edited by L. C. Kimerling and J. M. Parsey, Jr., The Metallurgical Society of AIME, 293–299 (1985).

    Google Scholar 

  200. B. J. Masters, “Semivacancy Pair in Crystalline Silicon,” Solid State Communications, vol. 9, 283–286 (1971).

    Google Scholar 

  201. M. Lannoo and J. C. Bourgoin, “On the Self Diffusion Entropy in Silicon,” Solid State Communications, vol. 32, 913–917 (1979).

    Google Scholar 

  202. S. T. Pantelides, “Temperature Effects in Atomic Diffusion in Silicon,” Phys. Rev. B, vol. 36, no. 6, 3462–3464 (1987).

    Google Scholar 

  203. R. Car, P. Blöchl, and E. Smargiassi, “Ab-initio Molecular Dynamics of Semiconductor Defects,” in: Defects in Semiconductors 16, edited by G. Davies, G. G. DeLeo, and M. Stavola, Materials Science Forum, vol. 83-87, 433–446 (1992).

    Google Scholar 

  204. H. Bracht, J. Fage Pedersen, N. Zangenberg, A. Nylandsted Larsen, E. E. Haller, G. Lulli, and M. Posselt, “Radiation Enhanced Silicon Self-Diffusion and the Silicon Vacancy at High Temperatures,” Phys. Rev. Lett., vol. 91, 245502 (2003).

    Google Scholar 

  205. Y. Okada, “Concentration of Native Point Defects in Si Single Crystals at High Temperatures,” Phys. Rev. B, vol. 41, no. 15, 10741–10743 (1990).

    Google Scholar 

  206. G. D. Watkins, “The Lattice Vacancy in Silicon,” in: Deep Centers in Semiconductors, edited by S. T. Pantelides, New York: Gordon and Breach Science Publishers, 147–181 (1986).

    Google Scholar 

  207. L.Elstner and W. Kamprath, “Quenched-in Levels in p-Type Silicon,” phys. stat. sol., vol. 22, 541–547 (1967).

    Google Scholar 

  208. C. B. Collins and R. O. Carlson, “Properties of Silicon Doped with Iron or Copper,” Phys. Rev., vol. 108, no. 6, 1409–1414 (1957).

    Google Scholar 

  209. Y. H. Lee, R. L. Kleinhenz, and J. W. Corbett, “EPR Studies on Quenched-in Defects in Silicon,” in: Defects and Radiation Effects in Semiconductors, 1978, edited by J. H. Albany, Inst. Phys. Conf. Sen, no. 46, 521–527 (1979).

    Google Scholar 

  210. H. Feichtinger, J. Waltl, and A. Gschwandtner, “Localization of the FeO-Level in Silicon,” Solid State Communications, vol. 27, 867–871 (1978).

    Google Scholar 

  211. K. Graff and H. Pieper, “The Properties of Iron in Silicon,” J. Electrochem. Soc, vol. 128, no. 3, 669–674 (1981).

    Google Scholar 

  212. B. I. Boltaks and S. I. Budarina, “Thermal Defects in Silicon,” Sov. Phys. Solid State, vol. 11, no. 2, 330–333 (1969).

    Google Scholar 

  213. A. Chantre, M. Kechouane, and D. Bois, “Vacancy-Diffusion Model for Quenched-in E-Centers in CW Laser Annealed Virgin Silicon,” in: Proceedings of the 12 th International Conference on Defects in Semiconductors, edited by C. A. J. Ammerlaan, Physica, vol. 116B, 547–552 (1983).

    Google Scholar 

  214. A. Chantre, M. Kechouane, G. Auvert, and D. Bois, “Influence of Scan Speed on Deep Level Defects in CW Laser Annealed Silicon,” Appl. Phys. Lett., vol. 43, no. 1, 98–100 (1983).

    Google Scholar 

  215. A. Chantre, “Defects in Ultrafast Quenched Aluminum-Doped Silicon,” Appl. Phys. Lett., vol. 46, no. 3, 263–265 (1985).

    Google Scholar 

  216. N. Fukata, A. Kasuya, and M. Suezawa, “Vacancy Formation Energy of Silicon Determined by a New Quenching Method,” Jpn. J. Appl. Phys., Part 2, vol. 40, no. 8B, L854–L856 (2001).

    Google Scholar 

  217. J. Throwe, T. C. Leung, B. Nielsen, H. Huomo, and K. G. Lynn, “Search for Thermally Generated Monovacancies in Silicon Using Monoenergetic Positrons,” Phys. Rev. B, vol. 40, no. 17, 12037–12040 (1989).

    Google Scholar 

  218. P. Hautojärvi, K. Saarinen, J. Mäkinen, and C. Corbel, “Vacancies and Vacancy Defects in Si Observed by Positron Annihilation,” in: Diffusion in Silicon, edited by D. J. Fisher, Defect and Diffusion Forum, vol. 153-155, 97–110 (1998).

    Google Scholar 

  219. B. J. Masters and E. F. Gorey, “Proton-Enhanced Diffusion and Vacancy Migration in Silicon,” J. Appl. Phys., vol. 49, no. 5, 2717–2724 (1978).

    Google Scholar 

  220. M. Budil, M. Heinrich, M. Schrems, and H. Pötzl, “Determination of the Physical Properties of Point Defects in Silicon from Back-Side Oxidation Experiments,” J. Electrochem. Soc, vol. 137, no. 12, 3931–3934 (1990).

    Google Scholar 

  221. H. Zimmermann and H. Ryssel, “Gold and Platinum Diffusion: The Key to the Understanding of Intrinsic Point Defect Behavior in Silicon,” Appl. Phys. A, vol. 55, 121–134 (1992).

    Google Scholar 

  222. H. Zimmermann and H. Ryssel, “Direct Determination of Point-Defect Equilibrium Concentrations,” Phys. Rev. B, vol. 44, no. 16, 9064–9067 (1991).

    Google Scholar 

  223. H. Zimmermann, “Accurate Measurement of the Vacancy Equilibrium Concentration in Silicon,” Appl Phys. Lett., vol. 59, no. 24, 3133–3135 (1991).

    Google Scholar 

  224. H.-J. Gossmann, C. S. Rafferty, A. M. Vredenberg, H. S. Luftman, F. C. Unterwald, D. J. Eaglesham, D. C. Jacobson, T. Boone, and J. M. Poate, “Time Dependence of Dopant Diffusion in Delta-Doped Si Films and Properties of Si Point Defects,” Appl Phys. Lett., vol. 64, no. 3, 312–314 (1994).

    Google Scholar 

  225. T. Y. Tan, P. Plekhanov, and U. M. Gösele, “Nucleation Barrier of Voids and Dislocation Loops in Silicon,” Appl Phys. Lett., vol. 70, no. 13, 1715–1717 (1997).

    Google Scholar 

  226. M. Jacob, P. Pichler, M. Wohs, H. Ryssel, and R. Falster, “Influence of RTP on Vacancy Concentrations,” in: Semiconductor Process and Device Performance Modelling, edited by S. T. Dunham and J. S. Nelson, Mat. Res. Soc. Symp. Proc, vol. 490, 129–134 (1998).

    Google Scholar 

  227. R. F. Scholz, P. Werner, U. Gösele, and T. Y. Tan, “The Contribution of Vacancies to Carbon Out-Diffusion in Silicon,” Appl. Phys. Lett., vol. 74, no. 3, 392–394 (1999).

    Google Scholar 

  228. T. Okino and T. Shimozaki, “Thermal Equilibrium Concentrations and Diffusivities of Intrinsic Point Defects in Silicon,” in: 20 th International Conference on Defects in Semiconductors, edited by C. Van de Walle and W. Walukiewicz, Physica B, vol. 273-274, 509–511 (1999).

    Google Scholar 

  229. K. Nakamura, T. Saishoji, and J. Tomioka, “Simulation of the Point Defect Diffusion and Growth Condition for Defect Free Cz Silicon Crystal,” in: Semiconductor Silicon 2002, edited by H. R. Huff, L. Fabry, and S. Kishino, Electrochem. Soc. Proc, vol. 2002-2, 554–566 (2002).

    Google Scholar 

  230. D. C. Mueller, E. Alonso, and W. Fichtner, “Arsenic Deactivation in Si: Electronic Structure and Charge States of Vacancy-Impurity Clusters,” Phys. Rev. B, vol. 68, 045208 (2003).

    Google Scholar 

  231. R. Car, P. J. Kelly, A. Oshiyama, and S. T. Pantelides, “Microscopic Theory of Atomic Diffusion Mechanisms in Silicon,” Phys. Rev. Lett., vol. 52, no. 20, 1814–1817 (1984).

    Google Scholar 

  232. Y. Bar-Yam and J. D. Joannopoulos, “Intrinsic Defects in Silicon: Formation and Migration Barriers,” in: 17 th International Conference on the Physics of Semiconductors, edited by J. D. Chadi and W A. Harrison, New York: Springer-Verlag, 721–724 (1985).

    Google Scholar 

  233. R. Car, P. J. Kelly, A. Oshiyama, and S. T. Pantelides, “Microscopic Theory of Self-Diffusion and Impurity Diffusion in Silicon,” in: Thirteenth International Conference on Defects in Semiconductors, edited by L. C. Kimerling and J. M. Parsey, Jr., The Metallurgical Society of AIME, 269–275 (1985).

    Google Scholar 

  234. C. S. Nichols, C. G. van de Walle, and S. T. Pantelides, “Mechanisms of Dopant Impurity Diffusion in Silicon,” Phys. Rev. B, vol. 40, no. 8, 5484–5496 (1989).

    Google Scholar 

  235. P. E. Blöchl, D. B. Laks, S. T. Pantelides, E. Smargiassi, R. Car, W Andreoni, and M. Parinello, “First-Principles Calculations of Self-Diffusion Coefficients in Silicon,” in: 20 th International Conference on the Physics of Semiconductors, edited by E. M. Anastassakis and J. D. Joannopoulos, Singapore: World Scientific, 533–536 (1990).

    Google Scholar 

  236. J. L. Hastings, S. K. Estreicher, and P. A. Fedders, “Vacancy Aggregates in Silicon,” Phys. Rev. B, vol. 56, no. 16, 10215–10220 (1997).

    Google Scholar 

  237. A. Zywietz, J. Furthmüller, and F. Bechstedt, “The Jahn-Teller Effect and the Structure of Monovacancies in Si, SiC and C,” in: Defects in Semiconductors 19, edited by G. Davies and M. H. Nazaré, Materials Science Forum, vol. 258-263, 653–658 (1997).

    Google Scholar 

  238. J. Zhu, “Ab Initio Pseudopotential Calculations of Dopant Diffusion in Si,” Comput. Mater. Sci., vol. 12, 309–318 (1998).

    Google Scholar 

  239. J. S. Nelson, P. A. Schultz, and A. F. Wright, “Valence and Atomic Size Dependent Exchange Barriers in Vacancy-Mediated Dopant Diffusion,” Appl. Phys. Lett., vol. 73, no. 2, 247–249 (1998).

    Google Scholar 

  240. J. Xie and S. P. Chen, “Ab Initio Calculations of Point Defects in Silicon,” in: Multiscale Modeling of Materials, edited by V. V. Bulatov, T. Diaz de la Rubia, R. Phillips, E. Kaxiras, and N. Ghoniem, Mat. Res. Soc. Symp. Proc, vol. 538, 389–394 (1999).

    Google Scholar 

  241. J. Coutinho, R. Jones, P. R. Briddon, and S. Öberg, “Oxygen and Dioxygen Centers in Si and Ge: Density-Functional Calculations,” Phys. Rev. B, vol. 62, no. 16, 10824–10840 (2000).

    Google Scholar 

  242. X.-Y. Liu, W. Windl, K. M. Beardmre, and M. P. Masquelier, “First-Principles Study of Phosphorus Diffusion in Silicon: Interstitial and Vacancy-Mediated Diffusion Mechanisms,” Appl. Phys. Lett, vol. 82, no. 12, 1839–1841 (2003).

    Google Scholar 

  243. G. D. Watkins, “The Interaction of Irradiation-Produced Defects with Impurities and Other Defects in Semiconductors EPR Studies in Silicon,” in: Colloque international sur l’action des rayonnements sur les composants a semiconducteurs, edited by F. Cambou, C. Fert, and J. Lagasse, Al/1–13 (1967).

    Google Scholar 

  244. B. L. Gregory and H. H. Sander, “Injection Dependence of Transient Annealing in Neutron-Irradiated Silicon Devices,” IEEE Trans. Nuclear Science, vol. 14, no. 6, 116–126 (1967).

    Google Scholar 

  245. H. J. Stein and F. L. Vook, “Transient Radiation Defects,” in: Colloque international sur l’action des rayonnements sur les composants a semiconducteurs, edited by F. Cambou, C. Fert, and J. Lagasse, A3/1–21 (1967).

    Google Scholar 

  246. D. Binder, D. T. Butcher, J. R. Crepps, and E. L. Hammer, “Rapid Annealing in Silicon Transistors,” IEEE Trans. Nuclear Science, vol. NS-15, no. 6, 84–87 (1968).

    Google Scholar 

  247. J. R. Srour, “Short-Term Annealing in Electron-Irradiated p-Type Silicon,” IEEE Trans. Nuclear Science, vol. NS-17, no. 6, 118–122 (1970).

    Google Scholar 

  248. S. N. Ershov, V. V. Panteleev, S. N. Nagornykh, and V. V. Chernyakhovskii, “Migration Energy of Intrinsic Point Defects in Different Charge States in Silicon and Germanium,” Sov. Phys. Solid State, vol. 19, no. 1, 187 (1977).

    Google Scholar 

  249. V. A. Panteleev, S. N. Ershov, and Y. L. Kalinkin, “Investigation of the Migration of Primary Radiation Defects in Silicon in the Temperature Range from 200 to 400 °C (russ.),” in: Radiation Physics of Semiconductors and Related Materials, 1979, edited by G. P. Kekelidze and V. I. Shakhovtsov, Tbilisi: Tbilisi State University Press, 497–500 (1980).

    Google Scholar 

  250. P. Partyka, Y. Zhong, K. Nordlund, R. S. Averback, I. M. Robinson, and P. Ehrhart, “Grazing Incidence Diffuse X-Ray Scattering Investigation of the Properties of Irradiation-Induced Point Defects in Silicon,” Phys. Rev. B, vol. 64, 235207 (2001).

    Google Scholar 

  251. V. A. Panteleev, S. N. Ershov, V. V. Chernyakhovskii, and S. N. Nabornykh, “Determination of the Migration Energy of Vacancies and of Intrinsic Interstitial Atoms in Silicon in the Temperature Interval 400-600 °K,” JETP Lett, vol. 23, no. 12, 633–635 (1976).

    Google Scholar 

  252. K. L. Wang, Y.H. Lee, and J. W. Corbett, “Defect Distribution near the Surface of Electron-Irradiated Silicon,” Appl. Phys. Lett., vol. 33, no. 6, 547–548 (1978).

    Google Scholar 

  253. F. Priolo, V. Privitera, S. Coffa, and S. Libertino, “Ion Beam Injected Point Defects in Crystalline Silicon: Migration, Interaction and Trapping Phenomena,” in: Materials Modification and Synthesis by Ion Beam Processing, edited by D. E. Alexander, N. W. Cheung, B. Park, and W. Skorupa, Mat. Res. Soc. Symp. Proc, vol. 438, 53–64 (1997).

    Google Scholar 

  254. A. Hallen, N. Keskitalo, and B. G. Svensson, “Diffusion and Reaction Kinetics of Fast-Ion-Induced Point Defects Studied by Deep Level Transient Spectroscopy,” in: Diffusion in Silicon, edited by D. J. Fisher, Defect and Diffusion Forum, vol. 153-155, 193–204 (1998).

    Google Scholar 

  255. S. Coffa and S. Libertino, “Room Temperature Diffusivity of Self-Interstitials and Vacancies in Ion-Implanted Si Probed by In-Situ Measurements,” Appl. Phys. Lett., vol. 73, no. 23, 3369–3371 (1998).

    Google Scholar 

  256. S. Libertino and S. Coffa, “Room Temperature Point Defect Migration in Crystalline Si,” in: Gettering and Defect Engineering in Semiconductor Technology GADEST 2001, edited by V. Raineri, F. Priolo, M. Kittler, and H. Richter, Solid State Phenomena, vol. 82-84, 207–212 (2002).

    Google Scholar 

  257. A. Nylandsted Larsen, C. Christensen, and J. Wulff Petersen, “Room-Temperature Vacancy Migration in Crystalline Si from an Ion-Implanted Surface Layer,” J. Appl. Phys., vol. 86, no. 9, 4861–4864 (1999).

    Google Scholar 

  258. K. Kyllesbech Larsen, V. Privitera, S. Coffa, F. Priolo, S. U. Campisano, and A. Camera, “Trap-Limited Migration of Si Self-Interstitials at Room Temperature,” Phys. Rev. Lett., vol. 76, no. 9, 1493–1496 (1996).

    Google Scholar 

  259. S. M. Hu, “On Interaction Potential, Correlation Factor, Vacancy Mobility, and Activation Energy of Impurity Diffusion in Diamond Lattice,” phys. stat. sol. (b), vol. 60, 595–603 (1973).

    Google Scholar 

  260. L. I. Fedina and A. L. Aseev, “Study of Interaction of Point Defects with Dislocations in Silicon by Means of Irradiation in an Electron Microscope,” phys. stat. sol. (a), vol. 95, 517–529 (1986).

    Google Scholar 

  261. P. B. Griffin, P. A. Packan, and J. D. Plummer, “Consistent Models for Point Defects in Silicon,” in: 1991 International Workshop on VLSI Process and Device Modeling (1991 VPAD), Japan: Society of Applied Physics, 4–7 (1991).

    Google Scholar 

  262. T. Okino, “Behavior of Self-Interstitials and Vacancies in Silicon,” in: Diffusion in Materials DIMAT-92, edited by M. Koiwa, K. Hirano, H. Nakajima, and T. Okada, Defect and Diffusion Forum, vol. 95-98, 961–966 (1993).

    Google Scholar 

  263. T. Shimizu, Y. Zatisu, S. Matsumoto, E. Arai, M. Yoshida, and T. Abe, “Determination of Vacancy Diffusivity in Silicon for Process Simulation,” in: Simulation of Semiconductor Devices and Processes, Vol 6, edited by H. Ryssel and P. Pichler, Vienna: Springer-Verlag, 444–447 (1995).

    Google Scholar 

  264. A. M. Eidenzon and N. I. Puzanov, “Native Point Defects in Silicon at High Temperatures,” Inorganic Materials, vol. 31, no. 9, 1043–1048 (1995).

    Google Scholar 

  265. T. K. Mogi, M. O. Thompson, H.-J. Gossmann, J. M. Poate, and H. S. Luftman, “Thermal Nitridation Enhanced Diffusion of Sb and Si(100) Doping Superlattices,” Appl Phys. Lett., vol. 69, no. 9, 1273–1275 (1996).

    Google Scholar 

  266. N. I. Puzanov, A. E. Eindenzon, and D. N. Puzanov, “Modelling Microdefect Distribution in Dislocation-Free Si Crystals Grown from the Melt,” J. Crystal Growth, vol. 178, 468–78 (1997).

    Google Scholar 

  267. T. Okino and T. Shimozaki, “Analysis of Dopant Diffusion in Si with Stacking Faults,” Materials Transactions, JIM, vol. 40, no. 6, 474–478 (1999).

    Google Scholar 

  268. J. L. Ngau, P. B. Griffin, and J. D. Plummer, “Modeling the Suppression of Boron Transient Enhanced Diffusion in Silicon by Substitutional Carbon Incorporation,” J. Appl. Phys., vol. 90, no. 4, 1768–1778 (2001).

    Google Scholar 

  269. O. Sugino and A. Oshiyama, “Pressure Dependence of Formation and Migration Enthalpies for Atomic Diffusion in Si: Conjugate Gradient Minimization of Total Energy,” in: Defects in Semiconductors 16, edited by G. Davies, G. G. DeLeo, and M. Stavola, Materials Science Forum, vol. 83-87, 469–174 (1992).

    Google Scholar 

  270. J. A. Van Vechten, “Activation Enthalpy of Recombination-Enhanced Vacancy Migration in Si,” Phys. Rev. B, vol. 38, no. 14, 9913–9919 (1988).

    Google Scholar 

  271. A. Hallen, N. Keskitalo, F. Masszi, and V. Nâgl, “Lifetime in Proton Irradiated Silicon,” J. Appl. Phys., vol. 79, no. 8, 3906–3014 (1996).

    Google Scholar 

  272. H. Bleichner, P. Jonsson, N. Keskitalo, and E. Nordlander, “Temperature and Injection Dependence of the Shockley-Read-Hall Lifetime in Electron Irradiated n-Type Silicon,” J. Appl. Phys., vol. 79, no. 12, 9142–9148 (1996).

    Google Scholar 

  273. S. J. Watts, J. Matheson, I. H. Hopkins-Bond, A. Holmes-Siedle, A. Mohammadzadeh, and R. Pace, “A New Model for Generation-Recombination in Silicon Depletion Regions after Neutron Irradiation,” IEEE Trans. Nuclear Science, vol. 43, no. 6, 2587–2594 (1996).

    Google Scholar 

  274. B. MacEvoy, K. Gill, and G. Hall, “Defect-Engineering Rad-Hard Detectors for the CERN LHC,” in: Defects in Semiconductors 19, edited by G. Davies and M. H. Nazaré, Materials Science Forum, vol. 258-263, 671–676 (1997).

    Google Scholar 

  275. J. W. Corbett and G. D. Watkins, “Silicon Divacancy and Its Direct Production by Electron Irradiation,” Phys. Rev. Lett., vol. 7, no. 8, 314–316 (1961).

    Google Scholar 

  276. G. Bemski, B. Szymanski, and K. Wright, “A New Paramagnetic Center in Electron Irradiated Silicon,” J. Phys. Chem. Solids, vol. 24, 1–6 (1963).

    Google Scholar 

  277. P. R. Brosious, “EPR of a Spin-1 Two-Vacancy Defect in Electron-Irradiated Silicon,” in: Defects and Radiation Effects in Semiconductors, 1978, edited by J. H. Albany, Inst. Phys. Conf. Sen, no. 46, 248–257 (1979).

    Google Scholar 

  278. E. G. Sieverts and J. W. Corbett, “The Neutral Divacancy in Silicon,” Solid State Communications, vol. 43, no. 1, 41–46 (1982).

    Google Scholar 

  279. G. D. Watkins and J. W. Corbett, “Defects in Irradiated Silicon: Electron Paramagnetic Resonance of the Divacancy,” Phys. Rev., vol. 138, no. 2A, A543–A555 (1965).

    Google Scholar 

  280. J. G. de Wit, E. G. Sieverts, and C. A. J. Ammerlaan, “Divacancy in Silicon: Hyperfine Interactions from Electron-Nuclear Double Resonance Measurements,” Phys. Rev. B, vol. 14, no. 8, 3494–3503 (1976).

    Google Scholar 

  281. E. G. Sieverts, S. H. Muller, and C. A. J. Ammerlaan, “Divacancy in Silicon: Hyperfine Interactions from Electron-Nuclear Double-Resonance Measurements. II,” Phys. Rev. B, vol. 18, no. 12, 6834–6848 (1978).

    Google Scholar 

  282. L. Dobaczewski, K. Goscinski, Z. R. Zytkiewicz, K. Bonde Nielsen, L. Rubaldo, O. Andersen, and A. R. Peaker, “Piezoscopic Deep-Level Transient Spectroscopy Studies of the Silicon Divacancy,” Phys. Rev. B, vol. 65, 113203 (2002).

    Google Scholar 

  283. Y. Nagai, K. Inoue, Z. Tang, I. Yonenaga, T. Chiba, M. Saito, and M. Hasegawa, “Jahn-Teller Distortion of Neutral Divacancy in Si Studied by Positron Annihilation Spectroscopy,” in: Proceedings of the 22 nd International Conference on Defects in Semiconductors, edited by K. Bonde Nielsen, A. Nylandsted Larsen, and G. Weyer, Physica B, vol. 340-342, 518–522 (2003).

    Google Scholar 

  284. E. G. Sieverts, S. H. Muller, and C. A. J. Ammerlaan, “On the Production of Paramagnetic Defects in Silicon by Electron Irradiation,” Solid State Communications, vol. 28, 221–225 (1978).

    Google Scholar 

  285. J. W. Corbett, J. P. Karins, and T. Y. Tan, “Ion-Induced Defects in Semiconductors,” Nuclear Instruments and Methods in Physics Research, vol. 182/183, 457–76 (1981).

    Google Scholar 

  286. L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, “1.8-, 3.3-, and 3.9-μ Bands in Irradiated Silicon: Correlations with the Divacancy,” Phys. Rev., vol. 152, no. 2, 761–774 (1966).

    Google Scholar 

  287. H. Y. Fan and A. K. Ramdas, “Infrared Absorption and Photoconductivity in Irradiated Silicon,” J. Appl. Phys., vol. 30, no. 8, 1127–1134 (1959).

    Google Scholar 

  288. L. J. Cheng and P. Vadja, “Effect of Polarized Light on the 1.8-, 3.3-, and 3.9-μ Radiation-Induced Absorption Bands in Silicon,” Phys. Rev., vol. 186, no. 3, 816–823 (1969).

    Google Scholar 

  289. J. H. Svensson, B. G. Svensson, and B. Monemar, “Infrared Absorption Studies of the Divacancy in Silicon: New Properties of the Singly Negative Charge State,” Phys. Rev. B, vol. 38, no. 6, 4192–4197 (1988).

    Google Scholar 

  290. B. G. Svensson, K. Johnsson, D.-X. Xu, J. H. Svensson, and J. L. Lindström, “Annealing of Divacancy-Related Infrared Absorption Bands in Boron-Doped Silicon,” Radiation Effects and Defects in Solids, vol. 111/112, no. 1-2, 439–447 (1989).

    Google Scholar 

  291. L. J. Cheng, “3.9μ Photoconductivity Band in Neutron-Irradiated p-Type Silicon,” Phys. Lett. A, vol. 24, no. 13, 729–731 (1967).

    Google Scholar 

  292. A. H. Kalma and J. C. Corelli, “Photoconductivity Studies of Defects in Silicon: Divacancy-Associated Energy Levels,” Phys. Rev., vol. 173, no. 3, 734–745 (1968).

    Google Scholar 

  293. C. S. Chen and J. C. Corelli, “Infrared Spectroscopy of Divacancy-Associated Radiation-Induced Absorption Bands in Silicon,” Phys. Rev. B, vol. 5, no. 4, 1505–1517 (1972).

    Google Scholar 

  294. F. Carton-Merlet, B. Pajot, and P. Vajda, “Detection of the Photopopulation and Photoionisation of Intrinsic Point Defects in Irradiated Silicon by IR Absorption,” in: Defects and Radiation Effects in Semiconductors, 1978, edited by J. H. Albany, Inst. Phys. Conf. Sen, no. 46, 311–316 (1979).

    Google Scholar 

  295. A. O. Evwaraye and E. Sun, “Electron-Irradiation-Induced Divacancy in Lightly Doped Silicon,” J. Appl. Phys., vol. 47, no. 9, 3776–3780 (1976).

    Google Scholar 

  296. J. H. Evans-Freeman, A. R. Peaker, I. D. Hawkins, P. Y. Y. Kan, J. Terry, L. Rubaldo, M. Ahmed, S. Watts, and L. Dobaczewski, “High-Resolution DLTS Studies of Vacancy-Related Defects in Irradiated and in Ion-Implanted n-Type Silicon,” Materials Science in Semiconductor Processing, vol. 3, 237–241 (2000).

    Google Scholar 

  297. H. Kauppinen, C. Corbel, K. Skog, K. Saarinen, T. Laine, P. Hautojäautrvi, P. Desgardin, and E. Ntsoenzok, “Divacancy and Resistivity Profiles in n-Type Si Implanted with 1.15-MeV Protons,” Phys. Rev. B, vol. 55, no. 15, 9598–9608 (1997).

    Google Scholar 

  298. H. Kauppinen, C. Corbel, J. Nissilä, K. Saarinen, and P. Hautojärvi, “Photoionization of the Silicon Divacancy Studied by Positron-Annihilation Spectroscopy,” Phys. Rev. B, vol. 57, no. 20, 12911–12922 (1998).

    Google Scholar 

  299. B. G. Svensson, B. Mohadjeri, A. Hallen, J. H. Svensson, and J. W. Corbett, “Divacancy Acceptor Levels in Ion-Irradiated Silicon,” Phys. Rev. B, vol. 43, no. 3, 2292–2298 (1991).

    Google Scholar 

  300. P. V. Kuchinskii and V. M. Lomako, “On the Mechanism of Primary Radiation Defect Annihilation in Si,” phys. stat. sol. (a), vol. 102, 653–658 (1987).

    Google Scholar 

  301. B. G. Svensson and M. Willander, “Generation of Divacancies in Silicon Irradiated by 2-MeV Electrons: Depth and Dose Dependence,” J. Appl. Phys., vol. 62, no. 7, 2758–2762 (1987).

    Google Scholar 

  302. A. Hallen, B. U. R. Sundqvist, Z. Paska, B. G. Svensson, M. Rosling, and J. Tirén, “Deep Level Transient Spectroscopy Analysis of Fast Ion Tracks in Silicon,” J. Appl. Phys., vol. 67, no. 3, 1266–1271 (1990).

    Google Scholar 

  303. Y. Tokuda, N. Shimizu, and A. Usami, “Studies of Neutron-Produced Defects in Silicon by Deep-Level Transient Spectroscopy,” Jpn. J. Appl. Phys., vol. 18, no. 2, 309–315 (1979).

    Google Scholar 

  304. A. V. Vasil’ev, S. A. Smagulova, and S. S. Shaimeev, “Capacitance Spectroscopy Investigation of Defects Formed in n-Type Silicon by Neutron Irradiation,” Sov. Phys. Semicond., vol. 16, no. 11, 1279–1281 (1982).

    Google Scholar 

  305. B. G. Svensson, C. Jagadish, A. Hallen, and J. Lalita, “Generation of Vacancy-Type Point Defects in Single Collision Cascades during Swift-Ion Bombardment of Silicon,” Phys. Rev. B, vol. 55, 10498–10507 (1997).

    Google Scholar 

  306. E. V. Monakhov, J. Wong-Leung, A. Y. Kuznetsov, C. Jagadish, and B. G. Svensson, “Ion Mass Effect on Vacancy-Related Deep Levels in Si Induced by Ion Implantation,” Phys. Rev. B, vol. 65, 245201 (2002).

    Google Scholar 

  307. P. K. Giri, “Metastability of Interstitial Clusters in Ion-Damaged Silicon Studied by Isothermal Capacitance Transient Spectroscopy,” Defect and Diffusion Forum, vol. 210-212, 1–13 (2002).

    Google Scholar 

  308. B. V. Shemaev, “Positions of Acceptor Levels of a Divacancy in the Band Gap of n-Type Silicon Irradiated with 6.3 MeV Protons,” Sov. Phys. Semicond., vol. 17, no. 11, 1254–1255 (1983).

    Google Scholar 

  309. L. A. Kazakevich, V. I. Kuznetsov, and P. F. Lugakov, “On the Nature of the Radiation Defects with Level E c-0.22 eV in n-Type Silicon,” Radiation Effects Letters, vol. 87, 147–154 (1986).

    Google Scholar 

  310. A. V. Vasil’ev, L. S. Smirnov, and S. S. Shaïmeev, “Divacancy Levels in the Band Gap of Silicon,” Sov. Phys. Semicond., vol. 20, no. 4, 465–467 (1986).

    Google Scholar 

  311. F. P. Korshunov, V. P. Markevich, I. F. Medvedeva, and L. I. Murin, “Acceptor Levels of a Divacancy in Silicon,” Sov. Phys. Semicond., vol. 26, no. 11, 1129–1131 (1992).

    Google Scholar 

  312. C. A. Londos, “Divacancy Production in Low-Temperature Electron-Irradiated Silicon,” Phys. Rev. B, vol. 35, no. 14, 7511–7514 (1987).

    Google Scholar 

  313. M.-A. Trauwaert, J. Vanhellemont, H. E. Maes, A.-M. Van Bavel, G. Langouche, A. Stesmans, and P. Clauws, “Influence of Oxygen and Carbon on the Generation and Annihilation of Radiation Defects in Silicon,” Materials Science and Engineering B, vol. 36, 196–199 (1996).

    Google Scholar 

  314. I. D. Konozenko, A. K. Semenyuk, and V. I. Khivrich, “Radiation Defects Created by Co60 γ-Rays in p- and n-Type Si of High Purity,” phys. stat. sol., vol. 35, 1043–1052 (1969).

    Google Scholar 

  315. M. T. Lappo and V. D. Tkachev, “Divacancies in Silicon Irradiated with Fast Neutrons,” Sov. Phys. Semicond., vol. 4, no. 11, 1882–1884 (1971).

    Google Scholar 

  316. J. Krynicki, J. C. Bourgoin, and G. Vassal, “Energy Dependence of Defect Energy Levels in Electron Irradiated Silicon,” Revue Phys. Appl., vol. 14, 481–484 (1979).

    Google Scholar 

  317. J. M. Meese, M. Chandrasekhar, D. L. Cowan, S. L. Chang, H. Yousif, H. R. Chandrasekhar, and P. McGrail, “Defect Production during Neutron Doping of Si,” in: Neutron-Transmutation-Doped Silicon, edited by J. M. Meese, New York: Plenum Press, 101–140 (1981).

    Google Scholar 

  318. S. D. Brotherton and P. Bradley, “Defect Production and Lifetime Control in Electron and gamma-Irradiated Silicon,” J. Appl. Phys., vol. 53, no. 8, 5720–5732 (1982).

    Google Scholar 

  319. P. Hazdra and J. Vobecky, “Nondestructive Defect Characterization and Engineering in Contemporary Silicon Power Devices,” in: Gettering and Defect Engineering in Semiconductor Technology GADEST99, edited by H. G. Grimmeiss, L. Ask, M. Kleverman, M. Kittler, and H. Richter, Solid State Phenomena, vol. 69-70, 545–550 (1999).

    Google Scholar 

  320. E. V. Monakhov, B. S. Avset, A. Hallen, and B. G. Svensson, “Formation of a Double Acceptor Center during Divacancy Annealing in Low-Doped High-Purity Oxygenated Si,” Phys. Rev. B, vol. 65, 233207 (2002).

    Google Scholar 

  321. P. M. Mooney, L. J. Cheng, M. Siili, J. D. Gerson, and J. W. Corbett, “Defect Energy Levels in Boron-Doped Silicon Irradiated with 1-MeV Electrons,” Phys. Rev. B, vol. 15, no. 8, 3836–3843 (1977).

    Google Scholar 

  322. Y. H. Lee, K. L. Wang, A. Jaworoski, P. M. Mooney, L. J. Cheng, and J. W. Corbett, “A Transient Capacitance Study of Radiation-Induced Defects in Aluminum-Doped Silicon,” phys. stat. sol. (a), vol. 57, 697–704 (1980).

    Google Scholar 

  323. M. Stavola and L. C. Kimerling, “Symmetry Determination for Deep States in Semiconductors from Stress-Induced Dichroism of Photocapacitance,” J. Appl. Phys., vol. 54, no. 7, 3897–3901 (1983).

    Google Scholar 

  324. M. Asghar, M. Zafar Iqbal, and N. Zafar, “Study of Alpha-Radiation-Induced Deep Levels in p-Type Silicon,” J. Appl. Phys., vol. 73, no. 9, 4240–4247 (1993).

    Google Scholar 

  325. A. Khan, M. Yamaguchi, S. J. Taylor, T. Hisamatsu, and S. Matsuda, “Effects of Annealing on Type Converted Si and Space Solar Cells Irradiated with Heavy Fluence 1 MeV Electrons,” Jpn. J. Appl Phys., Part 1, vol. 38, no. 5A, 2679–2685 (1999).

    Google Scholar 

  326. M. Shimotomai, Y. Ohgino, H. Fukushima, Y. Nagayasu, T. Mihara, K. Inoue, and M. Doyama, “The Utility of Positrons for Studies of Vacancy-Type Defects in Semiconductors,” in: Defects and Radiation Effects in Semiconductors, 1980, edited by R. R. Hasiguti, Inst. Phys. Conf. Ser., no. 59, 241–246 (1981).

    Google Scholar 

  327. Motoko Kwete, D. Segers, M. Dorikens, L. Dorikens-Vanpraet, and P. Clauws, “Positron Annihilation Study of Defects Created in Silicon Irradiated with Electrons of High Energy,” phys. stat. sol. (a), vol. 122, 129–138 (1990).

    Google Scholar 

  328. A. Kawasuso, M. Hawegawa, M. Suezawa, S. Yamauchi, and K. Sumino, “An Annealing Study of Defects Induced by Electron Irradiation of Czochralski-Grown Si Using a Positron Lifetime Technique,” Applied Surface Science, vol. 85, 280–286 (1995).

    Google Scholar 

  329. M. Hasegawa, A. Kawasuso, T. Chiba, T. Akahane, M. Suezawa, S. Yamaguchi, and K. Sumino, “Positron Lifetime and 2D-AC AR Studies of Divacancies in Silicon,” Appl. Phys. A, vol. 61, 65–70 (1995).

    Google Scholar 

  330. V. Avalos and S. Dannefaer, “Positron-Annihilation Investigation of Vacancy Agglomeration in Electron-Irradiated Float-Zone Silicon,” Phys. Rev. B, vol. 54, no. 3, 1724–1728 (1996).

    Google Scholar 

  331. A. Polity, F. Börner, S. Huth, S. Eichler, and R. Krause-Rehberg, “Defects in Electron-Irradiated Si Studied by Positron-Lifetime Spectroscopy,” Phys. Rev. B, vol. 58, no. 16, 10363–10377 (1998).

    Google Scholar 

  332. R. Krause-Rehberg and H. S. Leipner, “Defect Characterization in Elemental Semiconductors: Silicon,” in: Positron Annihilation in Semiconductors, Solid-State Sciences, vol. 127, Section 4.1, Berlin: Springer, 127–182 (1999).

    Google Scholar 

  333. H. J. Stein, J. A. Knapp, and P. S. Peercy, “Divacancy Annealing in Crystalline Silicon Using E-Beam and Pulsed Ruby Laser Excitation,” in: Laser and Electron-Beam Interactions with Solids, edited by B. R. Appleton and G. K. Celler, Mat. Res. Soc. Symp. Proc, vol. 4, 319–324 (1982).

    Google Scholar 

  334. P. Pellegrino, P. Lévêque, J. Lalita, A. Hallén, C. Jagadish, and B. G. Svensson, “Annealing Kinetics of Vacancy-Related Defects in Low-Dose MeV Self-Ion-Implanted n-Type Silicon,” Phys. Rev. B, vol. 64, 195211 (2001).

    Google Scholar 

  335. A. V Vasil’ev, S. A. Smagulova, and L. S. Smirnov, “Annealing of Divacancies in Silicon Irradiated with Fast Neutrons,” Sov. Phys. Semicond., vol. 20, 354 (1986).

    Google Scholar 

  336. I. V. Antonova, A. V. Vasil’ev, V. I. Panov, and S. S. Shaimeev, “Characteristics of Annealing of Divacancies in Silicon Containing Disordered Regions,” Sov. Phys. Semicond., vol. 23, no. 6, 671–673 (1989).

    Google Scholar 

  337. S. Roorda, “Divacancy Annealing in Silicon Monitored by Differential Calorimetry and Infrared Absorption Spectroscopy,” in: Materials Synthesis and Processing Using Ion Beams, edited by R. J. Culbertson, O. W. Holland, K. S. Jones, and K. Maex, Mat. Res. Soc. Symp. Proc, vol. 316, 159–165 (1994).

    Google Scholar 

  338. R. Poirier, S. Roorda, F. Schiettekatte, M. Lalancette, and J. Zikovsky, “Divacancies in Proton Irradiated Silicon: Characterization and Annealing Mechanisms,” Physica B, vol. 308-310, 462–464 (2001).

    Google Scholar 

  339. M. Saito and A. Oshiyama, “Resonant Bonds in Symmetry-Lowering Distortion around a Si Divacancy,” Phys. Rev. Lett, vol. 73, no. 6, 866–869 (1994).

    Google Scholar 

  340. G. D. Watkins, “Comment on “Resonant Bonds in Symmetry-Lowering Distortion around a Si Divacancy” [Phys. Rev. Lett. 73, 866 (1994)],” Phys. Rev. Lett., vol. 74, no. 21, 4353 (1995).

    MathSciNet  Google Scholar 

  341. M. Saito and A. Oshiyama, “Response to “Comment on ‘Resonant Bonds in Symmetry-Lowering Distortion around a Si Divacancy’” [Phys. Rev. Lett. 73, 866 (1994)],” Phys. Rev. Lett, vol. 74, no. 21, 4354 (1995).

    Google Scholar 

  342. M. Pesola, J. von Boehm, S. Pöykkö, and R. M. Nieminen, “Spin-Density Study of the Silicon Divacancy,” Phys. Rev. B, vol. 58, no. 3, 1106–1109 (1998).

    Google Scholar 

  343. B. J. Coomer, A. Resende, J. P. Goss, R. Jones, S. Öberg, and P. R. Briddon, “The Divacancy in Silicon and Diamond,” in: 20 th International Conference on Defects in Semiconductors, edited by C. Van de Walle and W. Walukiewicz, Physica B, vol. 213-21 A, 520–523 (1999).

    Google Scholar 

  344. T. Akiyama, Y. Okamoto, M. Saito, and A. Oshiyama, “Multivacancy and Its Hydrogen Decoration in Crystalline Si,” Jpn. J. Appl. Phys., Part 2, vol. 38, no. 12A, L1363–L1365 (1999).

    Google Scholar 

  345. G. S. Hwang and W. A. Goddard III, “Diffusion and Dissociation of Neutral Divacancies in Crystalline Silicon,” Phys. Rev. B, vol. 65, 233205 (2002).

    Google Scholar 

  346. M. Prasad and T. Sinno, “Internally Consistent Approach for Modeling Solid-State Aggregation. I. Atomistic Calculations of Vacancy Clustering in Silicon,” Phys. Rev. B, vol. 68, 045206 (2003).

    Google Scholar 

  347. S. K. Estreicher, J. Weber, A. Derecskei-Kovacs, and D. S. Marynick, “Noble-Gas-Related Defects in Si and the Origin of the 1018 meV Photoluminescence Line,” Phys. Rev. B, vol. 55, no. 8, 5037–5044 (1997).

    Google Scholar 

  348. P. K. Giri, S. Coffa, and E. Rimini, “Evidence for Small Interstitial Clusters As the Origin of Photoluminescence W Band in Ion-Implanted Silicon,” Appl. Phys. Lett, vol. 78, no. 3, 291–293 (2001).

    Google Scholar 

  349. J. Lalita, B. G. Svensson, and C. Jagadish, “Point Defects Observed in Crystalline Silicon Implanted by MeV Si Ions at Elevated Temperatures,” Nuclear Instruments and Methods in Physics Research B, vol. 96, 210–214 (1995).

    Google Scholar 

  350. Y. Nakano, M. Ishiko, and H. Tadano, “Deep Level Centers in Silicon Introduced by High-Energy He Irradiation and Subsequent Annealing,” J. Vac. Sci. Technol. B, vol. 20, no. 1, 379–381 (2002).

    Google Scholar 

  351. Y. H. Lee, Y. M. Kim, and J. W. Corbett, “New EPR Spectra in Neutron-Irradiated Silicon,” Radiation Effects, vol. 15, 77–84 (1972).

    Google Scholar 

  352. Y.-H. Lee and J. W. Corbett, “EPR Study of Defects in Neutron-Irradiated Silicon: Quenched-in Alignment under (110)-Uniaxial Stress,” Phys. Rev. B, vol. 9, no. 10, 4351–4361 (1974).

    Google Scholar 

  353. K. L. Brower, “Structure of Multiple-Vacancy (Oxygen) Centers in Irradiated Silicon,” Radiation Effects, vol. 8, 213–219 (1971).

    Google Scholar 

  354. W. Jung and G. S. Newell, “Spin-1 Centers in Neutron-Irradiated Silicon,” Phys. Rev., vol. 132, no. 2, 648–662 (1963).

    Google Scholar 

  355. M. Nisenoff and H. Y. Fan, “Electron Spin Resonance in Neutron-Irradiated Silicon,” Phys. Rev., vol. 128, no. 4, 1605–1613 (1962).

    Google Scholar 

  356. Y. H. Lee and J. W. Corbett, “EPR Studies in Neutron-Irradiated Silicon: A Negative Charge State of a Nonplanar Five-Vacancy Cluster (V-5)” Phys. Rev. B, vol. 8, no. 6, 2810–2826 (1973).

    Google Scholar 

  357. M. Brohl, C. Kisielowski-Kemmerich, and H. Alexander, “Pentavacancies in Plastically Deformed Silicon,” Appl. Phys. Lett, vol. 50, no. 24, 1733–1735 (1987).

    Google Scholar 

  358. C. G. Kirkpatrick, J. R. Noonan, and B. G. Streetman, “Recombination Luminescence from Ion Implanted Silicon,” Radiation Effects, vol. 30, 97–106 (1976).

    Google Scholar 

  359. V. D. Tkachev and A. V. Mudryi, “Radiative Recombination Centres in Silicon Irradiated by Fast Neutrons and Ions,” in: Radiation Effects in Semiconductors, 1976, edited by N. B. Urli and J. W. Corbett, Inst. Phys. Conf. Sen, no. 31, 231–243 (1977).

    Google Scholar 

  360. D. J. Chadi and K. J. Chang, “Magic Numbers for Vacancy Aggregation in Crystalline Si,” Phys. Rev. B, vol. 38, no. 2, 1523–1525 (1988).

    Google Scholar 

  361. A. van Veen, H. Schut, A. Rivera, and A. V. Fedorov, “Growth of Vacancy Clusters during Post-Irradiation Annealing of Ion Implanted Silicon,” in: Ion-Solid Interactions for Materials Modification and Processing, edited by D. B. Poker, D. lia, Y.-T. Cheng, L. R. Harriott, and T. W. Sigmon, Mat. Res. Soc. Symp. Proc, vol. 396, 155–160 (1996).

    Google Scholar 

  362. B. Hourahine, R. Jones, A. N. Safonov, S. Öberg, P. R. Briddon, and S. K. Estreicher, “Identification of the Hexavacancy in Silicon with the B480 Optical Center,” Phys. Rev. B, vol. 61, no. 19, 12594–12597 (2000).

    Google Scholar 

  363. C. E. Jones, E. S. Johnson, W. D. Compton, J. R. Noonan, and F. B. Streetman, “Temperature, Stress, and Annealing Effects on the Luminescence from Electron-Irradiated Silicon,” J. Appl. Phys., vol. 44, no. 12, 5402–5410 (1973).

    Google Scholar 

  364. A. S. Kaminskii, B. M. Leiferov, and A. N. Safonov, “Excitons Bound to Defect Complexes in Silicon,” Sov. Phys. Solid State, vol. 29, no. 4, 551–556 (1987).

    Google Scholar 

  365. R. Sauer and J. Weber, “Photoluminescence Characterization of Deep Defects in Silicon,” in: Proceedings of the 12 th International Conference on Defects in Semiconductors, edited by C. A. J. Ammerlaan, Physica, vol. 116B, 195–209 (1983).

    Google Scholar 

  366. R. Jones, B. J. Coomer, J. P. Goss, S. Öberg, and P. R. Briddon, “Intrinsic Defects and the Dl to D4 Optical Bands Detected in Plastically Deformed Si,” phys. stat. sol. (b), vol. 222, 133–140 (2000).

    Google Scholar 

  367. R. Sauer, J. Weber, J. Stolz, E. R. Weber, K.-H. Küsters, and H. Alexander, “Dislocation-Related Photoluminescence in Silicon,” Appl. Phys. A, vol. 36, 1–13 (1985).

    Google Scholar 

  368. S. Dannefaer, N. Fruensgaard, S. Kupca, B. Hogg, and D. Kerr, “A Positron Study of Plastic Deformation of Silicon,” Can. J. Phys., vol. 61, 451–459 (1983).

    Google Scholar 

  369. S. Dannefaer, D. Kerr, and B. G. Hogg, “A Study of Defects in Amorphous Silicon Films,” J. Appl. Phys., vol. 54, no. 1, 155–160 (1983).

    Google Scholar 

  370. N. M. Kulkarni, R. Kulkarni, and A. D. Shaligram, “Defect Recovery Study of e-Irradiated Silicon during Rapid Thermal Annealing,” phys. stat. sol. (a), vol. 133, 283–289 (1992).

    Google Scholar 

  371. A. Kawasuso, M. Hasegawa, M. Suezawa, S. Yamaguchi, and K. Sumino, “Annealing Processes of Vacancies in Silicon Induced by Electron Irradiation: Analysis Using Positron Lifetime,” in: Positron Annihilation, edited by Y.-J. He, B.-S. Cao, and Y. C. Jean, Materials Science Forum, vol. 175-178, 423–426 (1995).

    Google Scholar 

  372. V C. Venezia, L. Pelaz, H.-J. L. Gossmann, T. E. Haynes, and C. S. Rafferty, “Binding Energy of Vacancy Clusters Generated by High-Energy Ion Implantation and Annealing of Silicon,” Appl. Phys. Lett., vol. 79, no. 9, 1273–1275 (2001).

    Google Scholar 

  373. R. Kalyanaraman, T. E. Haynes, O. W.Holland, H.-J. L. Gossmann, C. S. Rafferty, and G. H. Gilmer, “Binding Energy of Vacancies to Clusters Formed in Si by High-Energy Ion Implantation,” Appl. Phys. Lett, vol. 79, no. 13, 1983–1985 (2001).

    Google Scholar 

  374. G. H. Gilmer, T. Diaz de la Rubia, D. M. Stock, and M. Jaraiz, “Diffusion and Interactions of Point Defects in Silicon: Molecular Dynamics Simulations,” in: Computer Simulation of Radiation Effects in Solids, edited by T. Diaz de la Rubia, G. H. Gilmer, and M.-J. Caturla, Nuclear Instruments and Methods in Physics Research B, vol. 102, 247–255 (1995).

    Google Scholar 

  375. L. Colombo, A. Bongiorno, and T. Diaz de la Rubia, “Formation and Binding Energies of Vacancy Clusters in Silicon,” in: Defects and Diffusion in Silicon Processing, edited by T. Diaz de la Rubia, S. Coffa, P. A. Stolk, and C. S. Rafferty, Mat. Res. Soc. Symp. Proc, vol. 469, 205–210 (1997).

    Google Scholar 

  376. A. Bongiorno, L. Colombo, and T. Diaz De la Rubia, “Structural and Binding Properties of Vacancy Clusters in Silicon,” Europhysics Letters, vol. 43, no. 6, 695–700 (1998).

    Google Scholar 

  377. T. Akiyama, A. Oshiyama, and O. Sugino, “Magic Numbers of Multivacancy in Crystalline Si: Tight-Binding Studies for the Stability of the Multivacancy,” J. Phys. Soc. Japan, vol. 67, no. 12, 4110–4116 (1998).

    Google Scholar 

  378. M. Prasad and T. Sinno, “Atomistic-to-Continuum Description of Vacancy Cluster Properties in Crystalline Silicon,” Appl. Phys. Lett., vol. 80, no. 11, 1951–1953 (2002).

    Google Scholar 

  379. M. Jaraiz, G. H. Gilmer, J. M. Poate, and T. D. de la Rubia, “Atomistic Calculations of Ion Implantation in Si: Point Defect and Transient Enhanced Diffusion Phenomena,” Appl. Phys. Lett., vol. 68, no. 3, 409–441 (1996).

    Google Scholar 

  380. S. Chakravarthi and S. T. Dunham, “Modeling of Vacancy Cluster Formation in Ion Implanted Silicon,” J. Appl. Phys., vol. 89, no. 9, 4758–765 (2001).

    Google Scholar 

  381. E. I. Blount, “Energy Levels in Irradiated Germanium,” J. Appl. Phys., vol. 30, no. 8, 1218–1221 (1959).

    Google Scholar 

  382. F. Seitz, “On the Theory of Diffusion in Metals,” Acta Cryst., vol. 3, 355–363 (1950).

    Google Scholar 

  383. H. B. Huntington and F. Seitz, “Mechanism for Self-Diffusion in Metallic Copper,” Phys. Rev., vol. 61, 315–325 (1942).

    Google Scholar 

  384. W. Frank, “Self-Interstitials and Vacancies in Elemental Semiconductors between Absolute Zero and the Temperature of Melting,” Festkörperprobleme, vol. 21, 221–242 (1981).

    Google Scholar 

  385. P. S. Gwozdz and J. S. Koehler, “Changes in AC Conductivity of Silicon with Electron Irradiation at 0.5 K,” Phys. Rev. B, vol. 6, no. 12, 4571–4574 (1972).

    Google Scholar 

  386. A. Brelot, “Selective Trapping of Vacancies,” in: Radiation Damage and Defects in Semiconductors, Inst. Phys. Conf. Ser., no. 16, 191–201 (1973).

    Google Scholar 

  387. R. D. Harris and G. D. Watkins, “Interstitial Related Defects in n-Type Silicon,” in: Thirteenth International Conference on Defects in Semiconductors, edited by L. C. Kimerling and J. M. Parsey, Jr., The Metallurgical Society of AIME, 799–805 (1985).

    Google Scholar 

  388. B. N. Mukashev, K. A. Abdullin, Y. V. Gorelkinski, and S. Z. Tokmoldin, “Self-Interstitial Related Reactions in Silicon Irradiated by Light Ions,” Materials Science and Engineering B, vol. 58, 171–178 (1999).

    Google Scholar 

  389. H. J. Stein and F. L. Vook, “Characteristics of Electron-Induced Defects in n-Type Silicon,” in: Radiation Effects in Semiconductors, edited by F. L. Vook, New York: Plenum Press, 115–123 (1968).

    Google Scholar 

  390. B. Massarani and A. Brelot, “Evidence of 130 K Annealing Stage of Divacancy in Electron-Irradiated Silicon,” in: Radiation Damage and Defects in Semiconductors, edited by J. E. Whitehouse, Inst. Phys. Conf. Ser., no. 16, 269–277 (1973).

    Google Scholar 

  391. B. Bech Nielsen and J. U. Andersen, “Beam-Induced Annealing of Defects in Silicon after Light-Ion Implantation at 30 K,” Phys. Rev. B, vol. 35, no. 6, 2732–2739 (1987).

    Google Scholar 

  392. K. A. Abdullin, B. N. Mukashev, M. F. Tamendarov, and T. B. Tashenov, “Electronic Levels and Properties of the Selfinterstitials in Irradiated Silicon,” Physics Letters A, vol. 166, 40–42 (1992).

    Google Scholar 

  393. K. A. Abdullin, B. N. Mukashev, M. F. Tamendarov, and T. B. Tashenov, “Electronic Levels and Properties of the Selfinterstitials in Irradiated Silicon,” in: Defect Engineering in Semiconduc-tor Growth, Processing and Device Technology, edited by S. Ashok, J. Chevallier, K. Sumino, and E. Weber, Mat. Res. Soc. Symp. Proc, vol. 262, 1109–1113 (1992).

    Google Scholar 

  394. K. A. Abdullin and B. N. Mukashev, “Defects in p-Si Bombarded at 77 K: Energy Spectrum and Annealing Kinetics,” Semiconductors, vol. 28, no. 10, 1012–1017 (1994).

    Google Scholar 

  395. K. A. Abdullin, B. N. Mukashev, and Y. V. Gorelkinskii, “Metastable Oxygen-Silicon Interstitial Complex in Crystalline Silicon,” Semicond. Sci. Technol., vol. 11, 1696–1703 (1996).

    Google Scholar 

  396. T. A. G. Eberlein, N. Pinho, R. Jones, B. J. Coomer, J. P. Goss, P. R. Briddon, and S. Öberg, “Self-Interstitial Clusters in Silicon,” Physica B, vol. 308-310, 454–457 (2001).

    Google Scholar 

  397. D. J. Roth and J. D. Plummer, “Oxidation-Enhanced Diffusion of Boron and Phosphorus in Heavily Doped Layers in Silicon,” J. Electrochem. Soc:, vol. 141, no. 4, 1074–1081 (1994).

    Google Scholar 

  398. K. P. Chik, “Doping Effects on Diffusion and Diffusion Mechanisms in Ge and Si,” Radiation Effects, vol. 4, 33–37 (1970).

    Google Scholar 

  399. A. Seeger and W. Frank, “Self-Interstitials in Silicon and Germanium,” in: Radiation Damage and Defects in Semiconductors, Inst. Phys. Conf. Ser., no. 16, 262–268 (1973).

    Google Scholar 

  400. W. Frank, “The Nature of Interstitials in Silicon and Germanium,” in: Lattice Defects in Semiconductors, 1974, Inst. Phys. Conf Ser., no. 23, 23–43 (1975).

    Google Scholar 

  401. H. Lefèvre, “Trap-Centers of Self-Interstitials in Silicon,” Appl. Phys., vol. 22, 15–22 (1980).

    Google Scholar 

  402. M. D. Giles, “Defect-Coupled Diffusion at High Concentrations,” IEEE Trans. Computer-Aided Design, vol. 8, no. 5, 460–467 (1989).

    Google Scholar 

  403. M. D. Giles, “Extrinsic Transient Diffusion in Silicon,” Appl. Phys. Lett., vol. 58, no. 21, 2399–2401 (1991).

    Google Scholar 

  404. J. P. John and M. E. Law, “Oxidation Enhanced Diffusion of Phosphorus in Silicon in Heavily Doped Background Concentrations,” J. Electrochem. Soc, vol. 140, no. 5, 1489–1491 (1993).

    Google Scholar 

  405. D. Tsoukalas and P. Chenevier, “Boron Diffusion in Silicon in Inert and Oxidizing Ambient and Extrinsic Conditions,” phys. stat. sol. (a), vol. 100, 461–465 (1987).

    Google Scholar 

  406. G. Bemski and C. A. Dias, “Quenched-in Defects in p-Type Silicon,” J. Appl. Phys., vol. 35, no. 10, 2983–2985 (1964).

    Google Scholar 

  407. M. L. Swanson, “Defects in Quenched Silicon,” phys. stat. sol, vol. 33, 721–730 (1969).

    Google Scholar 

  408. S. I. Tan, B. S. Berry, and W. F. J. Frank, “Internal Friction Study of Point Defects in Boron-Implanted Silicon,” in: Ion Implantation in Semiconductors and Other Materials, edited by B. Crowder, New York: Plenum Press, 19–30 (1973).

    Google Scholar 

  409. W. Frank, “Interstitial Properties Deduced from Internal Friction Measurements on Boron-Implanted Silicon,” Radiation Effects, vol. 21, 119–133 (1974).

    Google Scholar 

  410. G. D. Watkins, R. P. Messmer, C. Weigel, D. Peak, and J. W. Corbett, “Properties of the Interstitial in the Diamond-Type Lattice,” Phys. Rev. Lett, vol. 27, no. 23, 1573–1575 (1971).

    Google Scholar 

  411. C. Weigel, D. Peak, J. W. Corbett, G. D. Watkins, and R. P. Messmer, “Carbon Interstitial in the Diamond Lattice,” Phys. Rev. B, vol. 8, no. 6, 2906–2915 (1973).

    Google Scholar 

  412. S. T. Pantelides, I. Ivanov, M. Scheffler, and J. P. Vigneron, “Multivacancies, Interstitials, and Self-Interstitial Migration in Silicon,” in: Proceedings of the 12 th International Conference on Defects in Semiconductors, edited by C. A. J. Ammerlaan, Physica, vol. 116B, 18–27 (1983).

    Google Scholar 

  413. Y. Bar-Yam and J. D. Joannopoulos, “Barrier to Migration of the Silicon Self-Interstitial,” Phys. Rev. Lett., vol. 52, no. 13, 1129–1132 (1984).

    Google Scholar 

  414. Y. Bar-Yam and J. D. Joannopoulos, “Electronic Structure and Total-Energy Migration Barriers of Silicon Self-Interstitials,” Phys. Rev. B, vol. 30, no. 4, 1844–1852 (1984).

    Google Scholar 

  415. Y. Bar-Yam and J. D. Joannopoulos, “Silicon Self-Interstitial Migration: Multiple Paths and Charge States,” Phys. Rev. B, vol. 30, no. 4, 2216–2218 (1984).

    Google Scholar 

  416. G. A. Baraff and M. Schlüter, “Migration of Interstitials in Silicon,” Phys. Rev. B, vol. 30, no. 6, 3460–3469 (1984).

    Google Scholar 

  417. W.-C. Lee, S.-G. Lee, and K. J. Chang, “First-Principles Study of the Self-Interstitial Diffusion Mechanism in Silicon,” J. Phys.: Condens. Matter, vol. 10, 995–1002 (1998).

    Google Scholar 

  418. D. J. Chadi, “Self-Interstitial Bonding Configurations in GaAs and Si,” Phys. Rev. B, vol. 46, no. 15, 9400–9407 (1992).

    Google Scholar 

  419. C. G. Van de Walle and J. Neugebauer, “Hydrogen Interactions with Self-Interstitials in Silicon,” Phys. Rev. B, vol. 52, no. 20, R14320–R14323 (1995).

    Google Scholar 

  420. J. Zhu, T. Diaz de la Rubia, L. H. Yang, C. Maillhot, and G. H. Gilmer, “Ab Initio Pseudopo-tential Calculations of B Diffusion and Pairing in Si,” Phys. Rev. B, vol. 54, no. 7, 4741–4747 (1996).

    Google Scholar 

  421. S. J. Clark and G. J. Ackland, “Ab Initio Calculations of the Self-Interstitial in Silicon,” Phys. Rev. B, vol. 56, no. 1, 47–50 (1997).

    Google Scholar 

  422. H. R. Schober, “Extended Interstitials in Silicon and Germanium,” Phys. Rev. B, vol. 39, no. 17, 13013–13015 (1989).

    Google Scholar 

  423. D. Maraudas and R. A. Brown, “Calculation of Thermodynamic and Transport Properties of Intrinsic Point Defects in Silicon,” Phys. Rev. B, vol. 47, no. 23, 15562–15577 (1993).

    Google Scholar 

  424. W. Frank, U. Gösele, and A. Seeger, “Foreign Interstitial Atoms and Their Relation to Thermal Intrinsic Defects in Silicon,” in: Defects and Radiation Effects in Semiconductors, 1978, edited by J. H. Albany, Inst. Phys. Conf. Ser., no. 46, 514–520 (1979).

    Google Scholar 

  425. A. Seeger, W. Frank, and U. Gösele, “Diffusion in Elemental Semiconductors: New Developments,” in: Defects and Radiation Effects in Semiconductors, 1978, edited by J. H. Albany, Inst. Phys. Conf. Ser., no. 46, 148–149 (1979).

    Google Scholar 

  426. M. Jacob, P. Pichler, H. Ryssel, and R. Falster, “Determination of Vacancy Concentrations in the Bulk of Silicon Wafers by Platinum Diffusion Experiments,” J. Appl. Phys., vol. 82, no. 1, 182–191 (1997).

    Google Scholar 

  427. B. Leroy, “Kinetics of Growth of the Oxidation Stacking Faults,” J. Appl. Phys., vol. 50, no. 12, 7996–8005 (1979).

    Google Scholar 

  428. T. K. Okada, H. Kawaguchi, S. Onaga, and K. Yamabe, “Non-Equilibrium Diffusion Process Modeling Based on Three-Dimensional Simulator and Regulated Point Defect Injection Experiments,” in: 1991 International Workshop on VLSI Process and Device Modeling (1991 VPAD), Japan Society of Applied Physics, 8–9 (1991).

    Google Scholar 

  429. W. B. Rogers and H. Z. Massoud, “Determination of the Kinetic Coefficients of Silicon Self-Interstitials from Oxygen Precipitation/Front-Surface Stacking-Fault Growth Experiments,” J. Electrochem. Soc, vol. 138, no. 11, 3492–3498 (1991).

    Google Scholar 

  430. S. M. Hu, “Vacancies and Self-Interstitials in Silicon,” in: Defects in Silicon II, edited by W. M. Bullis, U. Gösele, and F. Shimura, Electrochem. Soc. Proc, vol. 91-9, 211–236 (1991).

    Google Scholar 

  431. H. Bracht, N. A. Stolwijk, H. Mehrer, and I. Yonenaga, “Short-Time Diffusion of Zinc in Silicon for the Study of Intrinsic Point Defects,” Appl. Phys. Lett., vol. 59, no. 27, 3559–3561 (1991).

    Google Scholar 

  432. W. Wijaranakula, “Numerical Modeling of the Point Defect Aggregation during the Czochralski Silicon Crystal Growth,” J. Electrochem. Soc, vol. 139, no. 2, 604–616 (1992).

    Google Scholar 

  433. S. M. Hu, “Vacancies and Self-Interstitials in Silicon: Generation and Interaction in Diffusion,” J. Electrochem. Soc, vol. 139, no. 1, 2066–2075 (1992).

    Google Scholar 

  434. Y. Satoh, H. Furuya, M. Kadoi, and Y. Shimanuki, “Anomalous Depth Distributions of Bulk Microdefects in Heat-Treated Czochralski Silicon Wafers Due to Nonequilibrium Self-Interstitials,” J. Appl. Phys., vol. 77, no. 8, 3710–3724 (1995).

    Google Scholar 

  435. H. S. Chao, S. W. Crowder, P. B. Griffin, and J. D. Plummer, “Species and Dose Dependence of Ion Implantation Damage Induced Transient Enhanced Diffusion,” J. Appl. Phys., vol. 79, no. 5, 2352–2363 (1996).

    Google Scholar 

  436. S. Bharatan, Y M. Haddara, M. E. Law, and K. S. Jones, “Determining the Enthalpy of Formation of a Si Interstitial Using Quantitative TEM and SIMS,” in: Silicon Front-End TechnologyMaterials Processing and Modelling, edited by N. E. B. Cowern, D. C. Jacobson, P. B. Griffin, P. A. Packan, and R. P. Webb, Mat. Res. Soc. Symp. Proc, vol. 532, 111–118 (1998).

    Google Scholar 

  437. M. Hakala, M. J. Puska, and R. M. Nieminen, “First-Principles Calculations of Interstitial Boron in Silicon,” Phys. Rev. B, vol. 61, no. 12, 8155–8161 (2000).

    Google Scholar 

  438. R. E. McKeighen and J. S. Koehler, “Electron-Irradiation Effects in Silicon at Liquid-Helium Temperatures Using AC Hopping Conductivity,” Phys. Rev. B, vol. 4, no. 2, 462–478 (1971).

    Google Scholar 

  439. J. C. Bourgoin and J. W. Corbett, “A New Mechanism for Interstitial Migration,” Phys. Lett., vol. 38A, no. 2, 135–137 (1972).

    Google Scholar 

  440. A. Hallén, D. Fenyö, B. U. R. Sundqvist, R. E. Johnson, and B. G. Svensson, “The Influence of Ion Flux on Defect Production in MeV Proton-Irradiated Silicon,” J. Appl. Phys., vol. 70, no. 6, 3025–3030 (1991).

    Google Scholar 

  441. P. Lévêque, A. Hallén, P. Pellegrino, B. G. Svensson, and V. Privitera, “Dose-Rate Influence on the Defect Production in MeV Proton-Implanted Float-Zone and Epitaxial n-Type Silicon,” Nuclear Instruments and Methods in Physics Research B, vol. 186, 375–379 (2002).

    Google Scholar 

  442. V. Privitera, S. Coffa, K. Kyllesbech Larsen, S. Libertino, G. Mannino, and F. Priolo, “Point Defects Migration in Si at Room Temperature: The Role of Surface and Impurity Content,” in: Defects and Diffusion in Silicon Processing, edited by T. Diaz de la Rubia, S. Coffa, P. A. Stolk, and C. S. Rafferty, Mat. Res. Soc. Symp. Proc, vol. 469, 163–173 (1997).

    Google Scholar 

  443. V. Privitera, S. Coffa, F. Priolo, K. Kyllesbech Larsen, and G. Mannino, “Room-Temperature Migration and Interaction of Ion Beam Generated Defects in Crystalline Silicon,” Appl. Phys. Lett., vol. 68, no. 24, 3422–3424 (1996).

    Google Scholar 

  444. A. N. Buzynin, A. E. Luk’yanov, V. V. Osiko, and V. V. Voronkov, “Non-Equilibrium Impurity Redistribution in Si,” Nuclear Instruments and Methods in Physics Research B, vol. 186, 366–370 (2002).

    Google Scholar 

  445. N. E. B. Cowern, E. J. H. Collart, J. Politiek, P. H. L. Bancken, J. G. M. van Berkum, K. Kyllesbech Larsen, P. A. Stolk, H. G. A. Huitzing, P. Pichler, A. Burenkov, and D. J. Gravensteijn, “Low Energy Implantation and Transient Enhanced Diffusion: Physical Mechanisms and Technology Implications,” in: Defects and Diffusion in Silicon Processing, edited by T. Diaz de la Rubia, S. Coffa, P. A. Stolk, and C. S. Rafferty, Mat. Res. Soc. Symp. Proc, vol. 469, 265–276 (1997).

    Google Scholar 

  446. M. Hill, M. Lietz, and R. Sittig, “Diffusion of Gold in Silicon,” J. Electrochem. Soc, vol. 129, no. 7, 1579–1587 (1982).

    Google Scholar 

  447. P. B. Griffin, P. M. Fahey, J. D. Plummer, and R. W. Dutton, “Measurement of Silicon Interstitial Diffusivity,” Appl. Phys. Lett., vol. 47, no. 3, 319–321 (1985).

    Google Scholar 

  448. E. Scheid and P. Chenevier, “Determination des paramètres de distribution des auto-interstitiels silicium en vue de la modélisation 2-D des processus technologiques. Discussion sur la validité physique,” Revue Phys. Appl., vol. 20, no. 7, 483–491 (1985).

    Google Scholar 

  449. T. Abe, H. Harada, N. Ozawa, and K. Adomi, “Deep Level Generation-Annihilation in Nitrogen Doped FZ Crystals,” in: Oxygen, Carbon, Hydrogen, and Nitrogen in Crystalline Silicon, edited by J. C. Mikkelsen, Jr., S. J. Pearton, J. W. Corbett, and S. J. Pennycook, Mat. Res. Soc. Symp. Proc, vol. 59, 537–544 (1986).

    Google Scholar 

  450. P. B. Griffin and J. D. Plummer, “Point Defect Models for Two-Dimensional Diffusion Kinetics,” Electrochem. Soc. Extended Abstracts, vol. 86-2, 818–819 (1986).

    Google Scholar 

  451. P. B. Griffin and J. D. Plummer, “The Influence of Point Defects on Two Dimensional Diffusion Kinetics,” in: Materials Issues in Silicon Integrated Circuit Processing, edited by M. Wittmer, J. Stimmell, and M. Strathman, Mat. Res. Soc. Symp. Proc, vol. 71, 75–80 (1986).

    Google Scholar 

  452. P. B. Griffin and J. D. Plummer, “Point Defect Models for Two Dimensional Diffusion Kinetics,” in: Proc. Process Physics and Modeling in Semiconductor Technology, edited by G. R. Srinivasan, J. Plummer, and D. Antoniadis, Electrochem. Soc. Proc, vol. 88-16, 53–65 (1988).

    Google Scholar 

  453. W. B. Rogers, H. Z. Massoud, R. B. Fair, U. M. Gösele, R. Shaw, H. Korb, and M. Guse, “Point Defect Kinetics during Backside Oxidation Measured by Frontside Stacking-Fault Growth,” Electrochem. Soc Extended Abstracts, vol. 87-1, no. 264, 384–385 (1987).

    Google Scholar 

  454. S. T. Ahn, P. B. Griffin, J. D. Shott, J. D. Plummer, and W. A. Tiller, “A Study of Silicon Interstitial Kinetics Using Silicon Membranes: Applications to 2D Dopant Diffusion,” J. Appl. Phys., vol. 62, no. 12, 4745–755 (1987).

    Google Scholar 

  455. M. R. Kump and R. W. Dutton, “The Efficient Simulation of Coupled Point Defect and Impurity Diffusion,” IEEE Trans. Computer-Aided Design, vol. 7, no. 2, 191–204 (1988).

    Google Scholar 

  456. S. T. Ahn, J. D. Shott, and W. A. Tiller, “Determination of Modeling Parameters for Silicon Interstitial Diffusion Using Silicon Membranes,” in: Proc Process Physics and Modeling in Semiconductor Technology, edited by G. R. Srinivasan, J. Plummer, and D. Antoniadis, Electrochem. Soc Proc, vol. 88-16, 66–75 (1988).

    Google Scholar 

  457. K. Kawakami, M. Hasebe, and S. Shinoyama, “Growth Model of Ring-Likely Distributed Stacking Faults,” in: Extended Abstracts of the 37 th Spring Meeting Japan. Soc. Appl. Phys. and Related Societies, 221 (1990).

    Google Scholar 

  458. W. Wijaranakula, “An Experimental Estimation of Silicon Interstitial Diffusivity,” J. Appl. Phys., vol. 67, no. 12, 7624–7626 (1990).

    Google Scholar 

  459. H. Yamanaka, Y. Aoki, and T. Samizo, “Role of Silicon Self-Interstitials Injected by Thermal Oxidation in Oxygen Precipitation in Czochralski Silicon,” Jpn. J. Appl. Phys., vol. 29, no. 11, 2450–2455 (1990).

    Google Scholar 

  460. S. T. Dunham, A. M. Agarwal, and N. Jeng, “Measurements of Enhanced Diffusion of Buried Layers in Silicon Membrane Structures during Oxidation,” in: Impurities, Defects and Diffusion in Semiconductors: Bulk and Layered Structures, edited by D. J. Wolford, J. Bernholc, and E. E. Haller, Mat. Res. Soc. Symp. Proc, vol. 163, 543–548 (1990).

    Google Scholar 

  461. S. T. Dunham, A. M. Agarwal, and N. Jeng, “Determination of Silicon Point Defect Properties Using Buried Layer and Membranes,” in: Process Physics and Modeling in Semiconductor Technology, edited by G. R. Srinivasan, J. D. Plummer, and S. T. Pantelides, Electrochem. Soc. Proc, vol. 91-4, 516–528 (1991).

    Google Scholar 

  462. W. B. Rogers and H. Z. Massoud, “Determination of the Kinetic Coefficients of Silicon Self-Interstitials from Back-Side Oxidation/Front-Surface Stacking-Fault Growth Experiments,” J. Electrochem. Soc, vol. 138, no. 11, 3483–3491 (1991).

    Google Scholar 

  463. H.-J. Gossmann, C. S. Rafferty, H. S. Luftman, F. C. Unterwald, T. Boone, and J. M. Poate, “Oxidation Enhanced Diffusion in Si B-Doping Superlattices and Si Self-Interstitial Diffusivities,” Appl. Phys. Lett., vol. 63, no. 5, 639–641 (1993).

    Google Scholar 

  464. A. M. Agarwal and S. T. Dunham, “Determination of Silicon Point Defect Properties from Oxidation Enhanced Diffusion of Buried Layers,” Appl. Phys. Lett., vol. 63, no. 6, 800–802 (1993).

    Google Scholar 

  465. H. Yamanaka and Y. Aoki, “Crude Estimates of Diffusivity and Supersaturation of Silicon Self-Interstitials Injected by Thermal Oxidation of Czochralski Silicon,” Jpn. J. Appl. Phys., Part 2, vol. 33, no. 4B, L559–L562 (1994).

    Google Scholar 

  466. P. A. Stolk, H.-J. Gossmann, D. J. Eagleshm, D. C. Jacobson, J. M. Poate, and H. S. Luftman, “Trap-Limited Interstitial Diffusivity and Enhanced Boron Clustering in Silicon,” Appl. Phys. Lett., vol. 66, no. 5, 568–570 (1995).

    Google Scholar 

  467. H.-J. Gossmann, G. H. Gilmer, C. S. Rafferty, F. C. Unterwald, T. Boone, J. M. Poate, H. S. Luftman, and W. Frank, “Determination of Si Self-Interstitial Diffusivities from the Oxidation-Enhanced Diffusion in B Doping-Superlattices: The Influence of the Marker Layers,” J. Appl. Phys., vol. 77, no. 5, 1948–1951 (1995).

    Google Scholar 

  468. P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, and J. M. Poate, “Implantation and Transient Boron Diffusion: The Role of the Silicon Self-Interstitial,” in: Ion Implantation Technology— 94, edited by S. Coffa, G. Ferla, F. Priolo, and E. Rimini, Nuclear Instruments and Methods in Physics Research B, vol. 96, Amsterdam: Elsevier, 187–195 (1995).

    Google Scholar 

  469. H. G. A. Huizing, C. C. G. Visser, N. E. B. Cowern, P. A. Stolk, and R. C. M. de Kruif, “Ultrafast Interstitial Injection during Transient Enhanced Diffusion of Boron in Silicon,” Appl. Phys. Lett, vol. 69, no. 9, 1211–1213 (1996).

    Google Scholar 

  470. W. B. Knowlton, J. T. Walton, Y K. Wong, I. A. Mason, and E. E. Haller, “High Silicon Self-Interstitial Diffusivity As Revealed by Lithium Ion Drift,” in: Defects and Diffusion in Silicon Processing, edited by T. Diaz de la Rubia, S. Coffa, P. A. Stolk, and C. S. Rafferty, Mat. Res. Soc. Symp. Proc, vol. 469, 77–82 (1997).

    Google Scholar 

  471. E. N. Shauly, R. Ghez, and Y Komem, “Two-Dimensional Diffusion Characterization of Boron in Silicon Using Reverse Modeling,” in: Simulation of Semiconductor Processes and Devices 2001, edited by D. Tsoukalas and C. Tsamis, Vienna: Springer-Verlag, 384–387 (2001).

    Google Scholar 

  472. Y.-H. Lee, N. N. Gerasimenko, and J. W. Corbett, “EPR Study of Neutron-Irradiated Silicon: A Positive Charge State of the (100) Split Di-Interstitial,” Phys. Rev. B, vol. 14, no. 10, 4506–t520 (1976).

    Google Scholar 

  473. Y. H. Lee, “Silicon Di-Interstitial in Ion-Implanted Silicon,” Appl. Phys. Lett., vol. 73, no. 8, 1119–1121 (1998).

    Google Scholar 

  474. D. F. Daly, “New EPR Spectra in Irradiated Silicon,” J. Appl. Phys., vol. 42, no. 2, 864–865 (1971).

    Google Scholar 

  475. K. L. Brower, “EPR of a (001) Si Interstitial Complex in Irradiated Silicon,” Phys. Rev. B, vol. 14, no. 3, 872–883 (1976).

    Google Scholar 

  476. B. J. Coomer, J. P. Goss, R. Jones, S. Öberg, and P. R. Briddon, “Identification of the Tetra-Interstitial in Silicon,” J. Phys.: Condens. Matter, vol. 13, no. 1, L1–L7 (2001).

    Google Scholar 

  477. D. Pierreux and A. Stesmans, “Atomic Structure of the B3 Defect in Neutron-Irradiated Silicon,” Phys. Rev. B, vol. 68, 193208 (2003).

    Google Scholar 

  478. P. Stallinga, T. Gregorkiewicz, C. A. J. Ammerlaan, and Y. V. Gorelkinskii, “Electron Paramagnetic Resonance Study of the NL51 Spectrum in Hydrogen-Implanted Silicon,” Solid State Communications, vol. 90, no. 6, 401–404 (1994).

    Google Scholar 

  479. A. R. Chelyadinskii and V. A. Burenkov, “Model of the Pair Phosphorus Atom-Interstitial Silicon Atom,” Physics of the Solid State, vol. 40, no. 11, 1806–1808 (1998).

    Google Scholar 

  480. K. Murakami, K. Masuda, K. Gamo, and S. Namba, “ESR Studies on Annealing Behavior of Heavily Damaged Silicon,” in: Ion Implantation in Semiconductors, edited by S. Namba, New York: Plenum Press, 533–538 (1975).

    Google Scholar 

  481. T. Maekawa, S. Inone, and A. Usami, “Hole Trap Annealing in Neutron-Transmutation-Doped Silicon with Different Initial Resistivities,” Semicond. Sci. Technol., vol. 5, 663–668 (1990).

    Google Scholar 

  482. H. Lefèvre, “Annealing Behavior of Trap-Centers in Silicon Containing A-Swirl Defects,” Applied Physics A, vol. 29, 105–111 (1982).

    Google Scholar 

  483. B. N. Mukashev, A. V. Spitsyn, N. Fukuoka, and H. Saito, “Defects in Carbon-Implanted Silicon,” Jpn. J. Appl. Phys., vol. 21, no. 2, 399–400 (1982).

    Google Scholar 

  484. P. B. Rasband, P. Clancy, and M. O. Thompson, “Equilibrium Concentrations of Defects in Pure and B-Doped Silicon,” J. Appl. Phys., vol. 79, no. 12, 8998–9011 (1996).

    Google Scholar 

  485. L. Colombo, “Native Defects and Their Interactions in Silicon,” in: 20 th International Conference on Defects in Semiconductors, edited by C. Van de Walle and W. Walukiewicz, Physica B, vol. 273-274, 458–462 (1999).

    Google Scholar 

  486. B. J. Coomer, J. P. Goss, R. Jones, S. Öberg, and P. R. Briddon, “Interstitial Aggregates and a New Model for the I1/W Optical Centre in Silicon,” in: Proceedings of the 20 th International Conference on Defects in Semiconductors, edited by C. G. Van de Walle and W. Walukiewicz, Physica B, vol. 274, 505–508 (1999).

    Google Scholar 

  487. J. Kim, F. Kirchhoff, W G. Aulbur, J. W. Wilkins, F. S. Khan, and G. Kresse, “Thermally Activated Reorientation of Di-Interstitial Defects in Silicon,” Phys. Rev. Lett., vol. 83, no. 10, 1990–1993 (1999).

    Google Scholar 

  488. M. Hane, T. Ikezawa, and G. H. Gilmer, “Di-Interstitial Diffusivity and Migration Path Calculations Based on Tight-Binding Hamiltonian Molecular Dynamics,” in: 2000 International Conference on Simulation of Semiconductor Processes and Devices, Piscataway: IEEE, 119–122 (2000).

    Google Scholar 

  489. M. P. Chichkine and M. M. De Souza, “Dynamics of Self-Interstitial Cluster Formation in Silicon,” Phys. Rev. B, vol. 66, 045205 (2002).

    Google Scholar 

  490. D. A. Richie, J. Kim, S. A. Barr, K. R. A. Hazzard, R. Hennig, and J. W. Wilkins, “Complexity of Small Silicon Self-Interstitial Defects,” Phys. Rev. Lett., vol. 92, 045501 (2004).

    Google Scholar 

  491. S. K. Estreicher, M. Gharaibeh, P. A. Fedders, and P. Ordejón, “Unexpected Dynamics for Self-Interstitial Clusters in Silicon,” Phys. Rev. Lett., vol. 86, no. 7, 1247–1250 (2001).

    Google Scholar 

  492. D. A. Richie, J. Kim, R. Hennig, K. Hazzard, S. Barr, and J. W. Wilkins, “Large-Scale Molecular Dynamics Simulations of Interstitial Defect Diffusion in Silicon,” in: Modeling and Numerical Simulation of Materials Behavior and Evolution, edited by V. Tikare, E. A. Olevsky, and A. Zavaliangos, Mat. Res. Soc. Symp. Proc, vol. 731, W9.10.1–W9.10.5 (2002).

    Google Scholar 

  493. I. Martin-Bragado, M. Jaraiz, P. Castrillo, R. Pinacho, J. Barbolla, and M. M. De Souza, “Mobile Silicon Di-Interstitial: Surface, Self-Interstitial Clustering, and Transient Enhanced Diffusion Phenomena,” Phys. Rev. B, vol. 68, 195204 (2003).

    Google Scholar 

  494. M. Gharaibeh, S. K. Estreicher, and P. A. Fedders, “Molecular-Dynamics Studies of Self-Interstitial Aggregates in Si,” in: 20 th International Conference on Defects in Semiconductors, edited by C. Van de Walle and W. Walukiewicz, Physica B, vol. 273-274, 532–534 (1999).

    Google Scholar 

  495. G. M. Lopez and V. Fiorentini, “Vibrational Modes of Three-Membered Self-Interstitial Clusters in Silicon,” J. Phys.: Condens. Matter, vol. 15, 7851–7857 (2003).

    Google Scholar 

  496. N. Arai, S. Takeda, and M. Kohyama, “Self-Interstitial Clustering in Crystalline Silicon,” Phys. Rev. Lett., vol. 78, no. 22, 4265–4268 (1997).

    Google Scholar 

  497. P. Humble, “The Structure and Mechanism of Formation of Platelets in Natural Type Ia Diamond,” Proc. Roy. Soc. Lond. A, vol. 381, 65–81 (1982).

    Google Scholar 

  498. M. Kohyama and S. Takeda, “First-Principles Calculations of the Self-Interstitial Cluster I4 in Si,” Phys. Rev. B, vol. 60, no. 11, 8075–8080 (1999).

    Google Scholar 

  499. S. Birner, J. Kim, D. A. Richie, J. W. Wilkins, A. F. Voter, and T. Lenosky, “Accelerated Dynamics Simulations of Interstitial-Cluster Growth,” Solid State Communications, vol. 120, 279–282 (2001).

    Google Scholar 

  500. M. M. De Souza, M. P. Chichkine, and E. M. Sankara Narayanan, “A Study of Fully Coordinated Precursors in Silicon Using the Ackland Potential,” Physica B, vol. 304, 483–488 (2001).

    Google Scholar 

  501. M. P. Chichkine, M. M. De Souza, and E. M. Sankara Narayanan, “Growth of Precursors in Silicon Using Pseudopotential Calculations,” Phys. Rev. Lett., vol. 88, no. 8, 085501 (2002).

    Google Scholar 

  502. Z. Ciechanowska, G. Davies, and E. C. Lightowlers, “Uniaxial Stress Measurements on the 1039.8 meV Zero-Phonon Line in Irradiated Silicon,” Solid State Communications, vol. 49, no. 5, 427–31 (1984).

    Google Scholar 

  503. G. Davies, E. C. Lightowlers, and Z. E. Ciechanowska, “The 1018 meV (W or I1 Vibronic Band in Silicon,” J. Phys. C, vol. 20, 191–205 (1987).

    Google Scholar 

  504. K. Terashima, T. Ikarashi, M. Watanabe, and T. Kitano, “Luminescence Centers in High-Energy Ion-Implanted Silicon,” in: Defects in Semiconductors 19, edited by G. Davies and M. H. Nazaré, Materials Science Forum, vol. 258-263, 587–592 (1997).

    Google Scholar 

  505. O. O. Awadelkarim, “Photoluminescence Study of Radiative Channels in Ion-Implanted Silicon,” Phys. Rev. B, vol. 42, no. 9, 5635–5640 (1990).

    Google Scholar 

  506. T. Mchedlidze and M. Suezawa, “Properties of Tetra-Interstitial Agglomerate in Silicon: an ESR Study,” in: Proceedings of the 22 nd International Conference on Defects in Semiconductors, edited by K. Bonde Nielsen, A. Nylandsted Larsen, and G. Weyer, Physica B, vol. 340-342, 682–686 (2003).

    Google Scholar 

  507. M. Gharaibeh, S. K. Estreicher, and P. A. Fedders, “Dynamics of Si Self-Interstitial Clustering Using the Fast-Diffusing I3 Cluster,” Physica B, vol. 308-310, 510–512 (2001).

    Google Scholar 

  508. J. R. Noonan, C. G. Kirkpatrick, and B. G. Streetman, “Low-Temperature Photoluminescence from Boron Ion Implanted Si,” Radiation Effects, vol. 21, 225–228 (1974).

    Google Scholar 

  509. P. J. Schultz, T. D. Thompson, and R. G. Elliman, “Activation Energy for the Photoluminescence W Center in Silicon,” Appl. Phys. Lett., vol. 60, no. 1, 59–61 (1992).

    Google Scholar 

  510. M. Nakamura, “Order of the Formation Reaction and the Origin of the Photoluminescence W Center in Silicon Crystal,” Jpn. J. Appl. Phys., Part 2, vol. 40, no. 10A, L1000–L1002 (2001).

    Google Scholar 

  511. N. Bürger, K. Thonke, R. Sauer, and G. Pensl, “New Class of Related Optical Defects in Silicon Implanted with the Noble Gases He, Ne, Ar, Kr, and Xe,” Phys. Rev. Lett., vol. 52, no. 18, 1645–1648 (1984).

    Google Scholar 

  512. M. Nakamura, S. Nagai, Y. Aoki, and H. Naramoto, “Oxygen Participation in the Formation of the Photoluminescence W Center and the Center’s Origin in Ion-Implanted Silicon Crystals,” Appl. Phys. Lett., vol. 72, no. 11, 1347–1349 (1998).

    Google Scholar 

  513. H. Feick and E. R. Weber, “Annealing of the Photoluminescence W-Center in Proton-Irradiated Silicon,” in: 20 th International Conference on Defects in Semiconductors, edited by C. Van de Walle and W. Walukiewicz, Physica B, vol. 273-274, 497–500 (1999).

    Google Scholar 

  514. N. S. Minaev, A. V Mudrii, and V D. Tkachev, “Symmetry and Nature of the 1.0186 eV Luminescence Centre in Neutron-Irradiated Silicon,” phys. stat. sol. (b), vol. 108, K89–K94 (1981).

    Google Scholar 

  515. B. C. MacEvoy and S. J. Watts, “Defect Engineering Radiation Tolerant Silicon Detectors,” in: Gettering and Defect Engineering in Semiconductor Technology GADEST’97, edited by C. Claeys, J. Vanhellemont, H. Richter, and M. Kittler, Solid State Phenomena, vol. 57-58, 221–231 (1997).

    Google Scholar 

  516. R. J. Davis, H.-U. Habermeier, and J. Weber, “Photoluminescence of Low-Energy Ion Bombarded Silicon,” Appl. Phys. Lett, vol. 47, no. 12, 1295–1297 (1985).

    Google Scholar 

  517. M. Nakamura and S. Nagai, “Influence of High-Energy Electron Irradiation on the Formation and Annihilation of the Photoluminescence W Center and the Center’s Origin in a Proton-Implanted Silicon Crystal,” Phys. Rev. B, vol. 66, 155204 (2002).

    Google Scholar 

  518. S. J. Watts, “Irradiation Induced Defects in Silicon Detectors,” in: Crystalline Defects and Contamination: Their Impact and Control in Device Manufacturing II, edited by B. O. Kolbesen, C. Claeys, P. Stallhofer, and F. Tardif, Electrochem. Soc. Proc, vol. 97-22, 116–131 (1997).

    Google Scholar 

  519. J. L. Benton, S. Libertino, P. KringhoJ, D. J. Eaglesham, J. M. Poate, and S. Coffa, “Evolution from Point to Extended Defects in Ion Implanted Silicon,” J. Appl. Phys., vol. 82, no. 1, 120–125 (1997).

    Google Scholar 

  520. J. L. Benton, K. Halliburton, S. Libertino, D. J. Eaglesham, and S. Coffa, “Electrical Signatures and Thermal Stability of Interstitial Clusters in Ion Implanted Si,” J. Appl Phys., vol. 84, no. 9, 4749–756 (1998).

    Google Scholar 

  521. S. Libertino, S. Cofa, and J. L. Benton, “Formation, Evolution, and Annihilation of Interstitial Clusters in Ion-Implanted Si,” Phys. Rev. B, vol. 63, 195206 (2001).

    Google Scholar 

  522. P. K. Giri and Y. N. Mohapatra, “Electrical Characterization of MeV Heavy-Ion-Induced Damage in Silicon: Evidence for Defect Migration and Clustering,” J. Appl. Phys., vol. 84, no. 4, 1901–1912 (1998).

    Google Scholar 

  523. D. C. Schmidt, B. G. Svensson, M. Seibt, C. Jagadish, and G. Davies, “Photoluminescence, Deep Level Transient Spectroscopy and Transmission Electron Microscopy Measurements on MeV Self-Ion Implanted and Annealed n-Type Silicon,” J. Appl Phys., vol. 88, no. 5, 2309–2317 (2000).

    Google Scholar 

  524. M. Nakamura and S. Murakami, “Evolution of Photoluminescence Defect Clusters in Proton-and Copper-Implanted Silicon Crystals during Annealing,” J. Appl. Phys., vol. 94, no. 5, 3075–3081 (2003).

    Google Scholar 

  525. D. Stiebel and P. Pichler, “Transient-Diffusion Effects,” Appl. Phys. A, vol. 76, 1041–1048 (2003).

    Google Scholar 

  526. F. Schiettekatte, S. Roorda, R. Poirier, M. O. Fortin, S. Chazal, and R. Héliou, “Direct Evidence for 8-Interstitial-Controlled Nucleation of Extended Defects in c-Si,” Appl. Phys. Lett., vol. 77, no. 26, 4322–4324 (2000).

    Google Scholar 

  527. J. Kim, J. W. Wilkins, F. S. Khan, and A. Canning, “Extended Si 311 Defects,” Phys. Rev. B, vol. 55, no. 24, 16186–16197 (1997).

    Google Scholar 

  528. J. Frenkel, “Über die Wärmebewegung in festen und flüssigen Körpern,” Z. Physik, vol. 35, 652–669 (1926).

    MATH  Google Scholar 

  529. D. E. Hill, “Electron Bombardment of Silicon,” Phys. Rev., vol. 114, no. 6, 1414–1420 (1959).

    Google Scholar 

  530. G. K. Wertheim, “Temperature-Dependent Defect Production in Bombardment of Semiconductors,” Phys. Rev., vol. 115, no. 3, 568–569 (1959).

    Google Scholar 

  531. G. D. Watkins, J. W. Corbett, and R. M. Walker, “Spin Resonance in Electron Irradiated Silicon,” J. Appl. Phys., vol. 30, no. 8, 1198–1203 (1959).

    Google Scholar 

  532. H. J. Stein and F. L. Vook, “Electrical Studies of Electron-Irradiated n-Type Si: Impurity and Irradiation-Temperature Dependence,” Phys. Rev., vol. 163, no. 3, 790–800 (1967).

    Google Scholar 

  533. E. G. Wikner and D. P. Snowden, “Temperature Dependence of the Production of the Si-B1 Center by High-Energy Electrons,” Bull. Am. Phys. Soc, Series II, vol. 9, no. 7, 706 (1964).

    Google Scholar 

  534. L. J. Cheng and J. C. Correlli, “Recovery of Electrical Properties in 45-MeV-Electron-Irradiated n-Type Si from 80 to 350°K,” Phys. Rev., vol. 140, no. 6A, A2130–A2135 (1965).

    Google Scholar 

  535. J. W. MacKay and E. E. Klontz, “Low-Temperature Annealing Studies in Ge,” J. Appl. Phys., vol. 30, no. 8, 1269–1274 (1959).

    Google Scholar 

  536. R. E. Whan and F. L. Vook, “Infrared Studies of Defect Production in n-Type Si: Irradiation-Temperature Dependence,” Phys. Rev., vol. 153, no. 3, 814–822 (1967).

    Google Scholar 

  537. F. L. Vook and H. J. Stein, “Production of Defects in n-Type Silicon,” in: Radiation Effects in Semiconductors, edited by F. L. Vook, New York: Plenum Press, 99–114 (1968).

    Google Scholar 

  538. J. W. MacKay and E. E. Klontz, “Effects of Defect Charge State on Radiation Damage in Semiconductors,” in: Radiation Effects in Semiconductors, edited by F. L. Vook, New York: Plenum Press, 175–185 (1968).

    Google Scholar 

  539. B. L. Gregory and C. E. Barnes, “Defect Reordering at Low Temperatures in Gamma Irradiated n-Type Silicon,” in: Radiation Effects in Semiconductors, edited by F. L. Vook, New York: Plenum Press, 124–135 (1968).

    Google Scholar 

  540. V. V. Emtsev, T. V. Mashovets, and E. K. Nazaryan, “Metastable Frenkel Pairs in Silicon,” Sov. Phys. Semicond., vol. 16, no. 4, 440–443 (1982).

    Google Scholar 

  541. S. Bausch, H. Zillgen, and P. Ehrhart, “Frenkel Defects in Low Temperature e(-)-Irradiated Ge and Si Investigated by X-Ray Diffraction,” in: Defects in Semiconductors 18, edited by M. Suezawa and H. Katayama-Yoshida, Materials Science Forum, vol. 196-201, 1141–1145 (1995).

    Google Scholar 

  542. P. Ehrhart and H. Zillgen, “Bound Vacancy Interstitial Pairs in Irradiated Silicon,” Nuclear Instruments and Methods in Physics Research B, vol. 127/128, 27–31 (1997).

    Google Scholar 

  543. B. N. Mukashev, K. A. Abdullin, and Y V. Gorelkinskii, “Interactions of Primary Defects with Impurities in Silicon,” Nuclear Instruments and Methods in Physics Research B, vol. 186, 83–87 (2002).

    Google Scholar 

  544. A. Dal Pino, Jr., M. Needels, and J. D. Joannopoulos, “Oxygen-Induced Broken-Bond Defect in Silicon,” Phys. Rev. B, vol. 45, no. 7, 3304–3308 (1992).

    Google Scholar 

  545. M. Tang, L. Colombo, J. Zhou, and T. Diaz de la Rubia, “Intrinsic Point Defects in Crystalline Silicon: Tight-Binding Molecular Dynamics Studies of Self-Diffusion, Interstitial-Vacancy Recombination, and Formation Volumes,” Phys. Rev. B, vol. 55, no. 21, 14279–14289 (1997).

    Google Scholar 

  546. F Cargnoni, C. Gatti, and L. Colombo, “Formation and Annihilation of a Bond Defect in Silicon: An Ab Initio Quantum-Mechanical Characterization,” Phys. Rev. B, vol. 57, no. 1, 170–177 (1998).

    Google Scholar 

  547. M. T. Zawadzki, W. Luo, and P. Clancy, “Tight-Binding Molecular Dynamics Study of Vacancy-Interstitial Annihilation in Silicon,” Phys. Rev. B, vol. 63, 205205 (2001).

    Google Scholar 

  548. L. A. Marqués, L. Pelaz, J. Hernandez, J. Barbolla, and G. H. Gilmer, “Stability of Defects in Crystalline Silicon and Their Role in Amorphization,” Phys. Rev. B, vol. 64, 045214 (2001).

    Google Scholar 

  549. S. Goedecker, T. Deutsch, and L. Billard, “A Fourfold Coordinated Point Defect in Silicon,” Phys. Rev. Lett., vol. 88, no. 23, 235501 (2002).

    Google Scholar 

  550. R. Habu, K. Kojima, H. Harada, and A. Tomiura, “Diffusion of Point Defects in Silicon Crystals during Melt Growth. III Two Diffusor Model,” Jpn. J. Appl. Phys., vol. 32, no. 4, 1754–1758 (1993).

    Google Scholar 

  551. S. M. Hu, “Defects in Silicon Substrates,” J. Vac. Sci. Technol., vol. 14, no. 1, 17–31 (1977).

    Google Scholar 

  552. D. A. Antoniadis and I. Moskowitz, “Diffusion of Substitutional Impurities in Silicon at Short Oxidation Times: An Insight into Point Defect Kinetics,” J. Appl. Phys., vol. 53, no. 10, 6788–6796 (1982).

    Google Scholar 

  553. U. Gösele, W. Frank, and A. Seeger, “An Entropy Barrier Against Vacancy-Interstitial Recombination in Silicon,” Solid State Communications, vol. 45, no. 1, 31–33 (1983).

    Google Scholar 

  554. T. Sinno, Private communication (2002).

    Google Scholar 

  555. P. B. Moynagh and P. J. Rosser, “Quantification of Diffusion Mechanisms of Boron, Phosphorus, Arsenic, and Antimony in Silicon,” in: ESSDERC’89, edited by A. Heuberger, H. Ryssel, and P. Lange, Berlin: Springer-Verlag, 291–296 (1989).

    Google Scholar 

  556. E. Guerrero, W. Jüngling, H. Pötzl, U. Gösele, L. Mader, M. Grasserbauer, and G. Stingeder, “Determination of the Retarded Diffusion of Antimony by SIMS Measurements and Numerical Simulations,” J. Electrochem. Soc, vol. 133, no. 10, 2181–2185 (1986).

    Google Scholar 

  557. P. A. Packan, Physical Modeling of Transient Diffusion Effects in Silicon Due to Surface Oxidation and Ion-Implantation, Ph.D. thesis, Integrated Circuits Laboratory, Department of Electrical Engineering, Stanford University (1991).

    Google Scholar 

  558. E. A. Perozziello, P. B. Griffin, and J. D. Plummer, “Retarded Diffusion of Sb in a High Concentration As Background during Silicon Oxidation,” Appl. Phys. Lett., vol. 61, no. 3, 303–305 (1992).

    Google Scholar 

  559. H.-J. Gossmann, T. K. Mogi, C. S. Rafferty, P. A. Stolk, D. J. Eaglesham, H. S. Luftman, F. C. Unterwald, T. Boone, M. O. Thompson, and J. M. Poate, “Influence of Vacuum Annealing on Native Si Point Defects,” in: ULSI Science and Technology/1995, edited by E. M. Middlesworth and H. Massoud, Electrochem. Soc. Proc, vol. 95-5, 177–186 (1995).

    Google Scholar 

  560. S. Loualiche, C. Lucas, P. Baruch, J. P. Gailliard, and J. C. Pfister, “Theoretical Model for Radiation Enhanced Diffusion and Redistribution of Impurities,” phys. stat. sol. (a), vol. 69, 663–676 (1982).

    Google Scholar 

  561. P. Pichler, R. Schork, T. Klauser, and H. Ryssel, “Evaluation of the Point Defect Bulk Recombination Rate by Ion Implantation at High Temperatures,” IEICE Trans. Electron., vol. E75-C, no. 2, 128–137 (1992).

    Google Scholar 

  562. P. Pichler and R. Schork, “On Modeling of Ion Implantation at High Temperatures,” Radiation Effects and Defects in Solids, vol. 127, 367–384 (1994).

    Google Scholar 

  563. B. Baccus, T. Wada, N. Shigyo, M. Norishima, H. Nakajima, K. Inoue, T. Iinuma, and H. Iwai, “A Study of Nonequilibrium Diffusion Modeling — Applications to Rapid Thermal Annealing and Advanced Bipolar Technologies,” IEEE Trans. Electron Devices, vol. 39, no. 3, 648–661 (1992).

    Google Scholar 

  564. S. T. Dunham, “Modeling of Phosphorus Diffusion in Silicon,” in: Process Physics and Modeling in Semiconductor Technology, edited by G. R. Srinivasan, K. Taniguchi, and C. S. Murthy, Electrochem. Soc. Proc, vol. 93-6, 54–65 (1993).

    Google Scholar 

  565. M. M. Bunea, P. Fastenko, and S. T. Dunham, “Atomistic Simulations of Damage Evolution in Silicon,” in: Si Front-End ProcessingPhysics and Technology of Dopant-Defect Interactions, edited by H.-J. L. Gossmann, T. E. Haynes, M. E. Law, A. Nylandsted Larsen, and S. Odanaka, Mat. Res. Soc. Symp. Proc, vol. 568, 135–140 (1999).

    Google Scholar 

  566. K. M. Beardmore, W. Windl, B. P. Haley, and N. Grønbech-Jensen, “Diffusion Mechanisms and Capture Radii in Silicon,” in: Computational Nanoscience and Nanotechnology 2002, Cambridge: Applied Computational Research Society, 251–254 (2002).

    Google Scholar 

  567. E. Sirtl, “Facts and Trends in Silicon Material Processing,” in: Semiconductor Silicon 1977, edited by H. R. Huff and E. Sirtl, Electrochem. Soc Proc, vol. 77-2, 4–17 (1977).

    Google Scholar 

  568. P. Baruch, “Radiation Defects and Impurity Diffusion in Silicon,” in: Radiation Effects in Semiconductors, 1976, edited by N. B. Urli and J. W. Corbett, Inst. Phys. Conf. Sen, no. 31, 126–143 (1977).

    Google Scholar 

  569. S. Mizuo and H. Higuchi, “Retardation of Sb Diffusion in Si during Thermal Oxidation,” Jpn. J. Appl Phys., vol. 20, no. 4, 739–744 (1981).

    Google Scholar 

  570. N. A. Stolwijk and J. Hölzl, “The Influence of Dislocations on the Diffusion Behavior of Gold in Silicon,” in: Impurity Diffusion and Gettering in Semiconductors, edited by R. B. Fair, C. W. Pearce, and J. Washburn, Mat. Res. Soc Symp. Proc, vol. 36, 137–142 (1985).

    Google Scholar 

  571. N. A. Stolwijk, J. Hölzl, W. Frank, E. R. Weber, and H. Mehrer, “Diffusion of Gold in Dislocation-Free or Highly Dislocated Silicon Measured by the Spreading-Resistance Technique,” Appl. Phys. A, vol. 39, 37–8 (1986).

    Google Scholar 

  572. H. Bracht, N. A. Stolwijk, I. Yonenaga, and H. Mehrer, “Interstitial-Substitutional Diffusion Kinetics and Dislocation-Induced Trapping of Zinc in Plastically Deformed Silicon,” phys. stat. sol. (a), vol. 137, 499–514 (1993).

    Google Scholar 

  573. W. Lerch, N. A. Stolwijk, H. Mehrer, and C. Poisson, “Diffusion of Platinum into Dislocated and Non-Dislocated Silicon,” Semicond. Sci. Technol., vol. 10, 1257–1263 (1995).

    Google Scholar 

  574. A. Seeger and W. Frank, “On the Theory of the Diffusion of Gold into Dislocated Silicon Wafers,” Appl. Phys. A, vol. 27, 171–176 (1982).

    Google Scholar 

  575. N. A. Stolwijk, J. Hölzl, W. Frank, J. Hauber, and H. Mehrer, “Decoration of Defects in Silicon with Gold, and Related Subjects,” phys. stat. sol. (a), vol. 104, 225–245 (1987).

    Google Scholar 

  576. S. Kästner and J. Hesse, “The Influence of Dislocations on the Diffusion of Gold in Silicon,” phys. stat. sol. (a), vol. 25, 261–267 (1974).

    Google Scholar 

  577. W.-S. Yang, W. J. Taylor, B. P. R. Marioton, and U. Gösele, “The Efficiency of Dislocations As Sinks for Silicon Self-Interstitials in Ribbon-Grown Polycrystalline Silicon,” in: Poly crystalline Semiconductors II, edited by J. H. Werner and H. P. Strunk, Springer Proceedings in Physics, vol. 54, 236–241 (1991).

    Google Scholar 

  578. B. Pichaud, G. Mariani, W. J. Taylor, and W.-S. Yang, “Dislocation-Gold Interactions in FZ and CZ Silicon: The Role of Self-Interstitials,” in: Dislocations’ 93, edited by J. Rabier, A. George, Y. Bréchet, and L. Kubin, Solid State Phenomena, vol. 35-36, 491–96 (1994).

    Google Scholar 

  579. D. Stiebel and P. Pichler, “Recombination of Point Defects via Extended Defects and Its Influence on Dopant Diffusion,” in: Simulation of Semiconductor Processes and Devices 1998, edited by K. De Meyer and S. Biesemans, Vienna: Springer-Verlag, 360–363 (1998).

    Google Scholar 

  580. P. B. Griffin, S. T. Ahn, W A. Tiller, and J. D. Plummer, “Model for Bulk Effects on Si Interstitial Diffusivity in Silicon,” Appl. Phys. Lett., vol. 51, no. 2, 115–117 (1987).

    Google Scholar 

  581. N. E. B. Cowern, “Analytical Description for the Diffusion and Recombination of Point Defects in Silicon,” Appl. Phys. Lett, vol. 54, no. 15, 1415–1417 (1989).

    Google Scholar 

  582. H.-J. Gossmann, C. S. Rafferty, P. A. Stolk, D. J. Eaglesham, G. H. Gilmer, J. M. Poate, H.-H. Vuong, T. K. Mogi, and M. O. Thompson, “Properties of Point-Defects in Si for Process Modeling,” in: Modeling and Simulation of Thin-Film Processing, edited by D. J. Srolovitz, C. A. Volkert, M. J. Fluss, and R. J. Kee, Mat. Res. Soc. Symp. Proc, vol. 389, 3–14 (1995).

    Google Scholar 

  583. P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, and J. M. Poate, “The Effect of Carbon on Diffusion in Silicon,” Materials Science and Engineering B, vol. 36, 275–281 (1996).

    Google Scholar 

  584. U. Gösele, A. Plößl, and T. Y. Tan, “The Influence of Carbon on the Effective Diffusivities of Intrinsic Point Defects in Silicon,” in: Process Physics and Modeling in Semiconductor Technology, edited by G. R. Srinivasan, C. S. Murthy, and S. T. Dunham, Electrochem. Soc. Proc, vol. 96-4, 309–323 (1996).

    Google Scholar 

  585. M. D. Johnson, M.-J. Caturla, and T. Diaz de la Rubia, “A Kinetic Monte-Carlo Study of the Effective Diffusivity of the Silicon Self-Interstitial in the Presence of Carbon and Boron,” J. Appl. Phys., vol. 84, no. 4, 1963–1967 (1998).

    Google Scholar 

  586. H. U. Jäger, “An Explanation of Trap-Limited Self-Interstitial Diffusion and Enhanced Boron Clustering in Boron Doped Silicon Superlattices,” in: Process Physics and Modeling in Semiconductor Technology, edited by G. R. Srinivasan, C. S. Murthy, and S. T. Dunham, Electrochem. Soc. Proc, vol. 96-4, 210–215 (1996).

    Google Scholar 

  587. R. A. Casali, H. Rücker, and M. Methfessel, “Interaction of Vacancies with Interstitial Oxygen in Silicon,” Appl. Phys. Lett., vol. 78, no. 7, 913–915 (2001).

    Google Scholar 

  588. N. E. B. Cowern, “Interstitial Traps and Diffusion in Epitaxial Silicon Films,” Appl. Phys. Lett., vol. 64, no. 20, 2646–2648 (1994).

    Google Scholar 

  589. H.-H. Vuong, H.-J. Gossmann, C. S. Rafferty, H. S. Luftman, F. C. Unterwald, D. C. Jacobson, R. E. Ahrens, and T. Boone, “Influence of Fluorine Implant on the Transient Enhanced Diffusion of Boron: Determination of Process Modeling Parameters,” Electrochem. Soc Extended Abstracts, vol. 95-1, 442–443 (1995).

    Google Scholar 

  590. H.-H. Vuong, H.-J. Gossmann, C. S. Rafferty, H. S. Luftman, F. C. Unterwald, D. C. Jacobson, R. E. Ahrens, T. Boone, and P. M. Zeitzoff, “Influence of Fluorine Implant on Boron Diffusion: Determination of Process Modeling Parameters,” J. Appl. Phys., vol. 77, no. 7, 3056–3060 (1995).

    Google Scholar 

  591. F. Giannazzo, S. Mirabella, D. De Salvador, E. Napolitani, V. Raineri, A. Camera, A. V. Drigo, A. Terrasi, and F. Priolo, “Direct Observation of Two-Dimensional Diffusion of the Self-Interstitials in Crystalline Si,” Phys. Rev. B, vol. 66, 161310 (2002).

    Google Scholar 

  592. A. M. Agarwal and S. T. Dunham, “Consistent Quantitative Model for the Spatial Extent of Point Defect Interactions in Silicon,” J. Appl. Phys., vol. 78, no. 9, 5313–5319 (1995).

    Google Scholar 

  593. D. M. Maher, A. Staudinger, and J. R. Patel, “Characterization of Structural Defects in Annealed Silicon Containing Oxygen,” J. Appl. Phys., vol. 47, no. 9, 3813–3825 (1976).

    Google Scholar 

  594. T. Y. Tan and W. K. Tice, “Oxygen Precipitation and the Generation of Dislocations in Silicon,” Phil. Mag., vol. 34, no. 4, 615–631 (1976).

    Google Scholar 

  595. S. M. Hu, “The Shrinkage and Growth of Oxidation Stacking Faults in Silicon and the Influence of Bulk Oxygen,” J. Appl. Phys., vol. 51, no. 7, 3666–3671 (1980).

    Google Scholar 

  596. S. T. Ahn, H. W. Kennel, J. D. Plummer, W. A. Tiller, Z. U. Rek, and S. R. Stock, “Effect of Oxygen Precipitation on Phosphorus Diffusion in Czochralski Silicon,” Appl. Phys. Lett., vol. 53, no. 1, 34–36 (1988).

    Google Scholar 

  597. A. Bourret and W. Schröter, “HREM of SiP Precipitates at the (111) Silicon Surface during Phosphorus Predeposition,” Ultramicroscopy, vol. 14, 97–106 (1984).

    Google Scholar 

  598. S. Mizuo and H. Higuchi, “Effects of Backside Oxidation on the Size of Oxidation Induced Stacking Faults at the Front Surface of FZ Si Wafers,” Jpn. J. Appl. Phys., vol. 21, no. 11, 1547–1553 (1982).

    Google Scholar 

  599. S. Mizuo and H. Higuchi, “Anomalous Diffusion of B and P in Si Directly Masked with S13N4,” Jpn. J. Appl. Phys., vol. 21, no. 2, 281–286 (1982).

    Google Scholar 

  600. S. Mizuo and H. Higuchi, “Effects of Back-Side Oxidation of Si Substrates on Sb Diffusion at Front Side,” J. Electrochem. Soc, vol. 130, no. 9, 1942–1947 (1983).

    Google Scholar 

  601. S. M. Hu, “Formation of Stacking Faults and Enhanced Diffusion in the Oxidation of Silicon,” J. Appl. Phys., vol. 45, no. 4, 1567–1573 (1974).

    Google Scholar 

  602. M. Hamasaki, “On an Analytical Solution for Two-Dimensional Diffusion of Silicon Self-Interstitials during Oxidation of Silicon,” Solid-State Electronics, vol. 25, no. 1, 1–4 (1982).

    Google Scholar 

  603. A. L. Aseev and V. M. Astakhov, “Interaction of Point Defects with the Surface of Silicon Crystals Irradiated in High-Voltage Electron Microscope,” Sov. Phys. Solid State, vol. 24, no. 7, 1163–1166 (1982).

    Google Scholar 

  604. A. L. Aseev, S. G. Denisenko, and L. I. Fedina, “Influence of the Processes of Point Defect Annihilation on the Growth of Interstitial Atom Clusters during Irradiation of Si and Ge Crystals with Electrons in a High-Voltage Electron Microscope,” Sov. Phys. Semicond., vol. 25, no. 4, 352–355 (1991).

    Google Scholar 

  605. Y.-S. Shin and C.-K. Kim, “The Effect of Si-SiO2 Interface on the Excess Point Defect Distribution in Silicon,” in: Semiconductor Processing, edited by D. C. Gupta, ASTM Special Technical Publication, vol. 850, 283–293 (1984).

    Google Scholar 

  606. S. W. Crowder, P. B. Griffin, and J. D. Plummer, “Nitridation Enhanced Diffusion of Antimony in Bulk and Silicon-on-Insulator Material,” in: Process Physics and Modeling in Semiconductor Technology, edited by G. R. Srinivasan, C. S. Murthy, and S. T. Dunham, Electrochem. Soc. Proc, vol. 96-4, 54–63 (1996).

    Google Scholar 

  607. H. Rücker, B. Heinemann, and R. Kurps, “Nonequilibrium Point Defects and Dopant Diffusion in Carbon-Rich Silicon,” Phys. Rev. B, vol. 64, 073202 (2001).

    Google Scholar 

  608. Y. Shin and C. Kim, “A Two-Dimensional Model for the Excess Interstitial Distribution in Silicon during Thermal Oxidation,” IEEE Trans. Electron Devices, vol. ED-31, no. 6, 797–800 (1984).

    Google Scholar 

  609. D. Collard and K. Taniguchi, “IMPACT — A Point-Defect-Based Two-Dimensional Process Simulator: Modeling the Lateral Oxidation-Enhanced Diffusion of Dopants in Silicon,” IEEE Trans. Electron Devices, vol. ED-33, no. 10, 1454–1462 (1986).

    Google Scholar 

  610. C. S. Rafferty, M. E. Law, P. B. Griffin, J. D. Shott, R. W. Dutton, and J. D. Plummer, “Modeling LOCOS Effects on Diffusion,” in: Semiconductor Silicon, edited by H. R. Huff, T. Abe, and B. Kolbesen, Electrochem. Soc. Proc, vol. 86-4, 426–436 (1986).

    Google Scholar 

  611. M. D. Giles, “Transient Phosphorus Diffusion below the Amorphization Threshold,” Electrochem. Soc. Extended Abstracts, vol. 90-1, 369–370 (1990).

    Google Scholar 

  612. Y. Shibata, K. Taniguchi, and C. Hamaguchi, “Stripe Width Dependence of Oxidation-Enhanced Diffusion in Submicron Local Oxidation of Silicon Structures,” J. Appl. Phys., vol. 70, no. 9, 4846–851 (1991).

    Google Scholar 

  613. H. Jacobs, A. von Schwerin, D. Scharfetter, and F. Lau, “MOSFET Reverse Short Channel Effect Due to Silicon Interstitial Capture in Gate Oxide,” in: Technical Digest of the 1993 International Electron Devices Meeting (IEDM), Piscataway: IEEE, 307–310 (1993).

    Google Scholar 

  614. J. J. van Dort, H. Lifka, P. C. Zalm, R. C. M. de Kruif, W. B. de Boer, P. H. Woerlee, C. A. H. Juffermans, A. J. Walker, J. W. Slotboom, and N. E. B. Cowern, “A High-Resolution Study of Two-Dimensional Oxidation-Enhanced Diffusion in Silicon,” in: Technical Digest of the 1993 International Electron Devices Meeting (IEDM), Piscataway: IEEE, 299–302 (1993).

    Google Scholar 

  615. S. W. Crowder, P. B. Griffin, and J. D. Plummer, “Oxidation Enhanced Dopant Diffusion in Thin SOI Films,” in: Process Physics and Modeling in Semiconductor Technology, edited by G. R. Srinivasan, K. Taniguchi, and C. S. Murthy, Electrochem. Soc. Proc, vol. 93-6, 108–119 (1993).

    Google Scholar 

  616. A. M. Agarwal and S. T. Dunham, “Models for the Physical Extent of Point Defect Interactions in Silicon,” in: Process Physics and Modeling in Semiconductor Technology, edited by G. R. Srinivasan, K. Taniguchi, and C. S. Murthy, Electrochem. Soc. Proc, vol. 93-6, 149–158 (1993).

    Google Scholar 

  617. M. J. van Dort, H. Lifka, P. C. Zalm, W. B. de Boer, P. H. Woerlee, J. W. Slotboom, and N. E. B. Cowern, “New Technique for Measuring Two-Dimensional Oxidation-Enhanced Diffusion in Silicon at Low Temperatures,” Appl. Phys. Lett., vol. 64, no. 16, 2130–2132 (1994).

    Google Scholar 

  618. S. W. Crowder, C. J. Hsieh, P. B. Griffin, and J. D. Plummer, “Effect of Buried Si-SiO2 Interfaces on Oxidation and Implant-Enhanced Dopant Diffusion in Thin Silicon-on-Insulator Films,” J. Appl. Phys., vol. 76, no. 5, 2756–2764 (1994).

    Google Scholar 

  619. M. J. van Dort, W. van der Wei, J. W. Slotboom, N. E. B. Cowern, M. P. G. Knuvers, J. Lifka, and P. C. Zalm, “Two-Dimensional Transient Enhanced Diffusion and Its Impact on Bipolar Transistors,” in: Technical Digest of the 1994 International Electron Devices Meeting (IEDM), Piscataway: IEEE, 865–868 (1994).

    Google Scholar 

  620. D. R. Lim, C. S. Rafferty, and F. P. Klemens, “The Role of the Surface in Transient Enhanced Diffusion,” Appl. Phys. Lett., vol. 67, no. 16, 2302–2304 (1995).

    Google Scholar 

  621. A. Agarwal, H.-J. Gossmann, D. J. Eaglesham, L. Pelaz, D. C. Jacobson, T. E. Haynes, and Y. E. Erokhin, “Reduction of Transient Diffusion from 1-5 keV Si+ Ion Implantation Due to Surface Annihilation of Interstitials,” Appl. Phys. Lett., vol. 71, no. 21, 3141–3143 (1997).

    Google Scholar 

  622. B. Colombeau, F. Cristiano, G. Ben Assayag, A. Altibelli, and A. Claverie, “Energetics of Interstitial Defects and TED in Ultra Low Energy Implants,” in: Ion Implantation Technology2000, edited by H. Ryssel, L. Frey, J. Gyulai, and H. Glawischnig, Piscataway: IEEE, 107–110 (2000).

    Google Scholar 

  623. B. Colombeau, F. Cristiano, A. Altibelli, C. Bonafos, G. Ben Assayag, and A. Claverie, “Atomistic Simulations of Extrinsic Defects Evolution and Transient Enhanced Diffusion in Silicon,” Appl. Phys. Lett., vol. 78, no. 7, 940–942 (2001).

    Google Scholar 

  624. S. Mirabella, A. Coati, D. De Salvador, E. Napolitani, A. Mattoni, G. Bisognin, M. Berti, A. Camera, A. V. Drigo, S. Scalese, S. Pulvirenti, A. Terrasi, and F. Priolo, “Interaction between Self-Interstitials and Substitutional C in Silicon: Interstitial Trapping and C Clustering Mechanism,” Phys. Rev. B, vol. 65, 045209 (2002).

    Google Scholar 

  625. N. A. Stolwijk, W Lerch, and A. Giese, “Modeling of the Surface Annihilation of Excess Self-Interstitials Generated by Gold Diffusion into Silicon,” in: Semiconductor Process and Device Performance Modelling, edited by S. T. Dunham and J. S. Nelson, Mat. Res. Soc. Symp. Proc, vol.490, 111–116 (1998).

    Google Scholar 

  626. J. Boussey-Said, N. Guillemot, and J. Stoemenos, “Recombination of Oxidation-Induced Silicon Interstitials at Si/SiO2 Interfaces in SOI Structures,” in: 7992 IEEE International SOI Conference, New York: IEEE, 70–71 (1992).

    Google Scholar 

  627. S. W. Crowder, P. B. Griffin, C. J. Hsieh, G. Y. Wei, J. D. Plummer, and L. P. Allen, “Oxidation Enhanced Dopant Diffusion in Separation by Implantation by Oxygen Silicon-on-Insulator Material,” Appl. Phys. Lett, vol. 64, no. 24, 3264–3265 (1994).

    Google Scholar 

  628. S. Pindl, M. Biebl, E. Hammer, H. Schäfer, and H. v. Philipsborn, “Oxidation Enhanced Diffusion of Boron in Silicon-on-Insulator Substrates,” in: ULSI Science and Technology/1997, edited by H. Z. Massoud, H. Iwai, C. Claeys, and R. B. Fair, Electrochem. Soc. Proc, vol. 97-3, 623–631 (1997).

    Google Scholar 

  629. S. M. Hu, “Kinetics of Interstitial Supersaturation during Oxidation of Silicon,” Appl. Phys. Lett., vol. 43, no. 5, 449–451 (1983).

    Google Scholar 

  630. M. E. Law, Y. M. Haddara, and K. S. Jones, “Effect of the Silicon/Oxide Interface on Interstitials: Di-Interstitial Recombination,” J. Appl. Phys., vol. 84, no. 7, 3555–3560 (1998).

    Google Scholar 

  631. P. B. Griffin and J. D. Plummer, “Implications of Oxidation Models on the Point Defect Behavior in the Silicon Substrate,” in: The Physics and Chemistry of SiO 2 and the Si-SiO 2 Interface, edited by C. R. Helms and B. E. Deal, New York: Plenum Press, 469–476 (1988).

    Google Scholar 

  632. W. A. Tiller, “On the Kinetics of the Thermal Oxidation of Silicon. III. Coupling with Other Key Phenomena,” J. Electrochem. Soc, vol. 128, no. 3, 689–697 (1981).

    MathSciNet  Google Scholar 

  633. A. M. Lin, R. W. Dutton, D. A. Antoniadis, and W. A. Tiller, “The Growth of Oxidation Stacking Faults and the Point Defect Generation at Si-SiO Interface during Thermal Oxidation of Silicon,” J. Electrochem. Soc, vol. 128, no. 5, 1121–1130 (1981).

    Google Scholar 

  634. S. T. Dunham and J. D. Plummer, “Point-Defect Generation during Oxidation of Silicon in Dry Oxygen. I. Theory,” J. Appl. Phys., vol. 59, no. 7, 2541–2550 (1986).

    Google Scholar 

  635. S. T. Dunham and J. D. Plummer, “Point-Defect Generation during Oxidation of Silicon in Dry Oxygen. II. Comparison to Experiment,” J. Appl. Phys., vol. 59, no. 7, 2551–2561 (1986).

    Google Scholar 

  636. S. T. Dunham, “Interstitial Kinetics near Oxidizing Silicon Interfaces,” J. Electrochem. Soc, vol. 136, no. 1, 250–254 (1989).

    Google Scholar 

  637. K. Taniguchi, Y Shibata, and C. Hamaguchi, “Theoretical Model for Self-Interstitial Generation at the Si/SiO2 Interface during Thermal Oxidation of Silicon,” J. Appl. Phys., vol. 65, no. 7, 2723–2727 (1989).

    Google Scholar 

  638. Y Shibata, S. Hashimoto, K. Taniguchi, and C. Hamaguchi, “Oxidation Enhanced Diffusion of Phosphorus over a Wide Range of Oxidation Rates,” J. Electrochem. Soc, vol. 139, no. 1, 231–237 (1992).

    Google Scholar 

  639. S. T. Ahn, H. W. Kennel, W A. Tiller, and J. D. Plummer, “Vacancy Supersaturation in Si under SiO2 by SiO Formation during Annealing in Ar,” J. Appl Phys., vol. 65, no. 8, 2957 (1989).

    Google Scholar 

  640. S. T. Dunham, “Interaction of Silicon Point Defects with SiO2 Films,” J. Appl. Phys., vol. 71, no. 2, 685–696 (1992).

    Google Scholar 

  641. N. Guillemot, D. Tsoukalas, C. Tsamis, J. Margail, A. M. Papon, and J. Stoemenos, “Suppression Mechanisms for Oxidation Stacking Faults in Silicon on Insulator,” J. Appl. Phys., vol. 71, no. 4, 1713–1720 (1992).

    Google Scholar 

  642. C. Tsamis, D. Tsoukalas, and J. Stoemenos, “Comparison between the Growth and Shrinkage of Oxidation Stacking Faults in Silicon and Silicon on Insulator,” J. Appl. Phys., vol. 73, no. 7, 3246–3249 (1993).

    Google Scholar 

  643. C. Tsamis and D. Tsoukalas, “Model for the Recombination Velocity of Silicon Interstitials at Nonoxidizing Interfaces,” J. Appl. Phys., vol. 84, no. 12, 6650–6658 (1998).

    Google Scholar 

  644. M. Hane, T. Ikezawa, M. Hiroi, and M. Matsumoto, “Dopant Diffusion Model Refinement and Its Impact on the Calculation of Reverse Short Channel Effect,” in: Technical Digest of the 1996 International Electron Devices Meeting (IEDM), Piscataway: IEEE, 803–806 (1996).

    Google Scholar 

  645. D. Tsoukalas, C. Tsamis, and J. Stoemenos, “Investigation of Silicon Interstitial Reactions with Insulating Films Using the Silicon Wafer Bonding Technique,” Appl. Phys. Lett., vol. 63, no. 23, 3167–3169 (1993).

    Google Scholar 

  646. J. F. Shepard, R. J. Dendall, and P. Balk, “Study of a Liquid Source Boron Diffusion Process for Silicon,” Electrochem. Soc. Extended Abstracts, vol. 66-2, no. 196, 87–90 (1966).

    Google Scholar 

  647. G. N. Wills, “The Orientation Dependent Diffusion of Boron in Silicon under Oxidizing Conditions,” Solid-State Electronics, vol. 12, 133–134 (1969).

    Google Scholar 

  648. K. E. Bean and P. S. Gleim, “The Influence of Crystal Orientation on Silicon Semiconductor Processing,” Proc. IEEE, vol. 57, no. 9, 1469–1476 (1969).

    Google Scholar 

  649. R. A. Kovalev, V. B. Bernikov, Y. I. Pashintsev, and V. A. Marasanov, “Boron Diffusion in Silicon along Different Crystallographic Orientations,” Sov. Phys. Solid State, vol. 11, no. 7, 1571–1573 (1970).

    Google Scholar 

  650. M. Okamura, “The Orientation Dependence of Boron Diffusion,” Jpn. J. Appl. Phys., vol. 9, 848–849 (1970).

    Google Scholar 

  651. T. C. Chan and C. C. Mai, “Diffusion of Boron, Phosphorus, Arsenic, and Antimony into (100) and (111) Silicon Slices,” Proc. IEEE, vol. 58, no. 4, 588–589 (1970).

    Google Scholar 

  652. P. S. Dobson, “The Effect of Oxidation on Anomalous Diffusion in Silicon,” Phil. Mag., vol. 24, 567–576 (1971).

    Google Scholar 

  653. D. J. D. Thomas, “Surface Damage and Copper Precipitation in Silicon,” phys. stat. sol., vol. 3, 2261 (1963).

    Google Scholar 

  654. H. J. Queisser and P. G. G. van Loon, “Growth of Lattice Defects in Silicon during Oxidation,” J. Appl. Phys., vol. 35, 3066–3067 (1964).

    Google Scholar 

  655. G. R. Booker and W. J. Tunstall, “Diffraction Contrast Analysis of Two-Dimensional Defects Present in Silicon after Annealing,” Phil. Mag., vol. 13, 71–83 (1966).

    Google Scholar 

  656. R. J. Jaccodine and C. M. Drum, “Extrinsic Stacking Faults in Silicon after Heating in Wet Oxygen,” Appl. Phys. Lett., vol. 8, no. 1, 29–30 (1966).

    Google Scholar 

  657. A. W. Fisher and J. A. Amick, “Defect Structure on Silicon Surfaces after Thermal Oxidation,” J. Electrochem. Soc, vol. 113, no. 10, 1054–1060 (1966).

    Google Scholar 

  658. M. L. Joshi, “Stacking Faults in Steam-Oxidized Silicon,” Acta Metallurgica, vol. 14, 1157–1172 (1966).

    Google Scholar 

  659. O. L. Krivanek and D. M. Maher, “The Core Structure of Extrinsic Stacking Faults in Silicon,” Appl. Phys. Lett., vol. 32, no. 8, 451–453 (1978).

    Google Scholar 

  660. D. A. Antoniadis, “Oxidation-Induced Point Defects in Silicon,” J. Electrochem. Soc, vol. 129, no. 5, 1093–1097 (1982).

    Google Scholar 

  661. S. M. Hu, “Interstitial and Vacancy Concentrations in the Presence of Interstitial Injection,” J. Appl. Phys., vol. 57, no. 4, 1069–1075 (1985).

    Google Scholar 

  662. R. Francis and P. S. Dobson, “The Effect of Oxidation on the Diffusion of Phosphorus in Silicon,” J. Appl. Phys., vol. 50, no. 1, 280–284 (1979).

    Google Scholar 

  663. C. Hill, “Measurements of Local Diffusion Coefficients in Planar Device Structures,” in: Semiconductor Silicon, edited by H. R. Huff, R. J. Kriegler, and Y. Takeishi, Electrochem. Soc. Proc, vol. 81-5, 988–1006 (1981).

    Google Scholar 

  664. S. Mizuo and H. Higuchi, “Effects of Oxidation on Aluminium Diffusion in Silicon,” Jpn. J. Appl. Phys., vol. 21, no. 1, 56–60 (1982).

    MathSciNet  Google Scholar 

  665. S. Mizuo and H. Higuchi, “Oxidation Effects on Gallium Diffusion in Silicon,” Denki Kagaku, vol. 50, no. 4, 338–343 (1982).

    Google Scholar 

  666. T. Y Tan and B. J. Ginsberg, “Observation of Oxidation-Enhanced and-Retarded Diffusion of Antimony in Silicon: The Behavior of (111) Wafers,” in: Defects in Semiconductors II, edited by S. Mahajan and J. W. Corbett, Mat. Res. Soc. Symp. Proc, vol. 14, 141–145 (1983).

    Google Scholar 

  667. S. T. Dunham and N. Jeng, “Dopant Diffusion during High-Temperature Oxidation of Silicon,” Appl. Phys. Lett., vol. 59, no. 16, 2016–2018 (1991).

    Google Scholar 

  668. Y Hayafuji, K. Kajiwara, and S. Usui, “Shrinkage and Growth of Oxidation Stacking Faults during Thermal Nitridation of Silicon and Oxidized Silicon,” J. Appl. Phys., vol. 53, no. 12, 8639–8646 (1982).

    Google Scholar 

  669. S. Mizuo, T. Kusaka, A. Shintani, M. Nanba, and H. Higuchi, “Effect of Si and SiO2 Thermal Nitridation on Impurity Diffusion and Oxidation Induced Stacking Fault Size in Si,” J. Appl. Phys., vol. 54, no. 7, 3860–3866 (1983).

    Google Scholar 

  670. P. Fahey, G. Barbuscia, M. Moslehi, and R. W. Dutton, “Kinetics of Thermal Nitridation Processes in the Study of Dopant Diffusion Mechanisms in Silicon,” Appl. Phys. Lett., vol. 46, no. 8, 784–786 (1985).

    Google Scholar 

  671. S. S. Wong and T. W. Ekstedt, “CMOS Well Drive-in in NH3 for Reduced Lateral Diffusion and Heat Cycle,” IEEE Electron Device Letters, vol. EDL-6, no. 12, 659–661 (1985).

    Google Scholar 

  672. N. K. Chen and C. Lee, “Oxynitridation-Enhanced Diffusion of Boron in (100) Silicon,” J. Electrochem. Soc, vol. 140, no. 8, 2390–2394 (1993).

    Google Scholar 

  673. M. M. Moslehi, C. J. Han, K. C. Saraswat, C. R. Helms, and S. Shatas, “Compositional Studies of Thermally Nitrided Silicon Dioxide (Nitroxide)” J. Electrochem. Soc, vol. 132, no. 9, 2189–2197 (1985).

    Google Scholar 

  674. C. J. Han, M. M. Moslehi, C. R. Helms, and K. C. Saraswat, “Time-Dependent Compositional Variation in SiO2 Films Nitrided in Ammonia,” Appl. Phys. Lett., vol. 46, no. 7, 641–643 (1995).

    Google Scholar 

  675. T. K. Mogi, M. O. Thompson, H.-J. Gossmann, D. J. Eaglesham, C. S. Rafferty, J. S. Luftman, F. C. Unterwald, T. Boone, and J. M. Poate, “Dopant Diffusion in Si(100) Delta-Doping Super-lattice during Thermal Nitridation and Native Si Point Defect Properties,” Electrochem. Soc. Extended Abstracts, vol. 95-1, 473–474 (1995).

    Google Scholar 

  676. S. T. Ahn, H. W. Kennel, J. D. Plummer, and W. A. Tiller, “Film Stress-Related Vacancy Supersaturation in Silicon under Low-Pressure Chemical Vapor Deposited Silicon Nitride Films,” J. Appl. Phys., vol. 64, no. 10, 4914–4919 (1988).

    Google Scholar 

  677. K. Osada, S. Matsumoto, M. Yoshida, and E. Arai, “Effect of Stress in the Deposited Silicon Nitride Films on Boron Diffusion in Silicon,” in: Process Physics and Modeling in Semiconductor Technology, edited by G. R. Srinivasan, K. Taniguchi, and C. S. Murthy, Electrochem. Soc. Proc, vol. 93-6, 98–107 (1993).

    Google Scholar 

  678. S. M. Hu, “Properties of Amorphous Silicon Nitride Films,” J. Electrochem. Soc, vol. 113, no. 7, 693–698 (1966).

    Google Scholar 

  679. R. G. Frieser, “Direct Nitridation of Silicon Substrates,” J. Electrochem. Soc, vol. 115, no. 10, 1092–1094 (1968).

    Google Scholar 

  680. T. Ito, S. Hijiya, T. Nozaki, H. Arakawa, M. Shinoda, and Y. Fukukawa, “Very Thin Silicon Nitride Films Grown by Direct Thermal Reaction with Nitrogen,” J. Electrochem. Soc, vol. 125, no. 3, 448–52 (1978).

    Google Scholar 

  681. R. V. Giridhar and K. Rose, “Low Pressure Direct Thermal Nitridation of Si in Nitrogen,” in: Silicon Nitride Thin Insulating Films, edited by V. J. Kapoor and H. J. Stein, Electrochem. Soc Proc, vol. 83-8, 312–323 (1983).

    Google Scholar 

  682. T. Kook and R. J. Jaccodine, “Diffusion of Sb in (111) Silicon during N2 Heat-Treatment,” J. Electrochem. Soc, vol. 132, no. 4, 989–990 (1985).

    Google Scholar 

  683. M. Jacob, P. Pichler, H. Ryssel, R. Falster, M. Cornara, D. Gambaro, M. Olmo, and M. Pagani, “Observation of Vacancy Enhancement during Rapid Thermal Annealing in Nitrogen,” in: Gettering and Defect Engineering in Semiconductor Technology GADEST’97, edited by C. Claeys, J. Vanhellemont, H. Richter, and M. Kittler, Solid State Phenomena, vol. 57-58, 349–354 (1997).

    Google Scholar 

  684. M. Wittmer and K. N. Tu, “Low-Temperature Diffusion of Dopant Atoms in Silicon during Interfacial Suicide Formation,” Phys. Rev. B, vol. 29, no. 4, 2010–2020 (1984).

    Google Scholar 

  685. M. Wittmer, P. Fahey, G. J. Scilla, and S. S. Iyer, “Novel Diffusion Phenomenon of Dopants in Silicon at Low Temperatures,” Phys. Rev. Lett., vol. 66, no. 5, 632–635 (1991).

    Google Scholar 

  686. M. Wittmer, P. Fahey, J. Cotte, S. S. Iyer, and G. J. Scilla, “Silicide Formation and Dopant Diffusion,” Phys. Rev. B, vol. 45, no. 19, 11383–11386 (1992).

    Google Scholar 

  687. J. W. Honeycutt and G. A. Rozgonyi, “Enhanced Diffusion of Sb-Doped Layers during Co and Ti Reactions with Si,” Appl. Phys. Lett., vol. 58, no. 12, 1302–1304 (1991).

    Google Scholar 

  688. S. M. Hu, “Point Defect Generation and Enhanced Diffusion in Silicon Due to Tantalum Suicide Overlay,” Appl. Phys. Lett, vol. 51, no. 5, 308–310 (1987).

    Google Scholar 

  689. A. G. Italyantsev and A. Y. Kuznetsov, “Excess Vacancy Generation in Silicon during Surface Silicide Formation,” Applied Surface Science, vol. 73, 203–208 (1993).

    Google Scholar 

  690. I. Ohdomari, K. Konuma, M. Takano, T. Chikyow, H. Kawarada, J. Nakanishi, and T. Ueno, “Dopant Redistribution during Silicide Formation,” in: Thin FilmsInterfaces and Phenomena, edited by R. J. Nemanich, P. S. Ho, and S. S. Lau, Mat. Res. Soc. Symp. Proc, vol. 54, 63–72 (1986).

    Google Scholar 

  691. K. Maex, R. D. Keersmaecker, C. Claeys, J. Vanhellemont, and P. F. A. Alkemade, “The Kinetics of Suicide Formation Using Rapid Thermal Processing and Related Defect behavior,” in: Semiconductor Silicon, edited by H. R. Huff, T. Abe, and B. Kolbesen, Electrochem. Soc. Proc, vol. 86-4, 346–357 (1986).

    Google Scholar 

  692. D. S. Wen, P. L. Smith, C. M. Osburn, and G. A. Rozgonyi, “Defect Annihilation in Shallow p+ Junctions Using Titanium Suicide,” Appl. Phys. Lett., vol. 51, no. 15, 1182–1184 (1987).

    Google Scholar 

  693. W. Lur, J. Y. Cheng, C. H. Chu, M. H. Wang, T. C. Lee, Y. J. Wann, W Y. Chao, and L. J. Chen, “Effects of Silicide Formation on the Removal of End-of-Range Ion Implantation Damage in Silicon,” in: Ion Beam Modification of Materials, edited by S. Namba, N. Itoh, and M. Iwaki, Nuclear Instruments and Methods in Physics Research B, vol. 39, 297–301 (1989).

    Google Scholar 

  694. J. Chen, H. G. Robinson, S. B. Hemer, and K. S. Jones, “Effect of Oxygen on Point Defect Injection during Silicidation of Titanium,” in: Semiconductor Silicon, edited by H. R. Huff, W. Bergholz, and K. Sumino, Electrochem. Soc. Proc, vol. 94-10, 1029–1040 (1994).

    Google Scholar 

  695. U. Erlesand, M. Östling, B. G. Svensson, and P. Gas, “Point Defect Generation during Silicide Formation,” Applied Surface Science, vol. 53, 224–229 (1991).

    Google Scholar 

  696. P. Kringhøj, “Silicon Interstitials: Injection during Palladium Silicide Formation and Trapping by Ion Implantation Damage,” Appl Phys. Lett., vol. 68, no. 2, 247–249 (1996).

    Google Scholar 

  697. J. Chen, H. G. Robinson, and K. S. Jones, “Effect of Oxygen on Point Defect Injection during Silicidation of Titanium, ” Electrochem. Soc. Extended Abstracts, vol. 94-1, 788 (1994).

    Google Scholar 

  698. W. Zulehner, “Historical Overview of Silicon Crystal Pulling Development,” Materials Science and Engineering B, vol. 73, 7–15 (2000).

    Google Scholar 

  699. A. J. R. de Kock, “Microdefects in Dislocation-Free Silicon Crystals,” Philips Res. Repts Suppl, vol. 28, no. 1, 1–105 (1973).

    Google Scholar 

  700. H. Föil and B. O. Kolbesen, “Formation and Nature of Swirl Defects in Silicon,” Appl. Phys., vol. 8, 319–331 (1975).

    Google Scholar 

  701. H. Föil, U. Gösele, and B. O. Kolbesen, “Swirl-Defects in Silicon,” in: Semiconductor Silicon 1977, edited by H. R. Huff and E. Sirtl, Electrochem. Soc Proc, vol. 77-2, 565–574 (1977).

    Google Scholar 

  702. P. J. Roksnoer and M. M. B. van den Boom, “Microdefects in a Non-Striated Distribution in Floating-Zone Silicon Crystals,” J. Crystal Growth, vol. 53, 563–573 (1981).

    Google Scholar 

  703. W. von Ammon, E. Dornberger, H. Oelkrug, and H. Weidner, “The Dependence of Bulk Defects on the Axial Temperature Gradient of Silicon Crystals during Czochralski Growth,” J. Crystal Growth, vol. 151, 273–277 (1995).

    Google Scholar 

  704. E. Dornberger, D. Graf, and M. Suhren, “Influence of Boron on the Oxidation-Induced Stacking Fault Ring in Czochralski Silicon Crystals,” J. Crystal Growth, vol. 180, 343–352 (1997).

    Google Scholar 

  705. V. V. Voronkov and R. Falster, “Dopant Effect on Point Defect Incorporation into Growing Silicon Crystal,” J. Appl. Phys., vol. 87, no. 9, 4126–1129 (2000).

    Google Scholar 

  706. V. V. Voronkov and R. Falster, “Intrinsic Growth and Impurities in Silicon Crystal Growth,” J. Electrochem. Soc, vol. 149, no. 3, G167–G174 (2002).

    Google Scholar 

  707. K. Harada, H. Tanaka, T. Watanabe, and H. Furuya, “Defects in the Oxidation-Induced Stacking Fault Ring Region in Czochralski Silicon Crystal,” Jpn. J. Appl. Phys., Part 1, vol. 37, no. 6A, 3194–3199 (1998).

    Google Scholar 

  708. M. Hasabe, Y. Takeoka, S. Shinoyama, and S. Naito, “Formation Process of Stacking Faults with Ringlike Distribution in CZ-Si Wafers,” Jpn. J. Appl. Phys., vol. 28, no. 11, L1999–L2002 (1989).

    Google Scholar 

  709. T. Yamauchi, Y. Tsumori, T. Nakashizu, H. Esaka, S. Takao, and S. Shinoyama, “Application of Copper-Decoration Method to Characterize as-Grown Czochralski-Silicon,” Jpn. J. Appl. Phys., Part 2, vol. 31, no. 4B, L439–L442 (1992).

    Google Scholar 

  710. H. Shimizu, C. Munakata, N. Honma, S. Aoki, and Y. Kosaka, “Observation of Ring-Distributed Microdefects in Czochralski-Grown Silicon Wafers with a Scanning Photon Microscope and Its Diagnostic Application to Device Processing,” Jpn. J. Appl. Phys., Part I, vol. 31, no. 6A, 1817–1822 (1992).

    Google Scholar 

  711. H. Riemann and A. Liidge, “Intrinsic Defects in FZ Silicon and Their Impact on X-Ray PIN Sensor Parameters,” in: High Purity Silicon VI, edited by C. L. Claeys, P. Rai-Choudhury, M. Watanabe, P. Stallhofer, and H. J. Dawson, Electrochem. Soc. Proc, vol. 2000-17, 509–515 (2000).

    Google Scholar 

  712. J. Gebauer, F. Rudolf, A. Polity, R. Krause-Rehberg, J. Martin, and P. Becker, “On the Sensitivity Limit of Positron Annihilation: Detection of Vacancies in As-Grown Silicon,” Appl. Phys. A, vol. 68, 411–416 (1999).

    Google Scholar 

  713. S. Dannefaer, T. Bretagnon, K. Abdurahman, D. Kerr, and S. Hahn, “Heat-Treatment Induced Defects in CZ-Silicon,” in: Defect Engineering in Semiconductor Growth, Processing and Device Technology, edited by S. Ashok, J. Chevallier, K. Sumino, and E. Weber, Mat. Res. Soc. Symp. Proc, vol. 262, 671–676 (1992).

    Google Scholar 

  714. F. Quast, P. Pichler, H. Ryssel, and R. Falster, “Vacancy-Nitrogen Complexes in Float-Zone Silicon,” in: High Purity Silicon VI, edited by C. L. Claeys, P. Rai-Choudhury, M. Watanabe, P. Stallhofer, and H. J. Dawson, Electrochem. Soc. Proc, vol. 2000-17, 156–163 (2000).

    Google Scholar 

  715. M. Hourai, T. Ono, S. Umeno, and T. Tanaka, “Control of Grown-in Defects in Nitrogen-Doped CZ Silicon Crystals for New Generation Devices,” in: Crystalline Defects and Contamination: Their Impact and Control in Device Manufacturing III— DECON2001, edited by B. O. Kolbe-sen, C. Claeys, P. Stallhofer, and F. Tardif, Electrochem. Soc. Proc, vol. 2001-29, 19–34 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

Pichler, P. (2004). Intrinsic Point Defects. In: Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0597-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0597-9_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7204-9

  • Online ISBN: 978-3-7091-0597-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics