Skip to main content

Osteoporosis: Pathophysiology and Clinical Aspects

  • Chapter
Principles of Osteoimmunology

Abstract

Osteoporosis has become a major health issue over the last years due to the steadily increasing life expectancy. Beyond the age of 50 years more than 50 percent of women and 13 percent of men will sustain an osteoporosis-related fracture (1). In line with the demographic development, fractures of the humerus, wrist, or hip will occur noticeably more often during the next four decades (2). The number of patients with hip fractures will increase to 170 % of present-day numbers, and in the age group over 80 years to 250 % (2). In the United States over 10 million have been diagnosed with osteoporosis (1) causing direct medical costs of 17 billion dollars (3, 4). In Germany 7.8 million (6.5 million women) were affected by osteoporosis in 2003 (5). At least one clinical fracture was present in 4.3 % of these patients leading to direct costs of 5.4 billion Euro, although only 21.7 % of the patients were treated with anti-osteoporotic drugs as shown in a recent study from Germany (5). Considering only osteoporosis-attributable hip fractures, 108,341 occurred in Germany in 2002 resulting in costs of almost 3 billion Euro, which will more than double according to estimations in 2050 (6). These already tremendous costs of health care linked to osteoporosis are further alarming, as a care gap with under-diagnosis and under-treatment of the entity has been stressed in several studies (7–13). Improvements in diagnostic strategies, the diagnostic work up in the context of interdisciplinary settings, are warranted in order to optimize the management and care of patients with osteoporosis. The basis of such an aim has to be set up with a better and broader understanding of the pathophysiology, clinical presentation, interactions with other disorders, and the currently available therapeutic possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chrischilles EA, Butler CD, Davis CS, Wallace RB (1991) A model of lifetime osteoporosis impact. Arch Intern Med 151:2026–2032

    Article  PubMed  CAS  Google Scholar 

  • Lohmann R, Haid K, Stöckle U, Raschke M (2007) Epidemiologie und Perspektiven der Alterstraumatologie [Epidemiology and perspectives in traumatology of the elderly] Unfallchirurg 110:553–560

    Article  PubMed  CAS  Google Scholar 

  • U.S. Dept. Of Health and Human Services, Centers of Disease Control and Prevention, National Center for Health Statistics (1998) National Health and Nutrition Examination Surgery III, 1988–1994. Hyattsville, MD

    Google Scholar 

  • Tosteson A, Solomon D, King AB, et al. (2005) Projections of osteoporosis fractures and costs by skeletal site in the USA. Bone Miner Res 20:S21

    Google Scholar 

  • Häussler B, Gothe H, Göl D, Glaeske G, Pientka L, Felsenberg D (2007). Epidemiology, treatment and costs of osteoporosis in Germany – the BoneEVA Study. Osteoporos Int 18:77–84

    Article  PubMed  Google Scholar 

  • Konnopka A, Jerusel N, König HH (2009) The health and economic consequences of osteopenia- and osteoporosis-attributable hip fractures in Germany: estimation for 2002 and projection until 2050. Osteoporos Int 20:1117–1129

    Article  PubMed  CAS  Google Scholar 

  • Pietschmann P, Azizi-Semrad U, Pils K, Fahrleitner-Pammer A, Resch H, Dobnig H (2010) Pharmacologic undertreatment of osteoporosis in Austrian nursing homes and senior’s residences. Wien Klin Wochenschr, 160:532–527

    Article  Google Scholar 

  • Wright RM (2007) Use of osteoporosis medications in older nursing facility residents. J Am Med Dir Assoc 8: 453–457

    Article  PubMed  Google Scholar 

  • Haaland DA, Cohen DR, Kennedy CC, Khalidi NA, Adachi JD, Papaioannou A (2009) Closing the osteoporosis care gap: increased osteoporosis awareness among geriatrics and rehabilitation teams. BMC Geriatr 9:28. doi 10.1186/1471–2318-9–28

    Article  PubMed  Google Scholar 

  • Metge CJ, Leslie WD, Manness LJ, Yogendran M, Yuen CK, Kvern B (2008) Maximizing Osteoporosis Management in Manitoba Steering Committee. Postfracture care for older women: gaps between optimal care and actual care. Can Fam Physician 54:1270–1276

    PubMed  Google Scholar 

  • Papaioannou A, Kennedy CC, Ioannidis G et al. (2008) CaMos Research Group: The osteoporosis care gap in men with fragility fractures: the Canadian Multicentre Osteoporosis Study. Osteoporos Int 19:581–587

    Article  PubMed  CAS  Google Scholar 

  • Giangregorio LM, Jantzi M, Papaioannou A, Hirdes J, Maxwell CJ, Poss JW (2009) Osteoporosis management among residents living in long-term care. Osteoporos Int 20:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Kamal HK(2005) Secondary prevention of hip fractures among hospitalized elderly: are we doing enough? J Clin Rheumatol 11:68–71

    Article  Google Scholar 

  • Teitelbaum SL (2007) Osteoclasts: What do they do and how do they do it? Am J Path 170:427–435

    Article  PubMed  CAS  Google Scholar 

  • NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795

    Article  Google Scholar 

  • Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y (2006) Osteoimmunology: Interplay between the immune system and bone metabolism. Annu Rev Immunol 24:33–63

    Article  PubMed  CAS  Google Scholar 

  • Rothe A, Power BE, Hudson PJ (2008) Therapeutic advances in rheumatology with the use of recombinant proteins. Nat Clin Pract Rheumatol 4:605–614

    Article  PubMed  CAS  Google Scholar 

  • Sipos W, Pieschmann P, Rauner M (2008) Stategies for novel therapeutic approaches targeting cytokines and signaling pathways of osteoclasto- and osteoblastogenensis in the fight against immune-mediated bone and joint diseases. Curr Med Chem 15:127–136

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi A, Komori T, Suda T (2000) Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endor Rev 21:393–411

    Article  CAS  Google Scholar 

  • Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  PubMed  CAS  Google Scholar 

  • Calvi LM, Adams GB, Weibrecht KW et al. (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  PubMed  CAS  Google Scholar 

  • Calvi LM, Sims NA, Hunzelman JL, Knight MC, Giovannetti A, Saxton JM, Kronenberg HM, Baron R, Schipani E (2001) Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells defferentially affects cortical and trabecular bone. J Clin Invest 107:277–286

    Article  PubMed  CAS  Google Scholar 

  • Lecka-Cernik B, Moerman EJ, Grant DF, lehmann JM, Manolagas SC, Jilka RL (2002) Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 143: 2376–2384

    Article  Google Scholar 

  • Kim SW, Her SJ, Kim SY, Shin CS (2005) Ectopic everexpression of adipogenic transcription factors induces transdifferentiation of MC3T3-E1 osteoblasts. Biochem Biophys Res Commun 327:811–819

    Article  PubMed  CAS  Google Scholar 

  • Ziegler-Heitbrock L (2007) The CD14+CD16+ blood monocytes: Their role in infection and inflammation. J Leukoc Biol 81:584–592

    Article  PubMed  CAS  Google Scholar 

  • Wong BR, Besser D, Kim N, Arron JR, Vologodskaia M, Hanafusa H, Choi Y (1999). TRANCE, a TNF family member, activates Akt/PKB trough a signaling complex involving TRAF6 and s-src. Mol Cell 4:1041–1049

    Article  PubMed  CAS  Google Scholar 

  • Yagi M, Miyamoto T, Toyama Y, Suda T (2006) Role of DC-STAMP in cellular fusion of osteoclasts and macrophage giant cells. J Bone Miner Metab 24:355–358

    Article  PubMed  CAS  Google Scholar 

  • Zwerina J, Redlich K, Polzer K, Joosten L, Kronke G, Distler J, Hess A, Pundt N, Pap T, Hoffmann O, Gasser J, Scheinecker C, Smolen JS, van den Berg W, Schett G (2007) TNF-induced structural joint damange is dediated by IL-1. Proc Natl Acad Sci USA 104:11742–11747

    Article  PubMed  CAS  Google Scholar 

  • Polzer K, Joosten L, Gasser J, Distler JH, Ruiz G, Baum W, Redlich K, Bobacz K, Smolen JS, van den Berg W, Schett G, Zwerina J (2010) IL-1 is essential for systemic inflammatory bone loss. Ann Rheum Dis 69:284–290

    Article  PubMed  CAS  Google Scholar 

  • Rho J, Takami M, Choi Y (2004) Osteoimmunology. Interactions of the immune and skeletal systems. Mol Cells 17:1–9

    PubMed  CAS  Google Scholar 

  • Miyamoto T, Ohnada O, Arai F, Iwamoto K, Okada S, Tagagi K, Anderson DM, Suda T (2001) Bifurcation of osteoclasts and dentritic cells from common progenitors. Blood 98:2544–2554

    Article  PubMed  CAS  Google Scholar 

  • Rivollier A, Mazzorana M, Tebib J, Piperno M, Aitsiselmi T, Rabourdin-Combe C, Jurdic P, Servet-Delprat C (2004) Immature dentritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood 104:4029–4037

    Article  PubMed  CAS  Google Scholar 

  • Alnaeeli M, Park J, Mahamed D, Penninger JM, Teng YT (2007) Dentritic cells at the osteo-immune interface: implications for inflammation-induced bone loss. J Bone Miner Res 22:775–780

    Article  PubMed  CAS  Google Scholar 

  • Jones DH, Kong YY, Penninger JM (2002) Role of RANKL and RANK in bone loss and arthritis. Ann Rheum Dis 61(Suppl 2):ii32–39

    PubMed  CAS  Google Scholar 

  • Takayanagi H (2009) Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol 5:667–676

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, Tanaka S, Kodama T, Akira S, Iwakura Y, Cua DJ, Takayanagi H (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682

    Article  PubMed  CAS  Google Scholar 

  • Won HY, Lee JA, Park ZS, Song JS, Kim HY, Jang SM, Yoo SE, Rhee Y, Hwang ES, Bae MA (2011) Prominent Bone Loss Mediated by RANKL and IL-17 Produced by CD4+ T Cells in TallyHo/JngJ Mice. PLoS One 6:e18168

    Article  PubMed  CAS  Google Scholar 

  • Pene J, Chevalier S, Preisser L, Venereau E, Guilleux MH, Ghannam S, Moles JP, Danger Y, Ravon E, Lesaux S, Yssel H, Gascan H (2008) Chronically inflamed human tissue are infiltrated by highly differentiated Th17 lymphocytes. J Immunol 180:7423–7430

    PubMed  CAS  Google Scholar 

  • Gaffen SL, Hajishengallis G (2008) A new inflammatory cytokine on the block: re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17. J Dent Res 87:817–828

    Article  PubMed  CAS  Google Scholar 

  • Colin EM, Asmawidjaja PS, van Hamburg JP, Mus AM, van Driel M, Hazes JM, van Leeuwen JP, Lubberts E (2010) 1,25-dihydroxyvitamin D3 modulates Th17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis. Arthritis Rheum 62:132–142.

    Article  PubMed  CAS  Google Scholar 

  • Ghishan FK, Kiela PR (2011). Advances in the understanding of mineral and bone metabolism in inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol 300:G191–201

    Article  PubMed  CAS  Google Scholar 

  • Saltel F, Chabadel A, Zhao Y, Lafage-Proust MH, Clézardin P, Jurdic P, Bonnelye E (2006) Transmigration: a new property of mature multinucleated osteoclasts. J Bone Miner Res 21:1913–1923

    Article  PubMed  CAS  Google Scholar 

  • Josien R, Wong BR, Li HL, Steinman RM, Choi Y (1999) TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol 162:2562–2568

    PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, van Vliet SJ, Engering A, ‘t Hart BA, van Kooyk Y (2004) Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol 22:33–54

    Article  PubMed  CAS  Google Scholar 

  • Vojdani A, Erde J (2006) Regulatory T cells, a potent immunoregulatory target for CAM researchers: the ultimate antagonist (I). Evid Based Complement Alternat Med 3:25–30

    Article  PubMed  Google Scholar 

  • Vojdani A, Erde J (2006) Regulatory T Cells, a Potent Immunoregulatory Target for CAM Researchers: Modulating Allergic and Infectious Disease Pathology (II). Evid Based Complement Alternat Med 3:209–215

    Article  PubMed  Google Scholar 

  • Vojdani A, Erde J (2006) Regulatory T Cells, a Potent Immunoregulatory Target for CAM Researchers: Modulating Tumor Immunity, Autoimmunity and Alloreactive Immunity (III). Evid Based Complement Alternat Med 3:309–316

    Article  PubMed  Google Scholar 

  • Clowes JA, Riggs BL, Khosla S (2005) The role of the immune system in the pathophysiology of osteoporosis. Immunol Rev 208:207–227

    Article  PubMed  CAS  Google Scholar 

  • Cheroutre H (2004) Starting at the beginning: new perspectives on the biology of mucosal T cells. Annu Rev Immunol 22:217–246

    Article  PubMed  CAS  Google Scholar 

  • Bengmark S (2004) Acute and “chronic” phase reaction-a mother of disease. Clin Nutr 23:1256–1266

    Article  PubMed  Google Scholar 

  • Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP, Weitzmann MN (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109:3839–3848

    Article  PubMed  CAS  Google Scholar 

  • Manabe N, Kawaguchi H, Chikuda H, Miyaura C, Inada M, Nagai R, Nabeshima Y, Nakamura K, Sinclair AM, Scheuermann RH, Kuro-o M (2001) Connection between B lymphocyte and osteoclast differentiation pathways. J Immunol. 167:2625–2631

    PubMed  CAS  Google Scholar 

  • Breuil V, Ticchioni M, Testa J, Roux CH, Ferrari P, Breittmayer JP, Albert-Sabonnadière C, Durant J, De Perreti F, Bernard A, Euller-Ziegler L, Carle GF (2010) Immune changes in post-menopausal osteoporosis: the Immunos study. Osteoporos Int. 21:805–814

    Article  PubMed  CAS  Google Scholar 

  • Xiao P, Chen Y, Jiang H, Liu YZ, Pan F, Yang TL, Tang ZH, Larsen JA, Lappe JM, Recker RR, Deng HW (2008) In vivo genome-wide expression study on human circulating B cells suggests a novel ESR1 and MAPK3 network for postmenopausal osteoporosis. J Bone Miner Res. 23:644–654

    Article  PubMed  CAS  Google Scholar 

  • Christiansen C, Christiansen MS, Transbol I (1981) Bone mass in postmenopausal women after withdrawal of oestrogen/gestagen replacement therapy. Lancet 1:459–461

    Article  PubMed  CAS  Google Scholar 

  • Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS (1994) Rstrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 331:1056–1061

    Article  PubMed  CAS  Google Scholar 

  • Eriksen EF, Colvard DS, berg NJ, Graham ML, Mann KG, Spelsberg TC, Riggs BL (1988) Evidence of estrogen receptors in normal human osteoblast like cells. Science 241:84–86

    Article  PubMed  CAS  Google Scholar 

  • Komm BS, Terpening CM, Benz DJ, Graeme KA, O’Malley BW, Haussler MR (1988) Estrogen binding receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells. Science 241:81–84

    Article  PubMed  CAS  Google Scholar 

  • Oursler MI, Osdoby P, Pyfferoen J, Riggs BL, Spelsberg TC (1998) Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci USA 88:6613–6617

    Article  Google Scholar 

  • Saika M, Inoue D, Kido S, Matsumoto T (2001) 17beta-estradiol stimulates expression of osteoprotegerin by a mouse stromal cell line, ST-2, via estrogen receptor-alpha. Endocrinology 142:2205–2212

    Article  PubMed  CAS  Google Scholar 

  • Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DI, Riggs BL (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1120–1122

    Google Scholar 

  • Krum SA, Miranda-Carboni GA, Hauschka PV, Carroll JS, Lane TF, Freedman LP, Brown M (2008) Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J 27:535–545

    Article  PubMed  CAS  Google Scholar 

  • Heaney RP, Recker RR, Saville PD (1978) Menopause changes in calcium balance performance. J Lab Clin Med 92: 953–963

    PubMed  CAS  Google Scholar 

  • McKane WR, Khosla S, Burritt MF, Kao PC, Wilson DM, Ory SJ, Riggs BL (1995) Mechanism of renal calcium conservation with estrogen replacement therapy in women in early menopause – a clinical research center study. J Clin Endocrinol Metab 80:3458–2464

    Article  PubMed  CAS  Google Scholar 

  • Gennari C, Agnusdei D, Nardi P, Civitelli R (1990) Estrogen preserves a normal intestinal responsiveness to 1,25-dihydroxyvitamin D3 in oophorectomized women. J Clin Endocrinl metab 71:1288–1293

    Article  CAS  Google Scholar 

  • Cosman F, Shen V, Xie F, Seibel M, Ratcliffe A, Lindsay R (1993). Estrogen protection against bone resorbing effects of parathyroid hormone infusion. An Intern Med 118:337–343

    CAS  Google Scholar 

  • Arron JR, Choi Y (2000) Bone versus immune system. Nature 408:535–536

    Article  PubMed  CAS  Google Scholar 

  • Gallagher JC, Riggs BL, Eisman J, Hamstra A, Arnaud SB, DeLuca HF (1979) Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients: effects of age and dietary calcium. J Clin Invest 64:729–736

    Article  PubMed  CAS  Google Scholar 

  • Pacifici R (2008) Estrogen deficiency, T cells and bone loss. Cell Immunol 252: 68–80

    Article  PubMed  CAS  Google Scholar 

  • Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13:971–801

    Article  Google Scholar 

  • Franceschi C, Bonafè M, Valensin S, Olivieri F, Da Luca M, Ottaviani E, De Benedictitis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908: 24–254

    Google Scholar 

  • Pietschmann P, Grisar J, Thien R, Willhelm M, Kerschan-Schindl K, Preisinger E, Peterlik M (2001) Immune phenotype and intracellular cytokine production of peripheral blood mononuclear cells from postmenopausal patients with osteoporotic fractures. Exp Gerontol 36:1749–1759

    Article  PubMed  CAS  Google Scholar 

  • Pacifici R (2007) T cells and post menopausal osteoporosis in murine models. Arthritis Res Ther 9:102

    Article  PubMed  Google Scholar 

  • Robbie-Ryan M, Pacifici R, Weitzmann MN (2006) IL-7 drives T cell-mediated bone loss following ovariectomy. Ann N Y Acad Sci 1068:348–351

    Article  PubMed  CAS  Google Scholar 

  • Pietschmann P, Gollob E, Brosch S, Hahn P, Kudlacek S, Willhelm M, Woloszczuk W, Peterlik M, Tragl KH (2003) The effect of age and gender on cytokine production by human peripheral blood mononuclear cells and markers of bone metabolism. Exp Gerontol 38:1119–1127

    Article  PubMed  CAS  Google Scholar 

  • Rauner M, Sipos W, Pietschmann P (2007) Osteoimmunology. Int Arch Allergy immunol 143:31–48

    Article  PubMed  Google Scholar 

  • Gao Y, Grassi F, Ryan MR, Terauchi M, Page k, Yang X, Weitzmann MN, Pacifici R (2007) IFN-γ stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest 117:12–132

    Google Scholar 

  • Messalli EM, Mainini G, Scaffa C, Cafiero A, Salzillo PL, Ragucci A, Cobellis L (2007) Raloxifene therapy interacts with serum osteoprotegerin in postmenopausal women. Maturitas 56:38–44

    Article  PubMed  CAS  Google Scholar 

  • Katz S, Weinerman S (2010) Osteoporosis and gastrointestinal disease. Gastroenterol Hepatol (N Y) 6:506–517

    Google Scholar 

  • Nielsen OH, Vainer B, Madsen SM, Seidelin JB, Heegaard NH (2000) Established and emerging biological activity markers of inflammatory bowel disease. Am J Gastroenterol 95:359–367

    PubMed  CAS  Google Scholar 

  • Tignor AS, Wu BU, Whitlock TL, Lopez R, Repas K, Banks PA, Conwell D (2010) High prevalence of low-trauma fracture in chronic pancreatitis. Am J Gastroenterol 105:2680–2686

    Article  PubMed  Google Scholar 

  • Li Z, Lu WW, Chiu PK, Lam RW, Xu B, Cheung KM, Leong JC, Luk KD (2009) Strontium-calcium coadministration stimulates bone matrix osteogenic factor expression and new bone formation in a large animal model. J Orthop Res 27:758–762

    Article  PubMed  CAS  Google Scholar 

  • Fernández-García D, Muñoz-Torres M, Mezquita-Raya P, de la Higuera M, Alonso G, Reyes-García R, Ochoa AS, Ruiz-Requena ME, Luna JD, Escobar-Jiménez F (2008) Effects of raloxifene therapy on circulating osteoprotegerin and RANK ligand levels in post-menopausal osteoporosis. J Endocrinol Invest 31:416–421

    PubMed  Google Scholar 

  • Ozmen B, Kirmaz C, Aydin K, Kafesciler SO, Guclu F, Hekimsoy Z (2007) Influence of the selective oestrogen receptor modulator (raloxifene hydrochloride) on IL-6, TNF-alpha, TGF-beta1 and bone turnover markers in the treatment of postmenopausal osteoporosis. Eur Cytokine Netw 18:148–153

    PubMed  CAS  Google Scholar 

  • Gianni W, Ricci A, Gazzaniga P, Brama M, Pietropaolo M, Votano S, Patanè F, Aglianò AM, Spera G, Marigliano V, Ammendola S, Agnusdei D, Migliaccio S, Scandurra R (2004) Raloxifene modulates interleukin-6 and tumor necrosis factor-alpha synthesis in vivo: results from a pilot clinical study. J Clin Endocrinol Metab 89:6097–6099

    Article  PubMed  CAS  Google Scholar 

  • Wutzl A, Gruber R, Brozek W, Hofbauer G, Lernbass I, Brosch S, Pietschmann P (2010) Mechanisms involved in the inhibition of osteoclast generation by the benzothiophene SERM LY117018. Wien Klin Wochenschr 122:626–632

    Article  PubMed  CAS  Google Scholar 

  • Narayana Murthy PS, Sengupta S, Sharma S, Singh MM (2006) Effect of ormeloxifene on ovariectomy-induced bone resorption, osteoclast differentiation and apoptosis and TGF beta-3 expression. J Steroid Biochem Mol Biol 100:117–128

    Article  PubMed  CAS  Google Scholar 

  • Kwak HB, Kirn JY, Kim KJ, Choi MK, Kim JJ, Kirn KM, Shin YI, Lee MS, Kim HS, Kim JW, Chun CH, Cho HJ, Hong GY, Juhng SK, Yoon KH, Park BH, Bae JM, Han JK, Oh J. Risedronate directly inhibits osteoclast differentiation and inflammatory bone loss. Bio1 Pharm Bull. 2009; 32:1193–1198.

    Article  CAS  Google Scholar 

  • D’Amelio P, Gnmaldi A, Di Bella S, Tamone C, Brianza SZ, Ravazzoli MG, Bernabei P, Cristofaro MA, Pescmona GP, Isaia G. Risedronate reduces osteoclast precursors and cytokine production in postmenopausal osteoporotic women. J Bone Miner Res 2008; 23:373–379.

    Article  PubMed  Google Scholar 

  • Dundar U, Kavuncu V, Cifici IH, Evcik D, Solak O, Cakir T. The effect of risedronate treatment on serum cytokines in postmenopausal osteoporosis: a 6-month randomized and controlled study. J Bone Miner Metab 2009; 27:464–470.

    Article  PubMed  CAS  Google Scholar 

  • D’Amelio P, Grimaidi A, Cristofaro MA, Ravazzoli M, Molinatti PA, Pescarmona GP, Isaia GC. Alendronate reduces osteoclast precursors in osteoporosis. Osteoporos Int. 2010; 21:1741–1750.

    Article  PubMed  Google Scholar 

  • Anastasilakis AD, Goulis DG, Polyzos SA, Gerou S, Koukoulis G, Kita M, Avramidis A (2008) Serum osteoprotegerin and RANKL are not specifically altered in women with postmenopausal osteoporosis treated with teriparatide or risedronate: a randomized, controlled trial. Horm Metab Res 40:281–285

    Article  PubMed  CAS  Google Scholar 

  • Lim MJ, Kwon SR, Park SG, Park W (2010) Acute effects of intravenous administration of pamidronate in patients with osteoporosis. J Korean Med Sci 25:1277–1283

    Article  PubMed  CAS  Google Scholar 

  • Bertoldo F, Pancheri S, Zenari S, Boldini S, Giovanazzi B, Zanatta M, Valenti MT, Dalle Carbonare L, Lo Cascio V (2010) Serum 25-hydroxyvitamin D levels modulate the acute-phase response associated with the first nitrogen-containing bisphosphonate infusion. J Bone Miner Res 25:447–454

    Article  PubMed  CAS  Google Scholar 

  • Tankó LB (2007) Effect of RANKL-specific denosumab on osteoclast number and function: a potential friend or foe? Curr Opin Investig Drugs 8:830–835

    PubMed  Google Scholar 

  • Lewiecki EM, Miller PD, McClung MR, Cohen SB, Bolognese MA, Liu Y, Wang A, Siddhanti S, Fitzpatrick LA; AMG 162 Bone Loss Study Group (2007) Two-year treatment with denosumab (AMG 162) in a randomized phase 2 study of postmenopausal women with low BMD. J Bone Miner Res 22:1832–1841

    Article  PubMed  CAS  Google Scholar 

  • Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS (2009) Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol 157:1291–1300

    Article  PubMed  CAS  Google Scholar 

  • Pepene CE, Seck T, Diel I, Minne HW, Ziegler R, Pfeilschifter J (2004) Influence of fluor salts, hormone replacement therapy and calcitonin on the concentration of insulin-like growth factor (IGF)-I, IGF-II and transforming growth factor-beta 1 in human iliac crest bone matrix from patients with primary osteoporosis. Eur J Endocrinol 150:81–91

    Article  PubMed  CAS  Google Scholar 

  • Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T (1999) Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest 104: 1363–1274

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mikosch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Wien NewYork

About this chapter

Cite this chapter

Mikosch, P. (2012). Osteoporosis: Pathophysiology and Clinical Aspects. In: Pietschmann, P. (eds) Principles of Osteoimmunology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0520-7_7

Download citation

Publish with us

Policies and ethics