Skip to main content

Improvement of DNA Vaccines by Electroporation

  • Chapter
  • First Online:
Gene Vaccines

Abstract

DNA vaccines have been on the scientific horizon since 1992, yet the past decade of clinical study has been precarious, with most trials exhibiting excellent safety, yet poor immune responses in humans. Despite the initial disappointments of immunogenicity observed in early clinical trials, the advantageous properties of plasmid DNA as a vaccine strategy over existing technologies continued to drive the field forward. Recently, non- human primate preclinical models as well as data generated in a few clinical trials have suggested that there are significant improvements in immunogenicity by the renewed enhanced DNA platform. This is due to a host of new technological improvements that together have improved vaccine antigen expression, delivery, and formulation resulting in improved immune potency. Improvements in plasmid delivery by modalities including the gene gun, biojector and most recently electroporation (EP) in particular, in combination with other technological developments such as species-specific codon optimization, improved RNA structural design, incorporation of novel leader sequences, novel formulations and adjuvant strategies have had a significant effect on immune outcome in relevant primate models and now humans. This new generation of DNA vaccines will likely have a more prominent role in vaccine clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulhaqq SA, Weiner DB (2008) DNA vaccines: developing new strategies to enhance immune responses. Immunol Res 42(1–3):219–232

    Article  PubMed  CAS  Google Scholar 

  • Agadjanyan MG, Kim JJ, Trivedi N, Wilson DM, Monzavi-Karbassi B, Morrison LD, Nottingham LK, Dentchev T, Tsai A, Dang K, Chalian AA, Maldonado MA, Williams WV, Weiner DB (1999) CD86 (B7-2) can function to drive MHC-restricted antigen-specific CTL responses in vivo. J Immunol (Baltimore, MD: 1950) 162(6):3417–3427

    CAS  Google Scholar 

  • Barouch DH, O’Brien KL, Simmons NL, King SL, Abbink P, Maxfield LF, Sun Y-H, La Porte A, Riggs AM, Lynch DM, Clark SL, Backus K, Perry JR, Seaman MS, Carville A, Mansfield KG, Szinger JJ, Fischer W, Muldoon M, Korber B (2010) Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys. Nat Med 16(3):319–323

    Article  PubMed  CAS  Google Scholar 

  • Belshe R, Clements M, Dolin R (1993) Safety and immunogenicity of a fully glycosylated recombinant gp160 human immunodeficiency virus type 1 vaccine in subjects at low risk of infection. J Infect Dis 168:1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Benvenisty N, Reshef L (1986) Direct introduction of genes into rats and expression of the genes. Proc Natl Acad Sci USA 83(24):9551

    Article  PubMed  CAS  Google Scholar 

  • Boyer J, Robinson T, Kutzler M (2005) SIV DNA vaccine co-administered with IL-12 expression plasmid enhances CD8 SIV cellular immune responses in cynomolgus macaques. J Med Primatol 34(5–6):262–270

    Article  PubMed  CAS  Google Scholar 

  • Broderick KE, Shen X, Soderholm J, Lin F, McCoy J, Khan AS, Yan J, Morrow MP, Patel A, Kobinger GP, Kemmerrer S, Weiner DB, Sardesai NY (2011) Prototype development and preclinical immunogenicity analysis of a novel minimally invasive electroporation device. Gene Ther 18(3):258–265

    Article  PubMed  CAS  Google Scholar 

  • Broderick K, Kardos T, McCoy J, Fons M (2011) Piezoelectric permeabilization of mammalian dermal tissue for in vivo DNA delivery leads to enhanced protein expression and increased immunogenicity. Hum Vaccines 7:22–28

    Google Scholar 

  • Chiarella P, Massi E, De Robertis M, Sibilio A, Parrella P, Fazio VM, Signori E (2008) Electroporation of skeletal muscle induces danger signal release and antigen-presenting cell recruitment independently of DNA vaccine administration. Expert Opin Biol Ther 8(11):1645–1657

    Article  PubMed  CAS  Google Scholar 

  • Chu Y, Xia M, Lin Y, Li A, Wang Y, Liu R, Xiong S (2006) Th2-dominated antitumor immunity induced by DNA immunization with the genes coding for a basal core peptide PDTRP and GM-CSF. Cancer Gene Ther 13(5):510–519

    Article  PubMed  CAS  Google Scholar 

  • Coster HG (1965) A quantitative analysis of the voltage-current relationships of fixed charge membranes and the associated property of “punch-through”. Biophys J 5(5):669–686

    Article  PubMed  CAS  Google Scholar 

  • Dubensky T, Campbell B (1984) Direct transfection of viral and plasmid DNA into the liver or spleen of mice. Proc Natl Acad Sci USA 81(23):7529–7533

    Article  PubMed  CAS  Google Scholar 

  • Edelstein ML, Abedi MR, Wixon J (2007) Gene therapy clinical trials worldwide to 2007 – an update. J Gene Med 9(10):833–842

    Article  PubMed  Google Scholar 

  • Elmowalid GA, Qiao M, Jeong SH, Borg BB, Baumert TF, Sapp RK, Hu Z, Murthy K, Liang TJ (2007) Immunization with hepatitis C virus-like particles results in control of hepatitis C virus infection in chimpanzees. Proc Natl Acad Sci USA 104(20):8427–8432

    Article  PubMed  CAS  Google Scholar 

  • Fauci AS (2006) Pandemic influenza threat and preparedness. Emerg Infect Dis 12(1):73–77

    Article  PubMed  Google Scholar 

  • Ferraro B, Morrow MP, Hutnick NA, Shin TH, Lucke CE, Weiner DB (2011) Clinical applications of DNA vaccines: current progress. Clin Infect Dis 53(3):296–302

    Article  PubMed  CAS  Google Scholar 

  • Fu T, Ulmer J, Caulfield M, Deck R, Friedman A, Wang S, Liu X, Donnelly J, Liu M (1997) Priming of cytotoxic T lymphocytes by DNA vaccines: requirement for professional antigen presenting cells and evidence for antigen transfer from myocytes. Mol Med 3(6):362

    PubMed  CAS  Google Scholar 

  • Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL (1993) DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA 90(24):11478–11482

    Article  PubMed  CAS  Google Scholar 

  • Gagnon J, Ramanathan S, Leblanc C, Cloutier A, McDonald PP, Ilangumaran S (2008) IL-6, in synergy with IL-7 or IL-15, stimulates TCR-independent proliferation and functional differentiation of CD8+ T lymphocytes. J Immunol 180(12):7958–7968

    PubMed  CAS  Google Scholar 

  • Grønevik E, Tollefsen S, Sikkeland LIB, Haug T, Tjelle TE, Mathiesen I (2003) DNA transfection of mononuclear cells in muscle tissue. J Gene Med 5(10):909–917

    Article  PubMed  Google Scholar 

  • Halwani R, Boyer JD, Yassine-Diab B, Haddad EK, Robinson TM, Kumar S, Parkinson R, Wu L, Sidhu MK, Phillipson-Weiner R, Pavlakis GN, Felber BK, Lewis MG, Shen A, Siliciano RF, Weiner DB, Sekaly RP (2008) Therapeutic vaccination with simian immunodeficiency virus (SIV)-DNA  +  IL-12 or IL-15 induces distinct CD8 memory subsets in SIV-infected macaques. J Immunol 180(12):7969–7979

    PubMed  CAS  Google Scholar 

  • Hirao LA, Wu L, Khan AS, Hokey DA, Yan J, Dai A, Betts MR, Draghia-Akli R, Weiner DB (2008) Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine 26(25):3112–3120

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki A, Stiernholm BJ, Chan AK, Berinstein NL, Barber BH (1997) Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J Immunol 158(10):4591–4601

    PubMed  CAS  Google Scholar 

  • Kim JJ, Ayyavoo V, Bagarazzi ML, Chattergoon MA, Dang K, Wang B, Boyer JD, Weiner DB (1997) In vivo engineering of a cellular immune response by coadministration of IL-12 expression vector with a DNA immunogen. J Immunol 158(2):816–826

    PubMed  CAS  Google Scholar 

  • Kim J, Yang J, Montaner L, Lee D (2000a) Coimmunization with IFN-gamma or IL-2, but not IL-13 or IL-4 cDNA can enhance Th1-type DNA vaccine-induced immune responses in vivo. J Interferon Cytokine Res 20(3):311–319

    Article  PubMed  CAS  Google Scholar 

  • Kim JJ, Yang JS, VanCott TC, Lee DJ, Manson KH, Wyand MS, Boyer JD, Ugen KE, Weiner DB (2000b) Modulation of antigen-specific humoral responses in rhesus macaques by using cytokine cDNAs as DNA vaccine adjuvants. J Virol 74(7):3427–3429

    Article  PubMed  CAS  Google Scholar 

  • Ko HJ, Ko SY, Kim YJ, Lee EG, Cho SN, Kang CY (2005) Optimization of codon usage enhances the immunogenicity of a DNA vaccine encoding mycobacterial antigen Ag85B. Infect Immun 73(9):5666–5674

    Article  PubMed  CAS  Google Scholar 

  • Kraynyak KA, Kutzler MA, Cisper NJ, Khan AS, Draghia-Akli R, Sardesal NY, Lewis MG, Yan J, Weiner DB (2010) Systemic immunization with CCL27/CTACK modulates immune responses at mucosal sites in mice and macaques. Vaccine 28(8):1942–1951

    Article  PubMed  CAS  Google Scholar 

  • Kutzler MA, Kraynyak KA, Nagle SJ, Parkinson RM, Zharikova D, Chattergoon M, Maguire H, Muthumani K, Ugen K, Weiner DB (2010) Plasmids encoding the mucosal chemokines CCL27 and CCL28 are effective adjuvants in eliciting antigen-specific immunity in vivo. Gene Ther 17(1):72–82

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Uchijima M, Yoshida A, Kawashima M, Koide Y (1999) Codon optimization effect on translational efficiency of DNA vaccine in mammalian cells: analysis of plasmid DNA encoding a CTL epitope derived from microorganisms. Biochem Biophys Res Commun 261(2):445–451

    Article  PubMed  CAS  Google Scholar 

  • Li S, Qi X, Gao Y, Hao Y, Cui L, Ruan L, He W (2010) IL-15 increases the frequency of effector memory CD8+ T cells in rhesus monkeys immunized with HIV vaccine. Cell Mol Immunol 7(6):491–494

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Shen X, McCoy JR, Mendoza JM, Yan J, Kemmerrer SV, Khan AS, Weiner DB, Broderick KE, Sardesai NY (2011) A novel prototype device for electroporation-enhanced DNA vaccine delivery simultaneously to both skin and muscle. Vaccine

    Google Scholar 

  • Long ZY, Niu PY, Gong ZY, Duan YY, Chen YW, Wang J, Tan H, Yuan J, Wu TC (2005) Role of heat shock protein 70 expression in DNA damage induced by 7, 8-dihydrodiol-9, 10-epoxide-benzo(a)pyrene. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 23(6):454–456

    PubMed  CAS  Google Scholar 

  • Luckay A, Sidhu MK, Kjeken R, Megati S, Chong SY, Roopchand V, Garcia-Hand D, Abdullah R, Braun R, Montefiori DC, Rosati M, Felber BK, Pavlakis GN, Mathiesen I, Israel ZR, Eldridge JH, Egan MA (2007) Effect of plasmid DNA vaccine design and In vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques. J Virol 81(10):5257–5269

    Article  PubMed  CAS  Google Scholar 

  • MacGregor RR, Boyer JD, Ugen KE, Lacy KE, Gluckman SJ, Bagarazzi ML, Chattergoon MA, Baine Y, Higgins TJ, Ciccarelli RB, Coney LR, Ginsberg RS, Weiner DB (1998) First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J Infect Dis 178(1):92–100

    Article  PubMed  Google Scholar 

  • Maue AC, Waters WR, Palmer MV, Whipple DL, Minion FC, Brown WC, Estes DM (2004) CD80 and CD86, but not CD154, augment DNA vaccine-induced protection in experimental bovine tuberculosis. Vaccine 23(6):769–779

    Article  PubMed  CAS  Google Scholar 

  • Morris JC, Janik JE, White JD, Fleisher TA, Brown M, Tsudo M, Goldman CK, Bryant B, Petrus M, Top L, Lee CC, Gao W, Waldmann TA (2006) Preclinical and phase I clinical trial of blockade of IL-15 using Mikbeta1 monoclonal antibody in T cell large granular lymphocyte leukemia. Proc Natl Acad Sci USA 103(2):401–406

    Article  PubMed  CAS  Google Scholar 

  • Neumann E, Kakorin S (1999) Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 48(1):3–16

    Article  PubMed  CAS  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1(7):841–845

    PubMed  CAS  Google Scholar 

  • Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9(24):1647–1652

    Article  PubMed  CAS  Google Scholar 

  • Offit P (2005) The cutter incident: how America’s first polio vaccine led to the growing vaccine crisis. Yale University Press, New Haven

    Google Scholar 

  • Okada E, Sasaki S, Ishii N, Aoki I, Yasuda T, Nishioka K, Fukushima J, Miyazaki J, Wahren B, Okuda K (1997) Intranasal immunization of a DNA vaccine with IL-12- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing plasmids in liposomes induces strong mucosal and cell-mediated immune responses against HIV-1 antigens. J Immunol 159(7):3638–3647

    PubMed  CAS  Google Scholar 

  • Okino M, Mohri H (1987) Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Jpn J Cancer Res (Gann) 78(12):1319

    CAS  Google Scholar 

  • Pasquini S, Xiang Z, Wang Y, He Z, Deng H, Blaszczyk-Thurin M, Ertl HC (1997) Cytokines and costimulatory molecules as genetic adjuvants. Immunol Cell Biol 75(4):397–401

    Article  PubMed  CAS  Google Scholar 

  • Perera LP, Waldmann TA, Mosca JD, Baldwin N, Berzofsky JA, Oh SK (2007) Development of smallpox vaccine candidates with integrated interleukin-15 that demonstrate superior immunogenicity, efficacy, and safety in mice. J Virol 81(16):8774–8783

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan S, Dubois S, Chen XL, Leblanc C, Ohashi PS, Ilangumaran S (2011) Exposure to IL-15 and IL-21 enables autoreactive CD8 T cells to respond to weak antigens and cause disease in a mouse model of autoimmune diabetes. J Immunol 186(9):5131–5141

    Article  PubMed  CAS  Google Scholar 

  • Raz E, Watanabe A, Baird SM, Eisenberg RA, Parr TB, Lotz M, Kipps TJ, Carson DA (1993) Systemic immunological effects of cytokine genes injected into skeletal muscle. Proc Natl Acad Sci U S A 90(10):4523–4527

    Article  PubMed  CAS  Google Scholar 

  • Rocha EPC (2004) Codon usage bias from tRNA’s point of view: redundancy, specialization, and efficient decoding for translation optimization. Genome Res 14(11):2279–2286

    Article  PubMed  CAS  Google Scholar 

  • Ruprecht R (1999) Live attenuated AIDS viruses as vaccines: promise or peril? Immunol Rev 170:135–149

    Article  PubMed  CAS  Google Scholar 

  • Santra S, Korber BT, Muldoon M, Barouch DH, Nabel GJ, Gao F, Hahn BH, Haynes BF, Letvin NL (2008) A centralized gene-based HIV-1 vaccine elicits broad cross-clade cellular immune responses in rhesus monkeys. Proc Natl Acad Sci USA 105(30):10489–10494

    Article  PubMed  CAS  Google Scholar 

  • Tang D, DeVit M (1992) Genetic immunization is a simple method for eliciting an immune response. Nature 356(6365):152–154

    Article  PubMed  CAS  Google Scholar 

  • Thomas P (2001) Big shot: passion, politics, and the struggle for an AIDS vaccine. PublicAffairs, New York, p 515

    Google Scholar 

  • Tsuji T, Hamajima K, Ishii N, Aoki I (1997) Immunomodulatory effects of a plasmid expressing B7-2 on human immunodeficiency virus-1-specific cell-mediated immunity induced by a plasmid encoding the virel antigen. Eur J Immunol 27(3):782–787

    Article  PubMed  CAS  Google Scholar 

  • Ulmer J, Donnelly J, Parker S, Rhodes G (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science (New York)

    Google Scholar 

  • Valentin A, Lu W, Rosati M, Schneider R, Albert J, Karlsson A, Pavlakis GN (1998) Dual effect of interleukin 4 on HIV-1 expression: implications for viral phenotypic switch and disease progression. Proc Natl Acad Sci USA 95(15):8886–8891

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Ugen K, Srikantan V (1993) Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc Natl Acad Sci USA 90(9):4156–4160

    Article  PubMed  CAS  Google Scholar 

  • Weiner DB, Kutzler MA, Kraynyak KA, Sylvester AJ, Ginsberg AA, Carnathan D, Kathuria N, Khan AS, Pahar B, Moldoveanu Z, Mestecky J, Betts MR, Marx P, Weiner DB (2011) Co-delivery of mucosal chemokine plasmids in a systemically administered DNA vaccine elicits systemic and mucosal immune responses in rhesus macaques. Oral presentation in: ICMI 2011. 15th International Congress of Mucosal Immunology. Paris, France 5–8.

    Article  PubMed  CAS  Google Scholar 

  • Wolff J, Malone R, Williams P, Chong W (1990) Direct gene transfer into mouse muscle in vivo. Science (New York)

    Google Scholar 

  • Xiang Z, Ertl HC (1995) Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity 2(2):129–135

    Article  PubMed  CAS  Google Scholar 

  • Yewdell JW, Bennink JR (1999) Mechanisms of viral interference with MHC class I antigen processing and presentation. Annu Rev Cell Dev Biol 15:579–606

    Article  PubMed  CAS  Google Scholar 

  • Yin J, Dai A, Kutzler MA, Shen A, Lecureux J, Lewis MG, Waldmann T, Weiner DB, Boyer JD (2008) Sustained suppression of SHIV89.6P replication in macaques by vaccine-induced CD8+ memory T cells. AIDS 22(14):1739–1748

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Lai L, Amara RR, Montefiori DC, Villinger F, Chennareddi L, Wyatt LS, Moss B, Robinson HL (2009) Preclinical studies of human immunodeficiency virus/AIDS vaccines: inverse correlation between avidity of anti-Env antibodies and peak postchallenge viremia. J Virol 83(9):4102–4111

    Article  PubMed  CAS  Google Scholar 

  • Zheng JP, Sun JY, Guo L, Liang HS, Tian FJ, Wu TC (2007) Relationship between heat shock protein 72 and DNA genetic damage in peripheral blood lymphocytes of coke oven workers. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 25(7):394–397

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

D.B.W. and the D.B.W. laboratory would like to note several commercial relationships for purposes of disclosure. These relations may include the provision of board or committee service, consultations, stock ownership, S.R.A., royalties, etc. on the part of one or both parties as a result of collaborative work with commercial entities including but not limited to Novartis, Inovio, VGXi, BMS, Medarex, Pfizer, Virxsys, Ichor, Merck, and Althea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Weiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Ginsberg, A.A., Shen, X., Hutnick, N.A., Weiner, D.B. (2012). Improvement of DNA Vaccines by Electroporation. In: Thalhamer, J., Weiss, R., Scheiblhofer, S. (eds) Gene Vaccines. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0439-2_7

Download citation

Publish with us

Policies and ethics