Skip to main content

Osteoimmunological Aspects of Biomechanics

  • Chapter
Principles of Osteoimmunology

Abstract

Osteoporosis and fragility fractures are a major health concern, especially in industrialised countries. Osteoporosis per se and osteoporosis-related complications may impair functioning and health and, thus, lead to an inferior quality of life. Moreover, skeletal health has a profound financial and social impact.

Different endogenous and exogenous factors which interfere with bone health have been identified. Among these, physical activity that relates to regular mechanical bone loading seems to be one of the major factors controlling bone mass and the prevention of osteoporotic fractures. Moreover, there is an interaction between bone homeostasis and the immune system which may be modified by regular physical activity. Bone and immune cells share a common site of origin, the bone marrow. They are supposed to influence each other not only during maturation; osteoclasts and immune cells have a number of regulatory molecules in common, including cytokines, receptors, signalling molecules, and transcription factors, which influence each other.

The aim of this chapter is to review the impact of both bone loading and muscle activity on bone remodelling, thereby elucidating the immunological communication pathways intended to modulate osteoblast and osteoclast activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akerstrom T, Steensberg A, Keller P, Keller C, Penkowa M, Pedersen BK (2005) Exercise induces interleukin-8 expression in human skeletal muscle. J Physiol 563(2):507–16

    Article  PubMed  CAS  Google Scholar 

  • Aubin JE (1998) Bone stem cells. J Cell Biochem, Suppl 30–31: 73–82

    Article  Google Scholar 

  • Bacabac RG, Smit TH, Mullender MG, Dijcks SJ, Van Loon JJ, Klein-Nulend J (2004) Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun 315: 823–829

    Article  PubMed  CAS  Google Scholar 

  • Bemben DA, Bemben MG (2010) Dose-response effect of 40 weeks of resistance training on bone mineral density in older adults. Osteoporos Int DOI 10.1007/s00198–010-1182–9.

    Google Scholar 

  • Biewener AA, Fyhrie D, Parfitt M, Davy T, Schaffler M, Heany R (1993) Calcif Tissue Int 53: S68-S74

    Article  PubMed  Google Scholar 

  • Booth FW, Chakravarthy MV, Spangenburg EE (2002) Exercise and gene expression: physiological regulation of the human genome through physical activity. J Physiol 543: 399–411

    Article  PubMed  CAS  Google Scholar 

  • Brüünsgaard H, Pedersen BK (2003) Age-related inflammatory cytokines and disease.Immunol Allergy Clin North Am 23:15–39

    Article  PubMed  Google Scholar 

  • Buford TW, Cooke MB, Shelmadine BD, Hudson GM, Redd L, Willoughby DS (2009) Effects of eccentric treadmill exercise on inflammatory gene expression in human skeletal muscle. Appl Physiol Nutr Metab 34:745–53.

    Article  PubMed  CAS  Google Scholar 

  • Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone-role of the laculocanalicular network. FASEB 13 Suppl: S101–S112

    Google Scholar 

  • Burr DB, Martin RB, Schaffler MB, Radin EL (1985) Bone remodeling in response to in vivo fatigue microdamage. J Biomech 18: 189–200

    Article  PubMed  CAS  Google Scholar 

  • Burr DB, Milgrom C, Fyhrie D, Forwood M, Nyska M, Finestone A, Hoshaw S, Saiag E, Simkin A (1996) In vivo measurement of human tibial strains during vigorous activity. Bone 18: 405–410

    Article  PubMed  CAS  Google Scholar 

  • Courteix D, Lespessailles E, Peres SL, Obert P, Germain P, Benhamou CL (1998) Effects of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int 8: 152–158

    Article  PubMed  CAS  Google Scholar 

  • Cowin SC, Moss-Salentijn L, Moss ML (1991) Candidate for the mechanosensory system in bone. J Biomech Eng 113: 191–197

    Article  PubMed  CAS  Google Scholar 

  • Currey JD (1979) Mechanical properties of bone tissues with greatly differing functions. J Biomech 12: 313–319

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Mazzon E, Dugo L, Genovese T, Di Paola R, Ruggeri Z, Vegeto E, Caputi AP, Van De Loo FA, Puzzolo D, Maggi A (2003) Inducible nitric oxide synthase mediates bone loss in ovariectomized mice. Endocrinology 144: 1098–1107

    Article  PubMed  CAS  Google Scholar 

  • Duplomb L, Baud’huin M, Charrier C, Berreur M, Trichet V, Blanchard F, Heymann D (2008) Interleukin-6 Inhibits Receptor Activator of Nuclear Factor κB Ligand-Induced Osteoclastogenesis by Diverting Cells into the Macrophage Lineage: Key Role of Serine727 Phosphorylation of Signal Transducer and Activator of Transcription 3. Endocrinology 149: 3688–3697

    Article  PubMed  CAS  Google Scholar 

  • Evans WJ (2004) Protein nutrition, exercise and aging. J Am Coll Nutr 23: 601S–609S

    PubMed  CAS  Google Scholar 

  • Fischer CP (2006) Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev 12: 6–33

    Google Scholar 

  • Fischer CP, Hiscock NJ, Penkowa M, Basu S, Vessby B, Kallner A, Sjöberg LB, Pedersen BK (2004) Supplementation with vitamins C and E inhibits the release of interleukin-6 from contracting human skeletal muscle. J Physiol 558:633–45

    Article  PubMed  CAS  Google Scholar 

  • Fritton SP, McLeod KJ, Rubin CT (2000) Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J Biomech 33: 317–325

    Article  PubMed  CAS  Google Scholar 

  • Fuller K, Murphy C, Kirstein B, Fox SW, Chambers TJ (2002) TNFalpha potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL Endocrinology 143: 1108–1118

    Article  PubMed  CAS  Google Scholar 

  • Furmanczyk PS, Quinn LS (2003) Interleukin-15 increases myosin accretion in human skeletal myogenic cultures. Cell Biol Int 27: 845–851

    Article  PubMed  CAS  Google Scholar 

  • Gleeson M (2007) Immune function in sport and exercise. J Appl Physiol 103: 693–699

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Preston MR, El Haj AJ, Howl JD, Publicover SJ (2001) Three types of K+ currents in murine osteocyte-like cells (MLO-Y4). Bone 28: 29–37

    Article  PubMed  CAS  Google Scholar 

  • Haugen F, Norheim F, Lian H, Wensaas AJ, Dueland S, Berg O, Funderud A, SkÃ¥lhegg BS, Raastad T, Drevon CA. IL-7 is expressed and secreted by human skeletal muscle cells (2010) Am J Physiol Cell Physiol 298: 807–16

    Article  Google Scholar 

  • Hikida RS, Staron RS, Hagerman FC, Sherman WM, Costill DL (1983) Muscle fiber necrosis associated with human marathon runners. J Neurol Sci 59: 186–203

    Article  Google Scholar 

  • Hiscock N, Chan MH, Bisucci T, Darby IA, Febbraio MA (2004) Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fiber type specificity. FASEB J 18: 992–994

    PubMed  CAS  Google Scholar 

  • Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444: 860–867

    Article  PubMed  CAS  Google Scholar 

  • Hu FB, Willett WC, Li T, Stampfer MJ, Colditz GA, Manson JE (2004) Adiposity as compared with physical activity in predicting mortality among women. N Engl J Med 351: 2694–2703

    Article  PubMed  CAS  Google Scholar 

  • Huiskes R, Ruimerman R, van lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and bone adaptation of form in trabecular bone. Nature 405: 704–706

    Article  PubMed  CAS  Google Scholar 

  • Judex S, Carlson KJ (2009) Is bone’s response to mechanical signals dominated by gravitational loading? MSSE 41: 2037–2043

    Google Scholar 

  • Judex S, Rubin CT (2010) Is bone formation induced by high-frequency mechanical signals modulated by muscle activity? J Musculoskelet Neuronal Interact 10: 3–11

    PubMed  CAS  Google Scholar 

  • Kemmler W, von Strengel S, Engelke K, Häberle L, Kalender WA (2010) Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch Int Med 170: 179–185

    Article  Google Scholar 

  • Kerschan-Schindl K, Thalmann M, Sodeck GH, Skenderi KP, Matalas AL, Grampp S, Ebner C, Pietschmann P (2009) A 246-km continuous running race causes significant changes in bone metabolism. Bone 45: 1079–1083

    Article  PubMed  CAS  Google Scholar 

  • Klein-Nulend J, Veldhuijzen JP, de Jong M, Burger EH (1987) Increased bone formation and decreased bone resorption in fetal mouse calvaria as a result of intermittent compressive force in vitro. Bone Miner 2: 441–448

    PubMed  CAS  Google Scholar 

  • Kohrt WM, Barry DW, Schwartz RS (2009) Muscle forces or gravity: What predominates mechanical loading on bone? MSSE 41: 2050–2055

    Google Scholar 

  • Kohrt WM, Eshani AA, Birge SJ Jr (1997) Effects of exercise involving predominantly either joint-reaction or ground-reaction forces on bone mineral density in older women. JBMR 12: 1253–1261

    Article  CAS  Google Scholar 

  • Kontulainenen S, Sievänen H, Kannus P, Pasanen M, Vuori I (2002) Effect of long-term impact-loading on mass, size, and estimate strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res 17: 2281–2289

    Article  Google Scholar 

  • Langberg H, Olesen JL, Gemmer C, Kjaer M (2002) Substantial elevation of interleukin-6 concentration in peritendinous tissue, in contrast to muscle, following prolonged exercise in humans. J Physiol 542: 985–990

    Article  PubMed  CAS  Google Scholar 

  • Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA 104: 13325–13330

    Article  PubMed  CAS  Google Scholar 

  • Mc Garry JG, Klein-Nulend J, Prendergast PJ (2005) The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandine E2 release in osteocytes and osteoblasts. Biochem Biophys Res Commun 330: 341–348

    Article  CAS  Google Scholar 

  • Mikuni-Takagaki Y (1999) Mechanical responses and signal transduction pathways in stretched osteocytes. J Bone Miner Metab 17: 57–60

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi A, Gotoh M, Kamioka H, Notoya K, Sekiya H, Takagi Y, Yoshimoto Y, Ishikawa H, Chihara K, Takano-Yamamoto T, Fujita T, Mikuni-Takagaki Y (2006) AlphaVbeta3 integrin ligands enhance volume-sensitive calcium influx in mechanically stretched osteocytes. J Bone Miner Metab 24: 498–504

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi A, Notoya K, Mikuni-Takagaki Y, Takagi Y, Goto M, Miki Y, Fujita T (2000) Parathyroid hormone-activated volume-sensitive calcium influx pathways in mechanically located osteocytes. J Biol Chem 275: 3335–3342

    Article  PubMed  CAS  Google Scholar 

  • Mortensen OH, Andersen K, Fischer C, Nielsen AR, Nielsen S, Akerström T, Aastrøm MB, Borup R, Pedersen BK (2008) Calprotectin is released from human skeletal muscle tissue during exercise. J Physiol 586: 3551–3562

    Article  PubMed  CAS  Google Scholar 

  • Nielsen AR, Mounier R, Plomgaard P, Mortensen OH, Penkowa M, Speerschneider T, Pilegaard H, Pedersen BK (2007) Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition. J Physiol 584: 305–312

    Article  PubMed  CAS  Google Scholar 

  • Nieman DC, Davis JM, Henson DA, Walberg-Rankin J, Shute M, Dumke CL, Utter AC, Vinci DM, Carson JA, Brown A, Lee WJ, McAnulty SR, McAnulty LS (2003) Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J Appl Physiol 94: 1917–1925

    PubMed  CAS  Google Scholar 

  • Orsini N, Bellocco R, Bottai M, Pagano M, Michaelsson K, Wolk A (2008) Combined effects of obesity and physical activity in predicting mortality among men. J Intern Med 264: 442–445

    Article  PubMed  CAS  Google Scholar 

  • Ostrowski K, Hermann C, Bangash A, Schjerling P, Nielsen JN, Pedersen BK (1998) A trauma-like elevation of plasma cytokines in humans in response to treadmill running. J Physiol 513: 889–894

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK (2006) The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays Biochem 42: 105–117

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK (2009) The diseasome of physical inactivity--and the role of myokines in muscle – fat cross talk. J Physiol 587: 5559–5568

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88: 1379–1406

    Article  PubMed  CAS  Google Scholar 

  • Petersen AMW, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98: 1154–1162.

    Article  PubMed  CAS  Google Scholar 

  • Plomgaard P, Penkowa M, Pedersen BK (2005) Fiber type specific expression of TNF-alpha, IL-6 and IL-18 in human skeletal muscles. Exerc Immunol Rev 11: 53–63

    PubMed  Google Scholar 

  • Plotkin LI, Mathov I, Aguirre JI, Parfitt AM, Mangolas SC, Bellido T (2005) Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases, and ERKs. Am J Physiol-Cell Physiol 289: C633–C643

    Article  PubMed  CAS  Google Scholar 

  • Quinn LS, Strait-Bodey L, Anderson BG, Argilés JM, Havel PJ (2005) Interleukin-15 stimulates adiponectin secretion by 3T3-L1 adipocytes: evidence for a skeletal muscle-to-fat signaling pathway. Cell Biol Int 29: 449–457

    Article  PubMed  CAS  Google Scholar 

  • Rawlinson SC, Pitsillides AA, Lanyon LE (1996) Involvement of different ion channels in osteoblasts’ and osteocytes’ early responses to mechanical strain. Bone 19: 609–614

    Article  PubMed  CAS  Google Scholar 

  • Riechman SE, Balasekaran G, Roth SM, Ferrell RE (2004) Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J Appl Physiol 97: 2214–2219

    Article  PubMed  CAS  Google Scholar 

  • Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, Kharode Y, Sauter L, Babij P, Brown EL, Hill AA, Akhter MP, Johnson ML, Recker RR, Komm BS, Bex FJ (2006) Wnt/ß-catenin signalling is a normal physiological response to mechanical loading in bone. J Biol Chemistry 281: 3170–3178

    Article  Google Scholar 

  • Rokling-Andersen MH, Reseland JE, Veierød MB, Anderssen SA, Jacobs DR Jr, Urdal P, Jansson JO, Drevon CA (2007) Effects of long-term exercise and diet intervention on plasma adipokine concentrations. Am J Clin Nutr 86: 1293–1301

    PubMed  CAS  Google Scholar 

  • Rubin CT and Lanyon LE (1984) Dynamic strain similarity in vertebrates: an alternative to allometric bone scaling. J Theor Biol 107: 321–327

    Article  PubMed  CAS  Google Scholar 

  • Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412: 603–604

    Article  PubMed  CAS  Google Scholar 

  • Rubin J, Rubin C, Jacobs CR (2006) Molecular pathways mediating mechanical signalling in bone. Gene 367: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Santos A, Bakker AD, Zandieh-Doulabi B, Semeins CM, Klein-Nulend J (2009) Pulsating fluid flow modulates gene expression of proteins involved in Wnt signalling pathways in osteocytes. J Orthop Res 27: 1280–1287

    Article  PubMed  CAS  Google Scholar 

  • Sipos W, Rauner M, Skalicky M, Viidik A, Hofbauer G Schett G, Redlich K, Lang S, Pietschmann P (2008) Running has a negative effect on bone metabolism and proinflammatory status in male aged rats. Exp Gerontol 43: 578–583

    Article  PubMed  CAS  Google Scholar 

  • Skenderi KP, Kavouras SA, Anastasiou CA, Yiannakouris N, Matalas AL (2006) Exertional rhabdomyolysis during a 246-km continuous running race. MSSE 38: 1054–1057

    CAS  Google Scholar 

  • Snow-Harter C, Bouxsein ML, Lewis BT, Carter DR, Marcus R (1992) Effects of resistance and endurance exercise on bone mineral status of young women: a randomized exercise intervention trial. JBMR 7: 761–769

    Article  CAS  Google Scholar 

  • Steensberg A, Fischer CP, Keller C, Møller K, Pedersen BK (2003) IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab 285: E433–E437

    PubMed  CAS  Google Scholar 

  • Tan AD, de Vries TJ, Kuijpers-Jagtman AM, Semeins CM, Everts V, Klein-Nugend J (2007) Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone 41: 745–751

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum SL (2007) Osteoclasts: what do they do and how do they do it? Am J Pathol 170: 427–435

    Article  PubMed  CAS  Google Scholar 

  • Vezeridis PS, Semeins CM, Chen Q, Klein-Nulend J (2006) Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation. Biochem Biophys Res Comm 348: 1082–1088

    Article  PubMed  CAS  Google Scholar 

  • Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL (2005) IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 115: 282–290

    PubMed  CAS  Google Scholar 

  • Weinbaum S, Cowin SC, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27: 339–360

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Jacobson JM, Choi ES, Busa B, Donahue LR, Miller LM, Rubin CT, Judex S (2006) Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone 39: 1059–1066

    Article  PubMed  Google Scholar 

  • Yellowley CE, Li Z, Zhou Z, Jacobs CR, Donahue HJ (2000) Functional gap junctions between osteocytic and osteoblastic cells. JBMR 15: 209–217

    Article  CAS  Google Scholar 

  • Yoshitake F, Itoh S, Narita H, Ishihara K, Ebisu S (2008) Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-κB signaling pathways. J Biol Chem 283: 11535–11540

    Article  PubMed  CAS  Google Scholar 

  • You L, Cowin SC, Schaffler MB, Weinbaum S (2001) A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech 34: 1375–1386

    Article  PubMed  CAS  Google Scholar 

  • You L, Temiyasathit S, Lee P, Kim CH, Tummala P, Yao W, Kingery W, Malone AM, Kwon RY, Jacobs CR (2008) Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone 42: 172–179

    Article  PubMed  CAS  Google Scholar 

  • Zerwekh JE, Ruml LA, Gottschalk F, Pak CYC (1998) The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. JBMR 13: 1594–1601

    Article  CAS  Google Scholar 

  • Zhang K, Barragan-Adjemian C, Ye L, Kotha S, Dallas M, Lu Y, Zhao S, Harris M Harris SE, Feng JQ, Bonewald LF (2006) E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol Cell Biol 26: 4539–4552

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Kerschan-Schindl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Wien NewYork

About this chapter

Cite this chapter

Kerschan-Schindl, K., Ebenbichler, G. (2012). Osteoimmunological Aspects of Biomechanics. In: Pietschmann, P. (eds) Principles of Osteoimmunology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0520-7_5

Download citation

Publish with us

Policies and ethics