Skip to main content

Medizinische Trainingstherapie und Dekonditionierung

  • Chapter
Kompendium Physikalische Medizin und Rehabilitation
  • 4291 Accesses

Zusammenfassung

Unter körperlicher Aktivität versteht man jene körperliche Belastung, die zu einer signifikanten Steigerung des Stoffwechsels führt (Caspersen 1985). Körperliche Aktivität zu therapeutischen Zwecken hat den Erhalt bzw. die Verbesserung der körperlichen Leistungsfähigkeit zum Ziel. Sie stellt eine Kombination physikalischer, physiologischer, biochemischer, biomechanischer und psychologischer Eigenschaften dar (Shepard 1977). Nach den Prinzipien der Trainingslehre können folgende motorischen Grundeigenschaften unterschieden werden:

  • Ausdauer

  • Kraft

  • Sensomotorik/Koordination

  • Beweglichkeit bzw. Flexibilität

  • Schnelligkeit

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ainsworth BA, Haskell WL, Leon AS, Jacobs DR Jr, Montoye HJ, Sallis JF, Pfaffenbarger RS Jr (1993) Compendium of physical activities: Classification of energy costs of human physical activities. Med Sci Sports Exerc 25:71–80

    Article  PubMed  CAS  Google Scholar 

  • Alter MJ (1988) Science of stretching. Human Kinetics, Champaign, IL

    Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting the anaerobic threshold by gas exchange. J Appl Physiol 60:2020–27

    PubMed  CAS  Google Scholar 

  • Bergström J, Hermansen L, Hultman E, Saltin B (1967) Diet, muscle glycogen and physical performance. Acta Physiolog Scand 71:140–50

    Article  Google Scholar 

  • Blair SN, Kampert JB, Kohl HW, Barlow CE, Macera CA, Pfaffenbarger RS, Gibbons LW (1996) Influence of cardiorespiratory fitness and other precursors on cardiovascular disease and allcause mortality in men and women. JAMA 276:205–210

    Article  PubMed  CAS  Google Scholar 

  • Booth FW, Baldwin KM (1996) Muscle plasticity: energy demand and supply processes. In: Rowell LB, Shepherd JT (eds) Handbook of physiology. Oxford University Press, New York, Oxford, pp 1075–1123

    Google Scholar 

  • Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise and physical fitness: definitions and distinctions for health related research. Public Health Rep 100:26–131

    Google Scholar 

  • Davies CTM, Young E (1983) Effects of training at 30 and 100 % maximal isometric force on the contractile properties of the triceps surae of man. J Physiol 36:22–23

    Google Scholar 

  • Feigenbaum MS, Pollock ML (1997) Strength training: rationale for current guidelines for adult fitness programs. Physician Sportsmed 25:44–64

    CAS  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibers. J Physiol 184:170–192

    PubMed  CAS  Google Scholar 

  • Hambrecht R, Niebauer J, Marburger C, Grunze M, Kalberer B, Hauer K, Schlierf G, Kubler W, Schuler G (1993) Various intensities of leisure time physical activity in patients with coronary artery disease: effects on cardiorespiratory fitness and progression of coronary atherosclerotic lesions. J Am Coll Cardiol 22:468–77

    Article  PubMed  CAS  Google Scholar 

  • Karvonen MK, Kentala K, Mustala O (1957) The effects of training heart rate: a longitudinal study. Ann Med Exp Biol Fenn 35:307–15

    PubMed  CAS  Google Scholar 

  • Knott M, Voss DE (1968) Proprioceptive neuromuscular facilitation: Patterns and techniques, 2nd edn. Harper, New York

    Google Scholar 

  • Lesmes GR, Costill DL, Coyle EF, Fink WJ (1978) Muscle strength and power changes during maximal isokinetic training. Med Sci Sports 4:266–269

    Google Scholar 

  • Lewis SF, Taylor WF, Graham RM, Pettinger A, Shutte JE, Blomquist CG (1983) Cardiovascular response to exercise as functions of absolute and relative work load. J Appl Physiol 54:1314–1323

    Article  PubMed  CAS  Google Scholar 

  • Liebesman JL, Cafarelli E (1994) Physiology of range of motion in human joints: A critical review. Crit Rev Phys Med Rehabil 6:131–160

    Google Scholar 

  • MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR (1985) Arterial blood pressure response to heavy resistance exercise. J Appl Physiol 58:785–790

    PubMed  CAS  Google Scholar 

  • Moffroid MT, Whipple RH (1970) Specificity of speed of exercise. Phys Ther 50:1692–700

    PubMed  CAS  Google Scholar 

  • Moore MA, Hutton RS (1980) Electro-myographic investigation of muscle stretch techniques. Med Sci Sports Exer 12:322–28

    CAS  Google Scholar 

  • Moritani T, DeVries HA (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58:115–130

    PubMed  CAS  Google Scholar 

  • Pette D (1999) Das adaptative Potential des Skelettmuskels. Dtsch Z Sportmed 50:262–271

    Google Scholar 

  • Pette D, Staron RS (1990) Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 116:1–76

    PubMed  CAS  Google Scholar 

  • Puniello MS (1993) Illiotibial band tightness and medial patellar glide in patients with patellofemoral dysfunction. J Orth Sports Phys Ther 17:144–148

    CAS  Google Scholar 

  • Quittan M, Wiesinger GF, Fialka-Moser V (1999) Medizinische Trainingstherapie, Risken und Vorsichtsmaßnahmen. Phys Rehab Kur Med 9:35–40

    Article  Google Scholar 

  • Saltin B, Karlsson J (1971) Muscle glycogen utilisation during work of different intensities. In Pernow B, Saltin B (eds) Muscle metabolism during exercise. Plenum Press, New York, pp 289–99

    Chapter  Google Scholar 

  • Schottelius BA, Senay LC (1956) Effect of stimulation-length sequence on shape and lengthtension diagram. Am J Physiol 186:127–130

    PubMed  CAS  Google Scholar 

  • Seaborne D, Taylor AW (1984) The effect of speed of isokinetic exercise on training transfer to isometric strength in the quadriceps. J Sports Med 24:183–188

    CAS  Google Scholar 

  • Shephard RJ (1977) Endurance fitness, 2nd edn. University of Toronto Press, Oxford

    Google Scholar 

  • Shephard RJ (1982) Physiology and biochemistry of exercise. Praeger Publishing, New York

    Google Scholar 

  • Smith A (1994) The warm up procedure: to stretch or not to stretch. J Orth Sports Phys Ther 19:12–17

    CAS  Google Scholar 

  • Smith MJ, Melton P (1981) Isokinetic versus isotonic variable resistance training. Am J Sports Med 9:275–279

    Article  PubMed  CAS  Google Scholar 

  • Steinacker JM, Wang L, Lormes W, Reißnecker S, Liu Y (2002) Strukturanpassungen des Skelettmuskels auf Training. Dtsch Z Sportmed 53(12):354–60

    CAS  Google Scholar 

  • Swain DP, Leutholtz BC (1997) Heart rate is equivalent to VO2 reserve, not to VO2 max. Med Sci Sports Exerc 29:837–43

    Article  Google Scholar 

  • Taylor DC, Dalton JD, Seaber AV, Garrett WE (1990) Viscoelastic properties of muscle-tendon units: the biomechanical effects of stretching. Am J Sports Med 18:300–309

    Article  PubMed  CAS  Google Scholar 

  • Ward J, Fisk GH (1964) The difference in response of the quadriceps and biceps brachii muscles to isometric and isotonic exercise. Arch Phys Med Rehabil 45:612–620

    Google Scholar 

  • Williford HN, East JB, Smith FH, Burry LA (1986) Evaluation of warm up for improvement in flexibility. Am J Sports Med 14:316–19

    Article  PubMed  CAS  Google Scholar 

  • Wilson GJ, Elliaott BC, Wood GA (1992) Stretch shorten cycle performance enhancement through flexibility training. Med Sci Sports Exerc 24:116–123

    PubMed  CAS  Google Scholar 

  • Worrell TW (1994) Factors associated with hamstring injuries: An approach to treatment and preventative measures. Sports Med 17:335–45

    Article  Google Scholar 

  • Zemper ED (1990) Four year study of weight room injuries in a national sample of college football teams. Natl Strength Cond Assoc J 12:32–34

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag/Wien

About this chapter

Cite this chapter

Quittan, M. (2013). Medizinische Trainingstherapie und Dekonditionierung. In: Fialka-Moser, V. (eds) Kompendium Physikalische Medizin und Rehabilitation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0467-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0467-5_15

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0466-8

  • Online ISBN: 978-3-7091-0467-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics