Skip to main content

Basics of Bone Biology

  • Chapter
Principles of Osteoimmunology

Abstract

Bone is the major constituent of the skeleton which is a hallmark of all higher vertebrates. Besides the protection of internal organs and the support of body structures, the most important functions of bone are to serve as an attachment site for muscles allowing locomotion and provide a cavity for hematopoiesis in the bone marrow (Mendez-Ferrer et al. 2010; Zaidi 2007). Moreover, bone has a central role in mineral homeostasis as it functions as a reservoir for inorganic ions that can be mobilized rapidly on metabolic demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, Bellido T (2006) Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res 21:605–615

    Article  PubMed  Google Scholar 

  • Al-Fakhri N, Hofbauer LC, Preissner KT, Franke FE, Schoppet M (2005) Expression of bone-regulating factors osteoprotegerin (OPG) and receptor activator of NF-kappaB ligand (RANKL) in heterotopic vascular ossification. Thromb Haemost 94:1335–1337

    PubMed  CAS  Google Scholar 

  • Alini M, Marriott A, Chen T, Abe S, Poole AR (1996) A novel angiogenic molecule produced at the time of chondrocyte hypertrophy during endochondral bone formation. Dev Biol 176:124–132

    Article  PubMed  CAS  Google Scholar 

  • Andersen TL, Sondergaard TE, Skorzynska KE, Dagnaes-Hansen F, Plesner TL, Hauge EM, Plesner T, Delaisse JM (2009) A physical mechanism for coupling bone resorption and formation in adult human bone. Am J Pathol 174:239–247

    Article  PubMed  CAS  Google Scholar 

  • Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179

    Article  PubMed  CAS  Google Scholar 

  • Bilezikian JP, Kurland ES (2001) Therapy of male osteoporosis with parathyroid hormone. Calcif Tissue Int 69:248–251

    Article  PubMed  CAS  Google Scholar 

  • Binder NB, Niederreiter B, Hoffmann O, Stange R, Pap T, Stulnig TM, Mack M, Erben RG, Smolen JS, Redlich K (2009) Estrogen-dependent and C-C chemokine receptor-2-dependent pathways determine osteoclast behavior in osteoporosis. Nat Med 15:417–424

    Article  PubMed  CAS  Google Scholar 

  • Blair HC, Teitelbaum SL, Ghiselli R, Gluck S (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245:855–857

    Article  PubMed  CAS  Google Scholar 

  • Blair HC, Zaidi M, Huang CL, Sun L (2008) The developmental basis of skeletal cell differentiation and the molecular basis of major skeletal defects. Biol Rev Camb Philos Soc 83:401–415

    PubMed  Google Scholar 

  • Bodine PV, Komm BS (2006) Wnt signaling and osteoblastogenesis. Rev Endocr Metab Disord 7:33–9

    Article  PubMed  CAS  Google Scholar 

  • Bonewald LF (2007) Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci 1116:281–290

    Article  PubMed  CAS  Google Scholar 

  • Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–1521

    Article  PubMed  CAS  Google Scholar 

  • Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    Article  PubMed  CAS  Google Scholar 

  • Canalis E (1986) Interleukin-1 has independent effects on deoxyribonucleic acid and collagen synthesis in cultures of rat calvariae. Endocrinology 118:74–81

    Article  PubMed  CAS  Google Scholar 

  • Canalis E (2009) Growth factor control of bone mass. J Cell Biochem 108:769–777

    Article  PubMed  CAS  Google Scholar 

  • Carani C, Qin K, Simoni M, Faustini-Fustini M, Serpente S, Boyd J, Korach KS, Simpson ER (1997) Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 337:91–95

    Article  PubMed  CAS  Google Scholar 

  • Cauley JA, Seeley DG, Ensrud K, Ettinger B, Black D, Cummings SR (1995) Estrogen replacement therapy and fractures in older women. Study of Osteoporotic Fractures Research Group. Ann Intern Med 122:9–16

    PubMed  CAS  Google Scholar 

  • Centrella M, McCarthy TL, Kusmik WF, Canalis E (1992) Isoform-specific regulation of platelet-derived growth factor activity and binding in osteoblast-enriched cultures from fetal rat bone. J Clin Invest 89:1076–1084

    Article  PubMed  CAS  Google Scholar 

  • Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume VM, Pettit AR (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immuno 181:1232–1244

    CAS  Google Scholar 

  • Chellaiah MA (2006) Regulation of podosomes by integrin alphavbeta3 and Rho GTPase-facilitated phosphoinositide signaling. Eur J Cell Biol 85:311–317

    Article  PubMed  CAS  Google Scholar 

  • Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  PubMed  CAS  Google Scholar 

  • Coen G, Ballanti P, Silvestrini G, Mantella D, Manni M, Di Giulio S, Pisano S, Leopizzi M, Di Lullo G, Bonucci E (2009) Immunohistochemical localization and mRNA expression of matrix Gla protein and fetuin-A in bone biopsies of hemodialysis patients. Virchows Arch 454:263–271

    Article  PubMed  CAS  Google Scholar 

  • Compagni A, Logan M, Klein R, Adams RH (2003) Control of skeletal patterning by ephrinB1-EphB interactions. Dev Cell 5:217–230

    Article  PubMed  CAS  Google Scholar 

  • Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765

    Article  PubMed  CAS  Google Scholar 

  • Dai JC, He P, Chen X, Greenfield EM (2006) TNFalpha and PTH utilize distinct mechanisms to induce IL-6 and RANKL expression with markedly different kinetics. Bone 38:509–520

    Article  PubMed  CAS  Google Scholar 

  • Dardenne O, Prud’homme J, Arabian A, Glorieux FH, St-Arnaud R (2001) Targeted inactivation of the 25-hydroxyvitamin D(3)-1(alpha)-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology 142:3135–3141

    Article  PubMed  CAS  Google Scholar 

  • Dossing DA, Stern PH (2005) Receptor activator of NF-kappaB ligand protein expression in UMR-106 cells is differentially regulated by parathyroid hormone and calcitriol. J Cell Biochem 95:1029–1041

    Article  PubMed  CAS  Google Scholar 

  • Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424

    Article  PubMed  CAS  Google Scholar 

  • Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501–1504

    Article  PubMed  CAS  Google Scholar 

  • Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1221–1230

    PubMed  CAS  Google Scholar 

  • Eijken M, Hewison M, Cooper MS, de Jong FH, Chiba H, Stewart PM, Uitterlinden AG, Pols HA, van Leeuwen JP (2005) 11beta-Hydroxysteroid dehydrogenase expression and glucocorticoid synthesis are directed by a molecular switch during osteoblast differentiation. Mol Endocrinol 19:621–631

    Article  PubMed  CAS  Google Scholar 

  • Engsig MT, Chen QJ, Vu TH, Pedersen AC, Therkidsen B, Lund LR, Henriksen K, Lenhard T, Foged NT, Werb Z, Delaisse JM (2000) Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 151:879–889

    Article  PubMed  CAS  Google Scholar 

  • Faccio R, Teitelbaum SL, Fujikawa K, Chappel J, Zallone A, Tybulewicz VL, Ross FP, Swat W (2005) Vav3 regulates osteoclast function and bone mass. Nat Med 11:284–290

    Article  PubMed  CAS  Google Scholar 

  • Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310–1315

    Article  PubMed  CAS  Google Scholar 

  • Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM, Scadden DT (2008) Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2:274–283

    Article  PubMed  CAS  Google Scholar 

  • Fortier LA, and Nixon AJ (1997) Distributional changes in substance P nociceptive fiber patterns in naturally osteoarthritic articulations. J Rheumatol. 24:524–530

    PubMed  CAS  Google Scholar 

  • Franchimont N, Gangji V, Durant D, Canalis E (1997a) Interleukin-6 with its soluble receptor enhances the expression of insulin-like growth factor-I in osteoblasts. Endocrinology 138:5248–5255

    Article  CAS  Google Scholar 

  • Franchimont N, Rydziel S, Canalis E (1997b) Interleukin 6 is autoregulated by transcriptional mechanisms in cultures of rat osteoblastic cells. J Clin Invest 100:1797–1803

    Article  CAS  Google Scholar 

  • Frost HM (1990) Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s law: the remodeling problem. Anat Rec 226:414–422

    Article  PubMed  CAS  Google Scholar 

  • Frost HM, Jee WS (1994) Perspectives: a vital biomechanical model of the endochondral ossification mechanism. Anat Rec 240:435–446

    Article  PubMed  CAS  Google Scholar 

  • Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–1238

    Article  PubMed  CAS  Google Scholar 

  • Gilbert L, He X, Farmer P, Boden S, Kozlowski M, Rubin J, Nanes MS (2000) Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology 141:3956–364

    Article  PubMed  CAS  Google Scholar 

  • Gong Y, Slee RB, Fukai N et al. (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523

    Article  PubMed  CAS  Google Scholar 

  • Greenfield EM, Gornik SA, Horowitz MC, Donahue HJ, Shaw SM (1993) Regulation of cytokine expression in osteoblasts by parathyroid hormone: rapid stimulation of interleukin-6 and leukemia inhibitory factor mRNA. J Bone Miner Res 8:1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Grubb BD (2004) Activation of sensory neurons in the arthritic joint. Novartis Found Symp 260:28–36; discussion 36–48, 100–4, 277–279

    Google Scholar 

  • Guan CC, Yan M, Jiang XQ, Zhang P, Zhang XL, Li J, Ye DX, Zhang FQ (2009) Sonic hedgehog alleviates the inhibitory effects of high glucose on the osteoblastic differentiation of bone marrow stromal cells. Bone 45:1146–1152

    Article  PubMed  CAS  Google Scholar 

  • Hamidouche Z, Hay E, Vaudin P, Charbord P, Schule R, Marie PJ, Fromigue O (2008) FHL2 mediates dexamethasone-induced mesenchymal cell differentiation into osteoblasts by activating Wnt/beta-catenin signaling-dependent Runx2 expression. Faseb J 22:3813–3822

    Article  PubMed  CAS  Google Scholar 

  • Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A, Komori T, Nakatsuka M (1999) Cbfa1 isoforms exert functional differences in osteoblast differentiation. J Biol Chem 274:6972–6978

    Article  PubMed  CAS  Google Scholar 

  • Harris SE, Guo D, Harris MA, Krishnaswamy A, Lichtler A (2003) Transcriptional regulation of BMP-2 activated genes in osteoblasts using gene expression microarray analysis: role of Dlx2 and Dlx5 transcription factors. Front Biosci 8:s1249–1265

    Article  PubMed  CAS  Google Scholar 

  • Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F (2001) Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 16:1575–1582

    Article  PubMed  CAS  Google Scholar 

  • Hazenberg JG, Freeley M, Foran E, Lee TC, Taylor D (2006) Microdamage: a cell transducing mechanism based on ruptured osteocyte processes. J Biomech 39:2096–2103

    Article  PubMed  Google Scholar 

  • Heino TJ, Hentunen TA, Vaananen HK (2002) Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-beta: enhancement by estrogen. J Cell Biochem 85:185–197

    Article  PubMed  CAS  Google Scholar 

  • Hirao M, Hashimoto J, Yamasaki N, Ando W, Tsuboi H, Myoui A, Yoshikawa H (2007) Oxygen tension is an important mediator of the transformation of osteoblasts to osteocytes. J Bone Miner Metab 25:266–276

    Article  PubMed  CAS  Google Scholar 

  • Hofbauer LC, Gori F, Riggs BL, Lacey DL, Dunstan CR, Spelsberg, TC Khosla S (1999) Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 140:4382–89

    Article  PubMed  CAS  Google Scholar 

  • Hofbauer LC, Heufelder AE (2001) Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med 79:243–253

    Article  PubMed  CAS  Google Scholar 

  • Hofbauer LC, Zeitz U, Schoppet M, Skalicky M, Schuler C, Stolina M, Kostenuik PJ, Erben RG (2009) Prevention of glucocorticoid-induced bone loss in mice by inhibition of RANKL. Arthritis Rheum 60:1427–1437

    Article  PubMed  Google Scholar 

  • Holen I, Cross SS, Neville-Webbe HL, Cross NA, Balasubramanian SP, Croucher I, Evans CA, Lippitt JM, Coleman RE, Eaton CL (2005) Osteoprotegerin (OPG) expression by breast cancer cells in vitro and breast tumours in vivo – a role in tumour cell survival? Breast Cancer Res Treat 92:207–215

    Article  PubMed  CAS  Google Scholar 

  • Huebner AK, Keller J, Catala-Lehnen P, Perkovic S, Streichert T, Emeson RB, Amling M, Schinke T (2008) The role of calcitonin and alpha-calcitonin gene-related peptide in bone formation. Arch Biochem Biophys 473:210–217

    Article  PubMed  CAS  Google Scholar 

  • Imam A, Iqbal J, Blair HC, Davies TF, Huang CL, Zallone A, Zaidi M, Sun L (2009) Role of the pituitary-bone axis in skeletal pathophysiology. Curr Opin Endocrinol Diabetes Obes 16:423–1429

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  CAS  Google Scholar 

  • Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91

    Article  PubMed  CAS  Google Scholar 

  • Jilka RL, Passeri G, Girasole G, Cooper S, Abrams J, Broxmeyer H, Manolagas SC (1995) Estrogen loss upregulates hematopoiesis in the mouse: a mediating role of IL-6. Exp Hematol 23:500–506

    PubMed  CAS  Google Scholar 

  • Jilka RL, Weinstein RS, Bellido T, Parfitt AM, Manolagas SC (1998) Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res 13:793–802

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Andrade JM, Mantyh WG, Bloom AP, Xu H, Ferng AS, Dussor G, Vanderah TW, Mantyh PW (2010) A phenotypically restricted set of primary afferent nerve fibers innervate the bone versus skin: therapeutic opportunity for treating skeletal pain. Bone 46:306–313

    Article  PubMed  Google Scholar 

  • Jung Y, Wang J, Song J, Shiozawa Y, Wang J, Havens A, Wang Z, Sun YX, Emerson SG, Krebsbach PH, Taichman RS (2007) Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood 110:82–90

    Article  PubMed  CAS  Google Scholar 

  • Karsenty G, Ducy P (2006) The hypothalamic control of bone mass, implication for the treatment of osteoporosis. Ann Endocrinol (Paris): 67:123

    Article  CAS  Google Scholar 

  • Kartsogiannis V, Zhou H, Horwood NJ, Thomas RJ, Hards DK, Quinn JM, Niforas P, Ng KW, Martin TJ, Gillespie MT (1999) Localization of RANKL (receptor activator of NF kappa B ligand) mRNA and protein in skeletal and extraskeletal tissues. Bone 25:525–534

    Article  PubMed  CAS  Google Scholar 

  • Keller H, Kneissel M (2005) SOST is a target gene for PTH in bone. Bone 37:148–158

    Article  PubMed  CAS  Google Scholar 

  • Khosla S (2001) Minireview: the OPG/RANKL/RANK system. Endocrinology 142:5050–5055

    Article  PubMed  CAS  Google Scholar 

  • Khosla S, Melton 3rd LJ, Riggs BL (2001) Estrogens and bone health in men. Calcif Tissue Int 69:189–192

    Article  PubMed  CAS  Google Scholar 

  • Khosla S, Riggs BL (2003) Androgens, estrogens, and bone turnover in men. J Clin Endocrinol Metab 88:2352; author reply 2352–2353

    Google Scholar 

  • Kim HJ, Zhao H, Kitaura H, Bhattacharyya S, Brewer JA, Muglia LJ, Ross FP, Teitelbaum SL (2006a) Glucocorticoids suppress bone formation via the osteoclast. J Clin Invest 116:2152–2160

    Article  CAS  Google Scholar 

  • Kim N, Takami M, Rho J, Josien R, Choi Y (2002) A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J Exp Med 195:201–209

    PubMed  CAS  Google Scholar 

  • Kim YJ, Kim HN, Park EK, Lee BH, Ryoo HM, Kim SY, Kim IS, Stein JL, Lian JB, Stein GS, van Wijnen AJ, Choi JY (2006b) The bone-related Zn finger transcription factor Osterix promotes proliferation of mesenchymal cells. Gene 366:145–151

    Article  CAS  Google Scholar 

  • Kitazawa S, Kajimoto K, Kondo T, Kitazawa R (2003) Vitamin D3 supports osteoclastogenesis via functional vitamin D response element of human RANKL gene promoter. J Cell Biochem 89:771–777

    Article  PubMed  CAS  Google Scholar 

  • Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T, Taniguchi T, Takayanagi H, Takai T (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428:758–2763

    Article  PubMed  CAS  Google Scholar 

  • Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, Takayanagi H (2005) NFAT and Osterix cooperatively regulate bone formation. Nat Med 11:880–885

    Article  PubMed  CAS  Google Scholar 

  • Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, Van G, Nguyen LT, Ohashi PS, Lacey DL, Fish E, Boyle WJ, Penninger JM (1999a) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402:304–309

    Article  CAS  Google Scholar 

  • Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999b) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    Article  CAS  Google Scholar 

  • Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116:1202–209

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg HM (2006) PTHrP and skeletal development. Ann N Y Acad Sci 1068:1–13

    Article  PubMed  CAS  Google Scholar 

  • Kuno H, Kurian SM, Hendy GN, White J, deLuca HF, Evans CO, Nanes MS (1994) Inhibition of 1,25-dihydroxyvitamin D3 stimulated osteocalcin gene transcription by tumor necrosis factor-alpha: structural determinants within the vitamin D response element. Endocrinology 134:2524–2531

    Article  PubMed  CAS  Google Scholar 

  • Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully E, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  PubMed  CAS  Google Scholar 

  • Lanske B, Amling M, Neff L, Guiducci J, Baron R, Kronenberg HM (1999) Ablation of the PTHrP gene or the PTH/PTHrP receptor gene leads to distinct abnormalities in bone development J Clin Invest 104:399–407

    Article  PubMed  CAS  Google Scholar 

  • Leder BZ, LeBlanc KM, Schoenfeld DA, Eastell R, Finkelstein JS (2003) Differential effects of androgens and estrogens on bone turnover in normal men. J Clin Endocrinol Metab 88:204–210

    Article  PubMed  CAS  Google Scholar 

  • Leibbrandt A, Penninger JM (2009) RANK(L) as a key target for controlling bone loss. Adv Exp Med Biol 647:130–145

    Article  PubMed  CAS  Google Scholar 

  • Li X, Qin L, Bergenstock M, Bevelock LM, Novack DV, Partridge NC (2007) Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem 282:33098–3106

    Article  PubMed  CAS  Google Scholar 

  • Li YP, Chen W, Liang Y, Li E, Stashenko P (1999) Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 23:447–451

    Article  PubMed  CAS  Google Scholar 

  • Lian JB, Stein GS, Javed A, van Wijnen AJ, Stein JL, Montecino M, Hassan MQ, Gaur T, Lengner CJ, Young DW (2006) Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 7:1–16

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Tang W, Fang J, Ren J, Li H, Xiao Z, Quarles LD (2009) Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol Endocrinol 23:1505–1518

    Article  PubMed  CAS  Google Scholar 

  • Liu YH, Tang Z, Kundu RK, Wu L, Luo W, Zhu D, Sangiorgi F, Snead ML, Maxson RE (1999) Msx2 gene dosage influences the number of proliferative osteogenic cells in growth centers of the developing murine skull: a possible mechanism for MSX2-mediated craniosynostosis in humans. Dev Biol 205:260–274

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo J, Horowitz M, Choi Y (2008) Osteoimmunology: interactions of the bone and immune system. Endocr Rev. 29:403–440

    Article  PubMed  CAS  Google Scholar 

  • Lovibond AC, Haque SJ, Chambers TJ, Fox SW (2003) TGF-beta-induced SOCS3 expression augments TNF-alpha-induced osteoclast formation. Biochem Biophys Res Commun 309:762–767

    Article  PubMed  CAS  Google Scholar 

  • Maeda Y, Nakamura E, Nguyen MT, Suva LJ, Swain FL, Razzaque MS, Mackem S, Lanske B (2007) Indian Hedgehog produced by postnatal chondrocytes is essential for maintaining a growth plate and trabecular bone. Proc Natl Acad Sci USA 104:6382–387

    Article  PubMed  CAS  Google Scholar 

  • Malyankar UM, Scatena M, Suchland KL, Yun TJ, Clark EA, Giachelli CM (2000) Osteoprotegerin is an alpha vbeta 3-induced, NF-kappa B-dependent survival factor for endothelial cells. J Biol Chem 275:20959–20962

    Article  PubMed  CAS  Google Scholar 

  • Martin TJ, Gillespie MT (2001) Receptor activator of nuclear factor kappa B ligand (RANKL): another link between breast and bone. Trends Endocrinol Metab 12:2–4

    Article  PubMed  CAS  Google Scholar 

  • Martin TJ, Seeman E (2008) Bone remodelling: its local regulation and the emergence of bone fragility. Best Pract Res Clin Endocrinol Metab 22:701–722

    Article  PubMed  Google Scholar 

  • Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZ, Bachler MA, Amano H, Aburatani H, Ishikawa H, Wagner EF (2004) Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem 279:26475–26480

    Article  PubMed  CAS  Google Scholar 

  • Mattsson JP, Schlesinger PH, Keeling DJ, Teitelbaum SL, Stone DK, Xie XS (1994) Isolation and reconstitution of a vacuolar-type proton pump of osteoclast membranes. J Biol Chem 269:24979–24982

    PubMed  CAS  Google Scholar 

  • Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Article  PubMed  CAS  Google Scholar 

  • Miller J, Horner A, Stacy T, Lowrey C, Lian JB, Stein G, Nuckolls GH, Speck NA (2002) The core-binding factor beta subunit is required for bone formation and hematopoietic maturation. Nat Genet 32:645–649

    Article  PubMed  CAS  Google Scholar 

  • Mimura, H, Cao X, Ross FP, Chiba M, Teitelbaum SL (1994) 1,25-Dihydroxyvitamin D3 transcriptionally activates the beta 3-integrin subunit gene in avian osteoclast precursors. Endocrinology 134:1061–1066

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi A, Alvarez J, Greenfield EM, Teti A, Grano M, Colucci S, Zambonin-Zallone A, Ross FP, Teitelbaum SL, Cheresh D et al. (1991) Recognition of osteopontin and related peptides by an alpha v beta 3 integrin stimulates immediate cell signals in osteoclasts. J Biol Chem. 266:20369–20374

    PubMed  CAS  Google Scholar 

  • Mocsai A, Humphrey MB, Van Ziffle JA, Hu Y, Burghardt A, Spusta SC, Majumdar S, Lanier LL, Lowell CA, Nakamura MC (2004) The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad Sci USA 101:6158–6163

    Article  PubMed  CAS  Google Scholar 

  • O’Brien CA, Jia D, Plotkin LI, Bellido T, Powers CC, Stewart SA, Manolagas SC, Weinstein RS (2004) Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145:1835–1841

    Article  PubMed  CAS  Google Scholar 

  • Okada Y, Naka K, Kawamura K, Matsumoto T, Nakanishi I, Fujimoto N, Sato H, Seiki M (1995) Localization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase = gelatinase B) in osteoclasts: implications for bone resorption. Lab Invest 72:311–322

    PubMed  CAS  Google Scholar 

  • Orwoll ES, Bauer DC, Vogt TM, Fox KM (1996) Axial bone mass in older women. Study of Osteoporotic Fractures Research Group. Ann Intern Med 124:187–196

    PubMed  CAS  Google Scholar 

  • Paic F, Igwe JC, Nori R, Kronenberg MS, Franceschetti T, Harrington P, Kuo L, Shin DG, Rowe DW, Harris SE, Kalajzic I (2009) Identification of differentially expressed genes between osteoblasts and osteocytes. Bone 45:682–692

    Article  PubMed  CAS  Google Scholar 

  • Panda DK, Miao D, Bolivar I, Li J, Huo R, Hendy GN, Goltzman D (2004) Inactivation of the 25-hydroxyvitamin D 1alpha-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem 279:16754–6766

    Article  PubMed  CAS  Google Scholar 

  • Parfitt AM (1988) Bone remodeling. Henry Ford Hosp Med J 36:143–144

    PubMed  CAS  Google Scholar 

  • Parfitt AM (1994) Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 55:273–286

    Article  PubMed  CAS  Google Scholar 

  • Paszty C, Turner CH, Robinson MK (2010) Sclerostin: a gem from the genome leads to bone-building antibodies. J Bone Miner Res 25:1897–1904

    Article  PubMed  CAS  Google Scholar 

  • Pettit AR, Chang MK, Hume DA, Raggatt LG (2008) Osteal macrophages: a new twist on coupling during bone dynamics. Bone 43:976–982

    Article  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, DR Marshak (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Plotkin LI, Lezcano V, Thostenson J, Weinstein RS, Manolagas SC, Bellido T (2008) Connexin 43 is required for the anti-apoptotic effect of bisphosphonates on osteocytes and osteoblasts in vivo. J Bone Miner Res 23:1712–1721

    Article  PubMed  CAS  Google Scholar 

  • Plotkin LI, Manolagas SC, Bellido T (2002) Transduction of cell survival signals by connexin-43 hemichannels. J Biol Chem. 277:8648–8657

    Article  PubMed  CAS  Google Scholar 

  • Pollock JH, Blaha MJ, Lavish SA, Stevenson S, Greenfield EM (1996) In vivo demonstration that parathyroid hormone and parathyroid hormone-related protein stimulate expression by osteoblasts of interleukin-6 and leukemia inhibitory factor. J Bone Miner Res 11:754–759

    Article  PubMed  CAS  Google Scholar 

  • Poole CA, Glant TT, Schofield TR (1991) Chondrons from articular cartilage. (IV). Immunolocalization of proteoglycan epitopes in isolated canine tibial chondrons. J Histochem Cytochem 39:1175–1187

    Article  PubMed  CAS  Google Scholar 

  • Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Lowik CW, Reeve J (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. Faseb J 19:1842–1844

    PubMed  CAS  Google Scholar 

  • Raisz LG (1988) Local and systemic factors in the pathogenesis of osteoporosis. N Engl J Med 318:818–828

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen LM, Tarnow L, Hansen TK, Parving HH, Flyvbjerg A (2006) Plasma osteoprotegerin levels are associated with glycaemic status, systolic blood pressure, kidney function and cardiovascular morbidity in type 1 diabetic patients. Eur J Endocrinol 154:75–81

    Article  PubMed  CAS  Google Scholar 

  • Rauner M, Goettsch C, Stein N, Thiele S, Bornhaeuser M, De Bosscher K, Haegeman G, Tuckermann J, Hofbauer LC (2011) Dissociation of osteogenic and immunological effects by the selective glucocorticoid receptor agonist, compound A, in human bone marrow stromal cells. Endocrinology. 152:103–112

    Article  PubMed  CAS  Google Scholar 

  • Rauner M, Sipos W, Pietschmann P (2007) Osteoimmunology. Int Arch Allergy Immunol. 143:31–48.

    Article  PubMed  Google Scholar 

  • Riggs, BL, L.C Hartmann. 2003. Selective estrogen-receptor modulators – mechanisms of action and application to clinical practice. N Engl J Med 348:618–629

    Article  PubMed  CAS  Google Scholar 

  • Riggs BL, Khosla S, Melton 3rd LJ (1999) The assembly of the adult skeleton during growth and maturation: implications for senile osteoporosis. J Clin Invest 104:671–672

    Article  PubMed  CAS  Google Scholar 

  • Rodan GA, Martin TJ (1981) Role of osteoblasts in hormonal control of bone resorption – a hypothesis. Calcif Tissue Int 33:349–351

    Article  PubMed  CAS  Google Scholar 

  • Ruan M, Pederson L, Bradley EW, Bamberger AM, Oursler MJ (2010) Transforming growth factor-{beta} coordinately induces suppressor of cytokine signaling 3 and leukemia inhibitory factor to suppress osteoclast apoptosis. Endocrinology 151:1713–1722

    Article  PubMed  CAS  Google Scholar 

  • Ruiz C, Perez E, Vallecillo-Capilla M, Reyes-Botella C (2003) Phagocytosis and allogeneic T cell stimulation by cultured human osteoblast-like cells. Cell Physiol Biochem 13:309–314

    Article  PubMed  CAS  Google Scholar 

  • Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci U S A 95:13453–13458

    Article  PubMed  CAS  Google Scholar 

  • Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, Maeda T, Takano Y, Uchiyama M, Heaney S, Peters H, Tang Z, Maxson R, Maas R (2000) Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 24:391–395

    Article  PubMed  CAS  Google Scholar 

  • Schrum LW, Bost KL, Hudson MC, Marriott I (2003) Bacterial infection induces expression of functional MHC class II molecules in murine and human osteoblasts. Bone 33:812–821

    Article  PubMed  CAS  Google Scholar 

  • Semenov M, Tamai K, He X (2005) SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 280:26770–26775

    Article  PubMed  CAS  Google Scholar 

  • Sher LB, Woitge HW, Adams DJ, Gronowicz GA, Krozowski Z, Harrison JR, Kream BE (2004) Transgenic expression of 11beta-hydroxysteroid dehydrogenase type 2 in osteoblasts reveals an anabolic role for endogenous glucocorticoids in bone. Endocrinology 145:922–929

    Article  PubMed  CAS  Google Scholar 

  • Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, Connor JM, Delai P, Glaser DL, LeMerrer M, Morhart R, Rogers JG, Smith R, Triffitt JT, Urtizberea JA, Zasloff M, Brown MA, Kaplan FS (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38:525–527

    Article  PubMed  CAS  Google Scholar 

  • Silver IA, Murrills RJ, Etherington DJ (1988) Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res 175:266–276

    Article  PubMed  CAS  Google Scholar 

  • Simonet WS, Lacey DL, Dunstan CR et al. (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  PubMed  CAS  Google Scholar 

  • Sipos W, Pietschmann P, Rauner M (2008) Strategies for novel therapeutic approaches targeting cytokines and signaling pathways of osteoclasto- and osteoblastogenesis in the fight against immune-mediated bone and joint diseases. Curr Med Chem 15:127–136

    Article  PubMed  CAS  Google Scholar 

  • Skjodt H, Moller T, Freiesleben SF (1989) Human osteoblast-like cells expressing MHC class II determinants stimulate allogeneic and autologous peripheral blood mononuclear cells and function as antigen-presenting cells. Immunology 68:416–420

    PubMed  CAS  Google Scholar 

  • Smith MR, Egerdie B, Hernandez Toriz N, Feldman R, Tammela TL, Saad F, Heracek J, Szwedowski M, Ke C, Kupic A, Leder BZ, Goessl C (2009) Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med 361:745–755

    Article  PubMed  CAS  Google Scholar 

  • Sommerfeldt DW, Rubin CT (2001) Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J 10 Suppl 2:S86–95

    Google Scholar 

  • Stanka P, Bellack U, Lindner A (1991) On the morphology of the terminal microvasculature during endochondral ossification in rats. Bone Miner 13:93–101

    Article  PubMed  CAS  Google Scholar 

  • Stickens D, Behonick DJ, Ortega N, Heyer B, Hartenstein B, Yu Y, Fosang AJ, Schorpp-Kistner M, Angel P, Werb Z (2004) Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 131:5883–5895

    Article  PubMed  CAS  Google Scholar 

  • Storm EE, Kingsley DM (1999) GDF5 coordinates bone and joint formation during digit development. Dev Biol 209:11–27

    Article  PubMed  CAS  Google Scholar 

  • Streeten EA, Brandi ML (1990) Biology of bone endothelial cells. Bone Miner 10:85–94

    Article  PubMed  CAS  Google Scholar 

  • Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  PubMed  CAS  Google Scholar 

  • Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, Takaoka A, Yokochi T, Oda H, Tanaka K, Nakamura K, Taniguchi T (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408:600–605

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Takahashi N, Udagawa N, Tamura T, Akatsu T, Stanley ER, Kurokawa T, Suda T (1993) Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest 91:257–263

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, Ito M, Takeshita S, Ikeda K (2007) Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 5:464–475

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum SL (2000) Bone resorption by osteoclasts. Science. 289:1504–1508

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4:638–649

    Article  PubMed  CAS  Google Scholar 

  • Teti A, Blair HC, Schlesinger P, Grano M, Zambonin-Zallone A, Kahn AJ, Teitelbaum SL, Hruska KA (1989) Extracellular protons acidify osteoclasts, reduce cytosolic calcium, and promote expression of cell-matrix attachment structures. J Clin Invest 84:773–780

    Article  PubMed  CAS  Google Scholar 

  • Teti A, Zallone A (2009) Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone 44:11–6

    Article  PubMed  CAS  Google Scholar 

  • Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy Jr. JD (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483–2494

    Article  PubMed  CAS  Google Scholar 

  • Tondravi MM, McKercher SR, Anderson K, Erdmann JM, Quiroz M, Maki R, Teitelbaum SL (1997) Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 386:81–84

    Article  PubMed  CAS  Google Scholar 

  • Tozum TF, Oppenlander ME, Koh-Paige AJ, Robins DM, McCauley LK (2004) Effects of sex steroid receptor specificity in the regulation of skeletal metabolism. Calcif Tissue Int 75:60–70

    Article  PubMed  CAS  Google Scholar 

  • Trueta J, Buhr AJ (1963) The Vascular Contribution to Osteogenesis. V. the Vasculature Supplying the Epiphysial Cartilage in Rachitic Rats. J Bone Joint Surg Br 45:572–581

    PubMed  CAS  Google Scholar 

  • Ura K, Morimoto I, Watanabe K, Saito K, Yanagihara N, Eto S (2000) Interleukin (IL)-4 and IL-13 inhibit the differentiation of murine osteoblastic MC3T3-E1 cells. Endocr J 47:293–302

    Article  PubMed  CAS  Google Scholar 

  • Vaananen HK, Horton M (1995) The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure. J Cell Sci 108 ( Pt 8):2729–2732

    PubMed  CAS  Google Scholar 

  • van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136:3205–3214

    Article  PubMed  CAS  Google Scholar 

  • Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Benichou O, Scopelliti D, Key L, Renton T, Bartels C, Gong Y, Warman ML, De Vernejoul MC, Bollerslev J, Van Hul W (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72:763–771

    Article  PubMed  Google Scholar 

  • Verborgt O, Tatton NA, Majeska RJ, Schaffler MB (2002) Spatial distribution of Bax and Bcl-2 in osteocytes after bone fatigue: complementary roles in bone remodeling regulation? J Bone Miner Res 17:907–914

    Article  PubMed  CAS  Google Scholar 

  • Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103:3258–3264

    Article  PubMed  CAS  Google Scholar 

  • Wada T, Nakashima T, Oliveira-dos-Santos AJ, Gasser J, Hara H, Schett G, Penninger JM (2005) The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat Med 11:394–399

    Article  PubMed  CAS  Google Scholar 

  • Wang FS, Ko JY, Yeh DW, Ke HC, Wu HL (2008) Modulation of Dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation, and bone mass loss. Endocrinology 149:1793–1801

    Article  PubMed  CAS  Google Scholar 

  • Wang FS, Lin CL, Chen YJ, Wang CJ, Yang KD, Huang YT, Sun YC, Huang HC (2005) Secreted frizzled-related protein 1 modulates glucocorticoid attenuation of osteogenic activities and bone mass. Endocrinology 146:2415–2423

    Article  PubMed  CAS  Google Scholar 

  • Webb AR, Holick MF (1988) The role of sunlight in the cutaneous production of vitamin D3. Annu Rev Nutr 8:375–399

    Article  PubMed  CAS  Google Scholar 

  • Weinstein RS, Nicholas RW, Manolagas SC (2000) Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab 85:2907–2912

    Article  PubMed  CAS  Google Scholar 

  • Weitzmann MN, Roggia C, Toraldo G, Weitzmann L, Pacifici R (2002) Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J Clin Invest 110:1643–650

    PubMed  CAS  Google Scholar 

  • Wolff J (1892). Das Gesetz der Transformation des Knochens. Hirschwald, Berlin

    Google Scholar 

  • Wu XB, Li Y, Schneider A, Yu W, Rajendren G, Iqbal J, Yamamoto M, Alam M, Brunet LJ, Blair HC, Zaidi M, Abe E (2003) Impaired osteoblastic differentiation, reduced bone formation, and severe osteoporosis in noggin-overexpressing mice. J Clin Invest 112:924–934

    PubMed  CAS  Google Scholar 

  • Wucherpfennig AL, Li YP, Stetler-Stevenson WG, Rosenberg AE, Stashenko P (1994) Expression of 92 kD type IV collagenase/gelatinase B in human osteoclasts. J Bone Miner Res 9:549–556

    Article  PubMed  CAS  Google Scholar 

  • Wutzl A, Rauner M, Seemann R, Millesi W, Krepler P, Pietschmann P, Ewers R (2010) Bone morphogenetic proteins 2, 5, and 6 in combination stimulate osteoblasts but not osteoclasts in vitro. J Orthop Res 28:1431–1439

    Article  PubMed  CAS  Google Scholar 

  • Yao W, Cheng Z, Pham A, Busse C, Zimmermann EA, Ritchie RO, Lane NE (2008) Glucocorticoid-induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralization. Arthritis Rheum 58:3485–497

    Article  PubMed  CAS  Google Scholar 

  • Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  PubMed  CAS  Google Scholar 

  • Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13:791–801

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Yang N Shi XM (2008) Regulation of mesenchymal stem cell osteogenic differentiation by glucocorticoid-induced leucine zipper (GILZ). J Biol Chem 283:4723–4729

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Rauner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Wien NewYork

About this chapter

Cite this chapter

Rauner, M., Stein, N., Hofbauer, L. (2012). Basics of Bone Biology. In: Pietschmann, P. (eds) Principles of Osteoimmunology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0520-7_1

Download citation

Publish with us

Policies and ethics