Ventrikuläre Unterstützungssysteme



In diesem Kapitel wird ein Überblick über die Entwicklung und Funktionsweise verschiedener Systeme zur mechanischen Kreislaufunterstützung gegeben. Die Indikationen für den Einsatz dieser Systeme, die Interaktionen zwischen Patienten und Device und die daraus resultierenden möglichen Komplikationen sind weitere Inhalte dieses Abschnittes. Die Implantationstechnik eines modernen Devices wird detailliert beschrieben, ebenso das perioperative Patientenmanagement sowie die Behandlung der Patienten im Langzeitverlauf.


  1. Aaronson KD, Schwartz JS, Chen TM et al (1997) Development and prospective evaluation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation 95:2660–2667PubMedGoogle Scholar
  2. Abrams D, Garan AR, Abdelbary A et al (2018) Position paper for the organization of ECMO programs for cardiac failure in adults. Intensive Care Med. 2018;44:717–729Google Scholar
  3. Basra SS, Attallab AA, Wagle R et al (2009) Infections in patients on continuous flow LVAD: epidemiology and role in causation of cerebrovascular accidents. J Heart Lung Transplant 28:S285Google Scholar
  4. Boehme AK, Pamboukian SV, George JF et al (2017) Anticoagulation control in patients with ventricular assist devices. ASAIO J 63:759–765PubMedPubMedCentralGoogle Scholar
  5. Boyle AJ, Russell DR, Teuteberg JJ et al (2009) Low thromboembolism and pump thrombosis with the Heart Mate II left ventricular assist device: analysis of outpatient anticoagulation. J Heart Lung Transplant 28:881–887PubMedGoogle Scholar
  6. Carrel A, Lindbergh C (1935) The culture of whole organs. Science 81:25–41Google Scholar
  7. Centofanti P, Baronetto A, Attisani M et al (2017) Thrombosis in left ventricular assistance device with centrifugal technology: is early thrombolysis a better solution? Int J Artif Organs 40:629–635PubMedGoogle Scholar
  8. Chinn R, Dembitsky W, Eaton L et al (2005) Multicenter experience: prevention and management of left ventricular assist device infections. ASAIO J 51:461–470PubMedGoogle Scholar
  9. Dandel M, Hetzer R (2018) Temporary assist device support for the right ventricle: pre-implant and post implant challenges. Heart Fail Rev. 2018;23:157–171Google Scholar
  10. DeBakey M (1971) Left ventricular bypass pump for cardiac assistance. Am J Cardiol 27:3PubMedGoogle Scholar
  11. Deng MC, Loebe M, El-Banayosy A et al (2001) Mechanical circulatory support for advanced heart failure. Effect of patient selection on outcome. Circulation 103:231–237PubMedGoogle Scholar
  12. Dew M, Kormos R, Roth L (1993) Life quality in the era of bridging to cardiac transplantation: bridge patients in an outpatient setting. ASAIO J 39:145PubMedGoogle Scholar
  13. Fang JC (2009) Rise of the machines – left ventricular assist devices as permanent therapy for advanced heart failure. N Engl J Med 361:1–3Google Scholar
  14. Fitzpatrick JR, Frederick JR, Hsu VM et al (2008) Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant 27:1286–1292PubMedPubMedCentralGoogle Scholar
  15. Frazier O, Kirklin JK (Hrsg) (2006) ISHLT monograph series. Mechanical circulatory support, Bd I. Elsevier Inc.Google Scholar
  16. Frazier O, Duncan J, Radovanevic B et al (1992) Successful bridge to heart transplantation with a new left ventricular assist device. J Heart Lung Transplant 11:530PubMedGoogle Scholar
  17. Geisen U, Heilmann C, Beyersdorf F et al (2008) Non-surgical bleeding in patients with ventricular assist devices could be explained by acquired von Willebrand disease. Eur J Cardiothorac Surg 33:679–684PubMedGoogle Scholar
  18. Goubergrits L, Affeld K (2004) Numerical estimation of blood damage in artificial organs. Artif Organs 28:499–507PubMedGoogle Scholar
  19. Haberl T, Riebandt J, Mahr S et al (2014) Viennese approach to minimize the invasiveness of ventricular assist device implantation. Eur J Cardiothorac Surg 46:991–996PubMedPubMedCentralGoogle Scholar
  20. Haj-Yahia S, Birks E, Rogers P et al (2007) Midterm reliability with the Jarvik 2000 axial flow left ventricular assist device. J Thorac Cardiovasc Surg 134:199–203PubMedGoogle Scholar
  21. Hetzer R, Potapov EV, Huebler S (2006) Procedings of the 4th Berlin symposium on mechanical circulatory support. J Card Surg 21:512–520Google Scholar
  22. Hill J, Farrar D, Hershon J et al (1986) Use of a prosthetic ventricle as a bridge to cardiac transplantation for postinfarction cardiogenic shock. N Engl J Med 314:626PubMedGoogle Scholar
  23. Hoefer D, Poelzl G, Kilo J et al (2005) Early detection and successful therapy of fulminant chlamydia pneumoniae myocarditis. ASAIO J 51:480–481PubMedGoogle Scholar
  24. Hoefer D, Ruttmann E, Poelzl G et al (2006) Outcome evaluation of the bridge to bridge concept in patients with cardiogenic shock. Ann Thorac Surg 82:28–34PubMedGoogle Scholar
  25. Hoefer D, Velik-Salchner C, Antretter H (2014) Increase in left ventricular assist device thrombosis. Letter to the editor. N Engl J Med 370:1464PubMedGoogle Scholar
  26. Höfer D, Antretter H, Laufer G (2007) Klinische Indikationskriterien für mechanische Kreislaufunterstützung. Z Herz Thorax Gefäßchir 21:273–279Google Scholar
  27. Holman WA, Teitel ER, Itescu S (2006) Chapter 2: Biologic barriers to mechanical circulatory support. ISHLT Monograph Series 1:9–32Google Scholar
  28. John R (2008) Current axial-flow devices – the HeartMate® II and Jarvik 2000 left ventricular assist devices. Semin Thorac Cardiovasc Surg 20:264–272Google Scholar
  29. Kambic HE, Nose Y (1991) Biomaterial for blood pumps. Aus: Blood compatible materials and devices: perspectives towards the 21st century. Technomic Publishing Co. Inc, Lancaster, S 141–151Google Scholar
  30. Kavarana MN, Pessin-Minsley MS, Urtecho J et al (2002) Right ventricular dysfunction and organ failure in left ventricular assist device recipients: a continuing problem. Ann Thorac Surg 73:745–750PubMedGoogle Scholar
  31. Kim YI, Ferdinande P, Flameng W, Daenen W (1995) Isolated right ventricular unloading for postcardiotomy right ventricular failure in a child. Eur J Cardiothorac Surg 9:169–171PubMedGoogle Scholar
  32. Kirklin JK, Naftel DC, Kormos RL et al (2010) Second INTERMACS annual report: More than 1000 primary left ventricular assist device implants. J Heart Lung Transplant 29:1–10PubMedPubMedCentralGoogle Scholar
  33. Kirklin JK, Pagani FD, Kormos RL et al (2017) Eighth annual INTERMACS report: Special focus on framing the impact of adverse events. J Heart Lung Transplant 36:1080–1086PubMedGoogle Scholar
  34. Klovaite J, Gustafson F, Mortensen SA et al (2009) Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (Heart Mate II). J Am Coll Cardiol 53:2162–2167PubMedGoogle Scholar
  35. Krabatsch T, Henning E, Stepananko A et al (2011) Evaluation of the HeartWare HVAD centrifugal pump for right ventricular assistance in an in vitro model. ASAIO J 57:183–187PubMedGoogle Scholar
  36. Ledford ID, Miller DV, Mason NO et al (2011) Differential infection rates between velours versus silicone interface at the Heart Mate II Driveline exit site: structural and ultrastructural insight into possible causes. J Heart Lung Transplant 30:S10Google Scholar
  37. LeGallois C (1813) Experiences on the principle of life. Thomas, PhiladelphiaGoogle Scholar
  38. Levy WC, Mozaffarin D, Linker DT et al (2006) The Seattle heart failure model: prediction of survival in heart failure. Circulation 113:1424–1433Google Scholar
  39. Levy WC, Mozaffarin D, Linker DT et al (2009) Can the Seattle heart failure model be used to risk-stratify heart failure patients for potential left ventricular assist device therapy? J Heart Lung Transplant 28:231–236PubMedGoogle Scholar
  40. Magliato KE, Kleisli T, Soukiasian HJ et al (2003) Biventricular support in patients with profound cardiogenic shock: a single center experience. ASAIO J 49:475–479PubMedGoogle Scholar
  41. Martinez BK, Yik B, Tran R et al (2018) Meta-Analysis of time in therapeutic range in continuous-flow left ventricular assist device patients receiving warfarin. Artif Organs. 2018;42:700–704Google Scholar
  42. Matthews JC, Koelling TM, Pagani FD, Aaronson KD (2008) The right ventricular failure risk score: a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol 51:2163–2172PubMedPubMedCentralGoogle Scholar
  43. McKinlay SM, Sleeper L, Waclawiw M et al (1995) Evaluation of an implantable ventricular assist system for humans with chronic refractory heart failure: designing a randomized trial. ASAIO J 41:16PubMedGoogle Scholar
  44. Mehra MR, Naka Y, Uriel N et al (2017) A fully magnetically levitated circulatory pump for advanced heart failure. N Engl J Med 376:440–450PubMedGoogle Scholar
  45. Miera O, Potapov EV, Redlin M, Stepanenko A, Berger F, Hetzer R, Hübler M (2011) First experiences with the HeartWare ventricular assist system in children. Ann Thorac Surg 91:1256–1260PubMedGoogle Scholar
  46. Mikus E, Stepanenko A, Krabatsch T et al (2011) [Reversibility of fixed pulmonary hypertension in left ventricular assist device support recipients. Eur J Cardiothorac Surg. 2011;40:971–977Google Scholar
  47. Miller LW, Pagani FD, Russell SD et al (2007) Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med 357:885–896PubMedGoogle Scholar
  48. Moazami N, Pasque MK, Moon MR et al (2004) Mechanical support for isolated right ventricular failure in patients after cardiotomy. J Heart Lung Transplant 23:1371–1375PubMedGoogle Scholar
  49. Muslem R, Caliskan K, Leebeek FW (2018) Acquired coagulopathy in patients with left ventricular assist devices. J Thromb Haemost 16:429–440PubMedGoogle Scholar
  50. Nair PK, Kormos RL, Teuteberg JJ et al (2010) Pulsatile left ventricular assist device support as a bridge to decision in patients with end-stage heart failure complicated by pulmonary hypertension. J Heart Lung Transplant 29:201–218PubMedPubMedCentralGoogle Scholar
  51. Nascimbene A, Neelamegham S, Frazier OH et al (2016) Acquired von Willebrand syndrome associated with left ventricular assist device. Blood 25:3133–3141Google Scholar
  52. Ochiai Y, McCarthy PM, Smerida NG et al (2002) Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: analysis of 245 patients. Circulation 106(Suppl I):198–202Google Scholar
  53. Pagani FD, Aaronson KD, Swaniker F, Bartlett RH (2001) The use of extracorporeal life support in adult patients with primary cardiac failure as a bridge to implantable left ventricular assist device. Ann Thorac Surg 71:77–81Google Scholar
  54. Pagani FD, Miller LW, Russell SD et al (2009) Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol 54:312–321PubMedGoogle Scholar
  55. Park SJ, Milano CA, Rogers JG et al (2012) Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy. Circ Heart Fail 5:241–248PubMedGoogle Scholar
  56. Pennington DG, Griffith BP, McKinlay SM et al (1995) Evaluation of an implantable ventricular assist system for humans with chronic refractory heart failure: study overview. ASAIO J 41:11–15PubMedGoogle Scholar
  57. Pinney SP, Anyanwu AC, Lala A et al (2017) Left ventricular assist devices for lifelong support. J Am Coll Cardiol 69:2845–2861PubMedGoogle Scholar
  58. Portner P, Oyer P, McGregor C (1985) First human use of an electrically powered implantable ventricular assist system. Artif Organs 9:36Google Scholar
  59. Riebandt J, Sandner S, Mahr S et al (2013) Minimally invasive Thoratec HeartMate II implantation in the setting of severe thoracic aortic calcification. Ann Thorac Surg 96:1094–1096PubMedGoogle Scholar
  60. Riebandt J, Haberl T, Mahr S et al (2014) Preoperative patient optimization using extracorporeal life support improves outcomes of INTERMACS level I patients receiving a permanent ventricular assist device. Eur J Cardiothorac Surg 46:486–492PubMedGoogle Scholar
  61. Rogers JG, Pagani FD, Tatooles AJ et al (2017) Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med 376:451–460PubMedGoogle Scholar
  62. Rose E, Gelijns A, Moskowitz A et al (2001) Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med 345:1435–1443PubMedGoogle Scholar
  63. Saxton G, Andrews C (1960) An ideal pump with hydrodynamic characteristics analogous to the mammalian heart. Trans Am Soc Artif Intern Organs 6:288PubMedGoogle Scholar
  64. Slaughter MS, Rogers JG, Milano CA et al (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361:2241–2251PubMedGoogle Scholar
  65. Slaughter MS, Pagani FD, Rogers JG et al (2010) Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant 29:4SGoogle Scholar
  66. Spanier TB, Oz M, Levin H et al (1996a) Activation of coagulation and fibrinolytic pathways in patients with left ventricular assist devices. J Thorac Cardiovasc Surg 112:1090–1097PubMedGoogle Scholar
  67. Spanier TB, Rose EA, Schmidt AM et al (1996b) Interactions between dendritic cells and T cells on the surface of left ventricular assist devices leads to a TH2 pattern of cytokine production and B cell hyperreactivity in vitro. Circulation 94:1704Google Scholar
  68. Stulak JM, Griffith KE, Nicklas JM, Pagani FD (2011) The use of the HeartWare HVAD for long-term right ventricular support after implantation of the HeartMate® II device. J Thorac Cardiovasc Surg. 2011;142:e140–2Google Scholar
  69. Tsubota H, Ribeiro RV, Billia F et al (2017) Left ventricular assist device exchange: the Toronto General Hospital experience. Can J Surg 60:253–259PubMedPubMedCentralGoogle Scholar
  70. Tsukui H, Teuteberg JT, McNamarra DM (2005) Biventricular assist device utilization for patients with morbid congestive heart failure: a justifiable strategy. Circulation 112:565–572Google Scholar
  71. Tulchinsky M (2008) Lower gastrointestinal bleeding diagnosed by red blood cell scintigraphy in a patient with a left ventricular assist device. Clin Nucl Med 33:856–858PubMedGoogle Scholar
  72. Velik-Salchner C, Hoermann C, Hoefer D, Margreiter J, Mair P (2009) Thromboembolic complications during weaning from right ventricular assist device support. Anaesth Analg 109:354–357Google Scholar
  73. Wampler R, Moise J, Frazier O et al (1988) In vivo evaluation of a peripheral vascular access axial flow blood pump. ASAIO J 34:450Google Scholar
  74. Westaby S, Banning AP, Saito S et al (2002) Circulatory support for long-term treatment of heart failure: experience with an intraventricular continuous flow pump. Circulation 105:2588–2591PubMedGoogle Scholar
  75. Wheeldon DR, LaForge DH, Lee J et al (2002) Novacor left ventricular assist system long-term performance: comparison of clinical experience with demonstrated in vitro reliability. ASAIO J 48:546–551PubMedGoogle Scholar
  76. Wieselthaler GM, O Driscoll G, Jansz P et al (2010) Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial. J Heart Lung Transplant 29:1218–1225PubMedGoogle Scholar
  77. Williams MR, Oz MC (2001) Indications and patient selection for mechanical ventricular assistance. Ann Thorac Surg 71:S86–S91PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.Tirol-Kliniken, LKH InnsbruckUniversitätsklinik für HerzchirurgieInnsbruckÖsterreich
  2. 2.Universitätsklinik für HerzchirurgieMedizinische Universität InnsbruckInnsbruckÖsterreich

Personalised recommendations