Skip to main content

Vehicle Crashworthiness Design — General Principles and Potentialities of Composite Material Structures

  • Chapter

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 526))

Abstract

Increasing demands from customers, government concern and national and international regulations put occupant safety at the forefront of vehicle design considerations. The safety level of a passenger vehicle, put in evidence by the number of stars (up to five stars) obtained in the European New Car Assessment Program (EuroNCAP) or in the US New Car Assessment Program (USNCAP) rating tests, are at present a very important point in the market promotion strategies for automotive manufacturers. The USNCAP is under mandate from the National Highway Traffic Safety Administration (NHTSA).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrate S. (1991) — “Impact on laminated composite materials”, Applied Mechanics Review, vol. 44 n. 4

    Google Scholar 

  • Abrate S. (1994) — “Impact on laminated composites: recent advances”, Applied Mechanics Review, vol. 47 n. 11

    Google Scholar 

  • Abrate S. (1998) — “Impact on composite structures”, Cambridge University Press

    Google Scholar 

  • Anghilleri M., Chirwa E.C., Lanzi L., Mentuccia F.(2005) — “An inverse approach to identify the constitutive model parameters for crashworthiness modelling of composite structures”, Composite Structures, vol. 68, pp. 65–74

    Article  Google Scholar 

  • Avalle M., Belingardi G. (2004) — “Advanced materials for automotive applications”, Mobility & Vehicle Mechanics, vol. 30, pp. 51–66

    Google Scholar 

  • Avalle M., Belingardi G., Montanini R., Mangino E. (1999) — “Energy absorption characteristic of polymeric structural foams for passive safety applications”, proc. of 6th Int. Conf. Florence ATA 1999 — Firenze, 17–19 November 1999

    Google Scholar 

  • Avalle M., Belingardi G., Montanini M. (2001) — “Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram”, Int. J. of Impact Engineering, vol. 25, pp. 455–472

    Article  Google Scholar 

  • Avalle M., Belingardi G., Ibba A. (2007) — “Mechanical models of cellular solids: Parameters identification from experimental tests”, Int. Journal of Impact Engineering, vol. 34, pp. 3–27

    Article  Google Scholar 

  • Barbat S.D., Prasad P. (1995) — “Finite element modeling of structural foam and head impact interaction with vehicle upper interior”, SAE paper 950885

    Google Scholar 

  • Belingardi G., Cavatorta M.P., Duella R. (2003) — “Material characterisation of a composite-foam sandwich for the front structure of a high speed train”, Composite Structures, n. 61, pp. 13–25

    Google Scholar 

  • Belingardi G., Cavatorta M.P., Paolino D.S. (2006) — “Repeated impact behaviour and damage progression of glass reinforced plastics”, proc. ECF 16 (European Conference on Fracture), Alexandroupolis (Greece), 3–7 July 2006

    Google Scholar 

  • Belingardi G., Chiara A., Martinotti M., Vadori R. (1993) — “Experimental evaluation of the quasi-static collapse of automotive front beams made of glass fiber reinforced plastics”, II Polish-Italian Seminar, Torino

    Google Scholar 

  • Belingardi G., Duella R., Caminiti A. (2002) ‘Optimal choice of the foam design parameters in order to meet the HIC index limit of the FMVSS201 standard’, Proc. 2002 IBEC Conference.

    Google Scholar 

  • Belingardi G., Grasso F., Vadori R. (1998) — “Energy absorption and damage degree in impact testing of composite materials”, proc. of XI ICEM (Int. Conf. Experimental Mechanics), Oxford (UK), pp. 279–285

    Google Scholar 

  • Belingardi G., Gugliotta A., Vadori R. (1998) — “Numerical simulation of fragmentation of composite material plates due to impact”, Int. J. Impact Eng., vol. 21, pp. 335–347

    Article  Google Scholar 

  • Belingardi G., Vadori R. (2002) — “Low velocity impact tests of laminate glass-fiber-epoxy matrix composite material plates”, Int. J. Impact Eng., vol. 27, pp. 213–229

    Article  Google Scholar 

  • Belingardi G., Vadori R. (2003) — “Influence of the laminate thickness in low velocity impact behavior of composite material plate”, Composite Structures, n. 61, pp. 27–38

    Google Scholar 

  • Belingardi G. (2002) — “Some recent development and perspective in car passive safety”, Mobility & Vehicle Mechanics, vol. 28, pp. 87–105

    Google Scholar 

  • Bisagni C., DiPietro G., Fraschini L., Terletti D. (2005) — “Progressive crushing of fiber reinforced composite structural components of a Formula 1 racing car”, Composite Structures, vol. 68, no. 4, pp. 491–503

    Article  Google Scholar 

  • Cantwell W.J., Morton J. (1991) —The impact resistance of composite materials — a review, Composites, vol. 22(5), pp. 347–362

    Article  Google Scholar 

  • CARE Database (2005), General Directorate for Transport of the European Commission. http://ec.europa.eu/transport/road_safety/observatory/statistics/care_en.htm

  • Carruthers J.J., Kettle A.P., Robinson A.M. (1998) — “Energy absorption capability and crashworthiness of composite material structures: a review”, Applied Mechanics Reviews, vol. 51, pp. 635–649

    Article  Google Scholar 

  • Cate P.J., Naughton P.J. (2003) ‘Energy absorption unit’, WO 03047842.

    Google Scholar 

  • Chiandussi G., Gaviglio I., Ibba A. (2001) — “Evolutionary method for topology optimisation with maximum stress control”, Proc. European Conference on Computational Mechanics (ECCM 2001).

    Google Scholar 

  • Chiandussi, G. (2006) — “On the solution of a minimum compliance topology optimisation problem by optimality criteria without a priori volume constraint specification”, Computational Mechanics, Vol. 38, pp. 77–99.

    Article  MATH  Google Scholar 

  • Chou C.C., Zhao Y., Lim G.G., Patel R.N., Shahab S.A., Patel P.J. (1995) — “Comparative analysis of different energy absorbing materials for interior head impact”, SAE paper 950332

    Google Scholar 

  • Clifford C.C., Nyquist G.W. (1974) — “Analytical studies of the Head Injury Criterion (HIC)”, SAE paper 740082

    Google Scholar 

  • Deb A., Calso S. Saha N. (1997) — “Effectiveness of countermeasures in upper interior head impact”, SAE paper 970391

    Google Scholar 

  • Devin J.M., Schmit F., Brun O., Deprez P. (2002) — “Reinforced and lightweight motor-vehicle bonnet”, US 6398286.

    Google Scholar 

  • DeWeese, R.L., and D.M. Moorcroft (2004) — “Evaluation of a Head Injury Criteria Component Test Device”, US Department of Transportation, Federal Aviation Administration, Office of Aerospace Medicine, Document DOT/FAA/AM-04/18

    Google Scholar 

  • Engel M., Itzen G., Thomas U. (2006) ‘Bonnet’, EP 1614590.

    Google Scholar 

  • Eppinger R., Sun E., Bandak F., Haffner M., Kaewpong N., Maltese M., Kuppa S., Nguyen T., Takounts E., Tannous R., Zhang A., Saul R. (1999) — “Development of improved injury criteria for the assessment of advanced automotive restraint systems” — NHTSA

    Google Scholar 

  • EuroNCAP (2004), European New Car Assessment Program — Side impact testing protocol — May 2004

    Google Scholar 

  • EuroNCAP (2008), European New Car Assessment Program — Frontal impact testing protocol v4.2, May 2008

    Google Scholar 

  • EuroNCAP (2008a), European New Car Assessment Program — Pedestrian testing protocol, Version 4.2, June 2008.

    Google Scholar 

  • EuroNCAP (2008b), European New Car Assessment Program — Assessment protocol and biomechanical limits, Version 4.2, June 2008

    Google Scholar 

  • Farley G. L. (1983) — “Energy absorption of composite materials”, J. of Composite Materials, vol. 17

    Google Scholar 

  • Farley G.L., Jones R.M. (1991) — “The effect of the crushing speed on the energy absorption capability of composite tubes”, J. of Composite Mat., vol. 25, pp. 1314–1329

    Google Scholar 

  • Farley G. L. (1992) — “Relationship between mechanical properties and energy absorption trends for composite tubes”, NASA TP 3284, ARL-TR-29

    Google Scholar 

  • Feraboli P., Norris C., McLarty D. (2007) — “Design and certification of a composite thin-walled structure for energy absorption”, Int. J. Vehicle Design, vol. 44, pp. 247–267

    Article  Google Scholar 

  • FIA (2005) — Art. 15.5: safety structures” in Formula 3 technical regulations, Appendix J

    Google Scholar 

  • Gadd CW. (1966) — “Use of a weighted-impulse criterion for estimating injury hazard.” — Proc. of the 10th Stapp Car Crash Conference, SAE Paper 660793.

    Google Scholar 

  • Gibson L. J., Ashby M. F. (1997) — “Cellular Solids: structure and properties”, 2 ed., Cambridge (UK), Cambridge University Press

    Google Scholar 

  • Giorda A., Gaviglio I., Chiandussi G. (2006) — “A numerical study on a new hood design”, paper of the Mechanics Department of the Politecnico di Torino

    Google Scholar 

  • Gupta N.K. et al. (1997) — An analysis of axial crushing of composites tubes”, J. of Composite Materials, vol. 31, pp. 1262–1286

    Google Scholar 

  • Hull D. (1983) — “Axial crushing of fibre-reinforced composite tubes”, in Structural Crashworthiness, editors N. Jones and T. Wierzbicki, Butterworths, pp. 118–135

    Google Scholar 

  • Hull D. (1991) — “A unified approach to progressive crushing of fibre-reinforced composite tubes”, Composite Science and Technology, vol. 40, pp. 377–421

    Article  Google Scholar 

  • Jimenez M.A., Miravete A., Larrode E., Revuelta D. (2000) — “Effect of trigger geometry on energy absorption in composite profiles”, Composite Structures, vol. 48, pp. 107–111

    Article  Google Scholar 

  • Kerkeling C., Schäfer J., Thompson G.M. (2005) ‘Structural hood and hinge concepts for pedestrian protection’, Proceedings 19th International Technical Conference on the Enhanced Safety of Vehicles, paper n. 05–0304.

    Google Scholar 

  • Kimoto Y., Kiyama H., Kawashima S., Enomoto Y. (2005) — “FRP panel for automobile”, WO2005070747.

    Google Scholar 

  • Kwak D.Y., Jeong J.H., Cheon J.S., Im I.T. (1997) “Optimal design of composite hood with reinforcing ribs through stiffness analysis”, Composites structures, Vol. 38, No. 1–4, pp. 351–359.

    Article  Google Scholar 

  • Lau IV and Viano DC. (1981) — “Influence of impact velocity and chest compression on experimental pulmonary injury severity in an animal model”, Journal of Trauma, Vol. 21, pp 1022–1028.

    Article  Google Scholar 

  • Lau IV and Viano DC. (1986) — “The viscous criterion — bases and applications of an injury severity index for soft tissue”, Proc. of the Thirtieth Stapp Car Crash Conference, pp 123–142, SAE Paper No. 861882.

    Google Scholar 

  • Locke D.J., Clark C.L. (1996) — “Energy-absorbing thermoplastics for head impact applications”, SAE International Congress and Exposition, paper 960154

    Google Scholar 

  • Mamalis A.G., Manolakos D.E., Viegelahn G.I. et al. (1991) — “On the axial crumpling of fibre-reinforced composite thin-walled conical shells”, Int. J. of Vehicle Design, vol. 12

    Google Scholar 

  • Mamalis AG, Manolakos MB, Demosthenous GA, Ioannidis MB (1996) — “The static and dynamic axial collapse of fibreglass composite automotive frame rails”, Composite Structures, vol. 34, pp. 77–90.

    Article  Google Scholar 

  • Mamalis AG, Manolakos MB, Demosthenous GA, Ioannidis MB (1998) — “Crashworthiness of composite thin-walled structural components”, Technomic

    Google Scholar 

  • Mamalis AG, Manolakos MB, Ioannidis MB, Kostazos PK. (2003) — “Crushing of hybrid square and with composite vehicle hollow bodyshells with reinforced core subjected to axial loading: numerical simulation”, Composite Structures, vol. 61, pp. 175–186

    Article  Google Scholar 

  • Mamalis AG, Manolakos MB, Ioannidis MB, Papapostolou DP (2004) — “Crashworthy characteristics of axially statically compressed thin-walled square CFRP composite tubes: experimental”, Composite Structures, vol. 63, pp. 347–360

    Article  Google Scholar 

  • Mamalis A.G., Manolakos D.E., Ioannidis M.B., Kostazos P.K., Papapostolou D.P. (2002) — “Axial collapse of hybrid square sandwich composite tubular components with corrugated core: numerical modeling”, Composite Structures, vol. 58, pp. 571–582

    Article  Google Scholar 

  • Mangino E., Carruthers J.J., Pitarresi G. (2007) — “The future use of structural composite materials in the automotive industry”, Int. J. Vehicle Design, vol. 44, pp. 211–232

    Article  Google Scholar 

  • Mertz HJ., Patrick LM. (1971) — “Strength and response of the human neck”, Proc. of the 15th Stapp Car Crash Conference, SAE Paper No. 710855.

    Google Scholar 

  • Mertz H. (1993) — “Anthropomorphic Test Devices”, in Accidental Injury, Biomechanics and Prevention, edited by Nahum, A., Melvin, J., Springer-Verlag

    Google Scholar 

  • Mizuno Y. (2003) —“Summary of IHRA pedestrian safety WG activities (2003) — Proposed test methods to evaluate pedestrian protection afforded by passenger cars”, Proceedings 18th International Technical Conference on the Enhanced Safety of Vehicles, paper n. 580.

    Google Scholar 

  • Nader R. (1965) — “Unsafe at any speed: the designed-in dangers of the American automobile”, Pocket Books

    Google Scholar 

  • NHTSA (2001) — “Traffic Safety Facts 2000” published by the US Department of Transportation — National Highway Traffic Safety Administration

    Google Scholar 

  • Nishimoto T. (2003) — “Introduction of the regulation of pedestrian head protection in Japan”, Proc. 18th Int. Tech. Conf. on the Enhanced Safety of Vehicles, paper n. 503.

    Google Scholar 

  • Prasad P., Belwafa J.E. (2004) — “Vehicle crashworthiness and occupant protection”, AISI, Southfield (MC-USA)

    Google Scholar 

  • Savage G., Bomphray I., Oxley M. (2006) — “Exploiting the fracture properties of carbon fibre composites to design lightweight energy absorbing structures”, Engineering Failure Analysis, vol. 11, pp. 677–694

    Article  Google Scholar 

  • Seiffert, U., and L. Wech (2003) — “Automotive Safety Handbook”, Warrendale, SAE International

    Google Scholar 

  • Sigalas I., Kumosa M., Hull D. (1991) — “Trigger mechanisms in energy-absorbing glass cloth/epoxy tubes”, Composites Science and Technology, 40(3), pp. 265–287

    Article  Google Scholar 

  • Solaimurugan S., Velmurugan R. (2007) — “Influence of fibre orientation and stacking sequence on petalling of glass/polyester composite cylindrical shells under axial compression”, Int. J. of Solids and Structures, vol. 44, pp. 6999–7020

    Article  MATH  Google Scholar 

  • Sounik D.F., Gansen P., Clemons J.L., Liddle J.W. (1997) — “Head impact testing of polyurethane energy-absorbing (EA) foams”, SAE International Congress and Exposition, paper 970160

    Google Scholar 

  • Stammen J.A., Saul R.A., Ko B. (2001) — “Pedestrian head impact testing and PCDS reconstructions”, Proc. 17th Int. Technical Conf. on the Enhanced Safety of Vehicles, paper n. 326.

    Google Scholar 

  • Standard No. 201 (1998) — “Occupant protection in interior impact”, 49 CFR, Ch. V, Parts 571.201, Federal Motor Vehicle Safety Standards, National Highway Traffic Safety Admin., Dept. of Transportation

    Google Scholar 

  • Sugimoto, T., Y. Kadotani, S. Ohmura (1998) — “The offset crash test — a comparative analysis of test methods”, Proc. 16th Int. Tech. Conf. Enhanced Safety of Vehicles (ESV), Windsor, Ontario, Paper Number 98-Sl-O-08

    Google Scholar 

  • Thornton P.H., Edwards P.J. (1982) — “Energy absorption in composite tubes”, J. of Composite Materials, vol. 16, pp. 521–545

    Article  Google Scholar 

  • Thornton P.H., Jeryan R.A. (1998) — “Crash energy management in composite automotive structures” — Int. J. of Impact Engineering, 1998, vol. 7, pp. 167–180

    Article  Google Scholar 

  • ULSAB — Ultra-Light Steel Auto Body (1999) — AVC Technical Transfer Dispatch #6, CAE Analysis for Crashworthiness

    Google Scholar 

  • UNECE (2006) World Forum for Harmonization of Vehicle Regulations (WP.29), Working Party on Passive Safety (GRSP): Proposal for a global technical regulation on uniform provisions concerning the approval of vehicles with regard to their construction in order to improve the protection and mitigate the severity of injuries to pedestrians and other vulnerable road users in the event of a collision, Document ECE/TRANS/WP.29/GRSP/2006/2

    Google Scholar 

  • Versace J. (1971) — “A review of the severity index”, Proc. of the 15th Stapp Car Crash Conference SAE Paper No. 710881.

    Google Scholar 

  • Viano D., Von Holst H., Gordon E. (1997) ‘Serious brain injury from traffic-related causes: priorities for primary prevention’, Accident Analysis and Prevention, Vol. 29, pp. 811–816.

    Article  Google Scholar 

  • Willinger R. (2006) ‘Multilayer hood with frangible outer skin and reduced impact in case of collision with a pedestrian’, WO2006016053.

    Google Scholar 

  • Yang J. (2003) ‘Pedestrian head protection from car impacts’, Int. J. Vehicle Design, Vol. 32, No. 1–2, pp. 16–27.

    Article  Google Scholar 

  • Yang J. (2005) ‘Review of injury biomechanics in car-pedestrian collisions’, Int. J. Vehicle Safety, Vol. 1, No. 1-2-3, pp. 100–117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 CISM, Udine

About this chapter

Cite this chapter

Belingardi, G., Chiandussi, G. (2011). Vehicle Crashworthiness Design — General Principles and Potentialities of Composite Material Structures. In: Abrate, S. (eds) Impact Engineering of Composite Structures. CISM International Centre for Mechanical Sciences, vol 526. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0523-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0523-8_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0522-1

  • Online ISBN: 978-3-7091-0523-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics