Skip to main content

Towards the Automated Detection and Characterization of Osteoclasts in Microscopic Images

  • Chapter
  • 775 Accesses

Abstract

Microscopes have been used for a long time to observe biological samples. However, measurements of tissue and cell-related parameters were conducted by human observers and were consequently ad hoc, not reproducible and restricted to small sample numbers. Since computers have become increasingly powerful, classic life-sciences now routinely take advantage of new opportunities to link microscopes and computers. Automated image-segmentation in large numbers of digital images allows recognition of cell and tissue structures via computer algorithms, and subsequent linear measurements of cellular parameters. Nevertheless, they also come with technical challenges linked to memory, computational resources, disk space and sensor limitations as well as new software algorithm approaches for image processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.autopano.net/en/

  2. 2.

    http://hugin.sourceforge.net/

  3. 3.

    http://www.tissuegnostics.com

  4. 4.

    www.cellprofiler.org

References

  • Abrahamsson S, Usawa S, Gustafsson M (2006) A new approach to extended focus for high-speed, high-resolution biological microscopy – art. no. 60900N. Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIII 6090:193

    Google Scholar 

  • Akatsu T, Tamura T, Takahashi N, Udagawa N, Tanaka S, Sasaki T, Yamaguchi A, Nagata N, Suda T (1992) Preparation and characterization of a mouse osteoclast-like multinucleated cell population. J Bone Miner Res 7 (11):1297–1306

    PubMed  CAS  Google Scholar 

  • Andersson GN, Marks SC, Jr. (1989) Tartrate-resistant acid ATPase as a cytochemical marker for osteoclasts. J Histochem Cytochem 37 (1):115–117

    Article  PubMed  CAS  Google Scholar 

  • Baak JPA (1991) Manual of quantitative pathology in cancer diagnosis and prognosis. Springer, Berlin

    Google Scholar 

  • Burger W, Burge M (2008) Digital image processing: an algorithmic introduction using Java. Springer, Berlin

    Book  Google Scholar 

  • González CR, Woods ER (2008) Digital image processing. Gatesmark Publishing:827

    Google Scholar 

  • Chinchor N, Sundheim B (1993) MUC-5 evaluation metrics. Paper presented at the Proceedings of the 5th conference on Message understanding. Baltimore, Maryland

    Google Scholar 

  • Cloppet F, Boucher A (2010) Segmentation of complex nucleus configurations in biological images. Pattern Recognition Letters 31 (8):755–761

    Article  Google Scholar 

  • Heindl A, Schepelmann M, Seewald AK, Burger K, Rogojanu R, Ecker R, Bises G, Pietschmann P, Ellinger I, Thalhammer T (2010) Towards an automated evaluation system of osteoclasts in cultures using a combined image-processing and machine-learning strategy. J Miner Stoffwechs 17 (Sonderheft 2):7

    Google Scholar 

  • Kapelner A, Lee P, Holmes S (2007) An interactive statistical image segmentation and visualization system. In: Clapworthy G and Moore C (eds) Medical Information Visualisation – BioMedical Visualisation (4–6 July 2007), Zurich:81–86

    Google Scholar 

  • Spector DL, Goldman RD (2006) Basic methods in microscopy: protocols and concepts from cells: a laboratory manual. Gold Spring Harbor Laboratory Press

    Google Scholar 

  • Lennert K, Stein H (1981) Histopathology of non-Hodgkin’s lymphomas: based on the Kiel classification. Springer, Berlin

    Book  Google Scholar 

  • Liu F, Song XD, Luo YP, Hu DC (2002) Adaptive thresholding based on variational background. Electronics Letters 38 (18):1017–1018

    Article  Google Scholar 

  • Liu HS, Agam Y, Madsen JR, Kreiman G (2009) Timing, timing, timing: fast decoding of object information from intracranial field potentials in human visual cortex. Neuron 62 (2):281–290

    Article  PubMed  CAS  Google Scholar 

  • Livesey AE, Sutherland FI, Brown RA, Beck JS, Macgillivray JB, Slidders W (1978) Cytological basis of histological typing of diffuse Hodgkin’s disease. Demonstration of an implied misnomer in the terminology of the Rye classification. J Clin Pathol 31 (6):551–559

    Article  PubMed  CAS  Google Scholar 

  • Ljosa V, Carpenter AE (2009) Introduction to the quantitative analysis of two-dimensional fluorescence microscopy images for cell-based screening. PLoS comput biol 5(12): e1000603. doi: 10.1371/journal.pcbi.1000603

    Article  Google Scholar 

  • Mach E (1886) Beiträge zur Analyse der Empfindungen. Fischer, Jena

    Google Scholar 

  • Malpica N, de Solorzano CO, Vaquero JJ, Santos A, Vallcorba I, Garcia-Sagredo JM, del Pozo F (1997) Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 28 (4):289–297

    PubMed  CAS  Google Scholar 

  • Martin DR, Fowlkes C, Tal D, Malik J (2001) A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. EECS Department, University of California, Berkeley

    Google Scholar 

  • Moffat J, Grueneberg DA, Yang X et al (2006) A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124 (6):1283–1298

    Article  PubMed  CAS  Google Scholar 

  • Nandy K, Gudla PR, Lockett SJ (2007) Automatic segmentation of cell nuclei in 2D using dynamic programming. Proceedings of Second Workshop on Microscopic Image Analysis with Applications in Biology. Piscataway, New Jersey

    Google Scholar 

  • Pearson H (2007) The good, the bad and the ugly. Nature 447 (7141):138–140

    Article  PubMed  CAS  Google Scholar 

  • Pool CW, Diegenbach PC, Ockeloen BJT (1979) Quantitative Succinate-Dehydrogenase Histochemistry 2. Comparison between Visual and Quantitative Muscle-Fiber Typing. Histochemistry 64 (3):263–272

    Article  PubMed  CAS  Google Scholar 

  • Rankov V, Locke RJ, Edens RJ, Barber PR, Vojnovic B (2005) An algorithm for image stitching and blending. P Soc Photo-Opt Ins 5701:190–200

    Google Scholar 

  • Rock I, Palmer S (1990) The legacy of Gestalt psychology. Sci Am 263 (6):84–90

    Article  PubMed  CAS  Google Scholar 

  • Rogojanu R, Bises G, Smochina C, Manta V (2010) Segmentation of cell nuclei within complex configurations in images with colon sections. 2010 International Conference on Intelligent Computer Communication and Processing:243–246

    Google Scholar 

  • Samet H, Tamminen M (1988) Efficient component labeling of images of arbitrary dimension represented by linear bintrees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10 (4):579–586

    Article  Google Scholar 

  • Schepelmann M, Heindl A, Seewald AK, Burger K, Rogojanu R, Ecker R, Bises G, Pietschmann P, Ellinger I, Thalhammer T (2010) A novel method for automated quantification of osteoclasts in culture – Advantages, workflow and application. J Miner Stoffwechs 17 (Sonderheft 2):7

    Google Scholar 

  • Shapiro LG, Stockman GC (2001) Computer Vision. Prentice Hall, London

    Google Scholar 

  • Smochina C, Manta V, Rogojanu R (2010) New discrepancy measure for segmentation algorithm evaluation. Proceedings Computer Graphics and Imaging 679–053

    Google Scholar 

  • Steiner GE, Ecker RC, Kramer G, Stockenhuber F, Marberger MJ (2000) Automated data acquisition by confocal laser scanning microscopy and image analysis of triple stained immunofluorescent leukocytes in tissue. J Immunol Methods 237 (1–2):39–50

    Article  PubMed  CAS  Google Scholar 

  • van de Wijngaert FP, Tas MC, Burger EH (1987) Characteristics of osteoclast precursor-like cells grown from mouse bone marrow. Bone Miner 3 (2):111–123

    PubMed  Google Scholar 

  • Wu Q, Aziz Merchant FR Castleman K (2008) Microscope image processing.

    Google Scholar 

  • Xiong GL, Zhou XB, Ji L, Bradley P, Perrimon N, Wong S (2006) Segmentation of Drosophila RNAI fluorescence images using level sets. Proceedings International Conference on Image Processing, Vols 1–7:73–76

    Google Scholar 

  • Yagi Y, Gilbertson JR (2005) Digital imaging in pathology: the case for standardization. J Telemed Telecare 11 (3): 109–116

    Article  PubMed  Google Scholar 

  • Zack GW, Rogers WE, Latt SA (1977) Automatic measurement of sister chromatid exchange frequency. J Histochem Cytochem 25 (7):741–753

    Article  PubMed  CAS  Google Scholar 

  • Zhang YJ (1996) A survey on evaluation methods for image segmentation. Pattern recognition 29 (8):1335–1346

    Article  Google Scholar 

  • Zhang YJ (2001) A review of recent evaluation methods for image segmentation. Sixth International Symposium on signal processing and its applications 2001, vol. 141:148–151

    Google Scholar 

  • Zhu J, Schwartz BL, SC (2003) General illumination correction and its application to face normalization. In: Acoustics, Speech, and Signal Processing, 2003 Proceedings (ICASSP ’03) 2003 IEEE International Conference on 3:III – vol.133, 133–136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander K. Seewald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Wien NewYork

About this chapter

Cite this chapter

Heindl, A. et al. (2012). Towards the Automated Detection and Characterization of Osteoclasts in Microscopic Images. In: Pietschmann, P. (eds) Principles of Osteoimmunology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0520-7_2

Download citation

Publish with us

Policies and ethics