Skip to main content

Rational Design of Formulated DNA Vaccines: The DermaVir Approach

  • Chapter
  • First Online:
Gene Vaccines

Abstract

DermaVir features three key technological elements of a rational vaccine design: a single plasmid DNA immunogen to express 15 HIV antigens, a synthetic pDNA nanomedicine formulation and a topical dendritic cell-targeting vaccine administration. Its novel mechanism of action has been consistently demonstrated in mice, rabbits, primates and human subjects: DermaVir nanomedicine is naturally transported by epidermal Langerhans cells to the lymph nodes to express the plasmid DNA-encoded HIV antigens and induce precursor/memory T cells with high proliferation capacity. Safety, immunogenicity and preliminary efficacy of DermaVir have been clinically demonstrated in HIV-infected human subjects. DC-based therapeutic vaccination might offer a new treatment paradigm for cancer and infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulhaqq SA, Weiner DB (2008) DNA vaccines: developing new strategies to enhance immune responses. Immunol Res 42(1–3):219–232

    Article  PubMed  CAS  Google Scholar 

  • Ada G (2005) Overview of vaccines and vaccination. Mol Biotechnol 29(3):255–272

    Article  PubMed  CAS  Google Scholar 

  • Anderson RJ, Schneider J (2007) Plasmid DNA and viral vector-based vaccines for the treatment of cancer. Vaccine 25(Suppl 2):B24–B34

    Article  PubMed  CAS  Google Scholar 

  • Babiuk LA, Pontarollo R, Babiuk S, Loehr B, van Drunen Littel-van den Hurk S (2003) Induction of immune responses by DNA vaccines in large animals. Vaccine 21(7–8):649–658

    Article  PubMed  CAS  Google Scholar 

  • Bauer J, Bahmer FA, Worl J, Neuhuber W, Schuler G, Fartasch M (2001) A strikingly constant ratio exists between Langerhans cells and other epidermal cells in human skin. A stereologic study using the optical disector method and the confocal laser scanning microscope. J Invest Dermatol 116(2):313–318

    Article  PubMed  CAS  Google Scholar 

  • Bergman PJ, Camps-Palau MA, McKnight JA, Leibman NF, Craft DM, Leung C, Liao J, Riviere I, Sadelain M, Hohenhaus AE, Gregor P, Houghton AN, Perales MA, Wolchok JD (2006) Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the animal medical center. Vaccine 24(21):4582–4585

    Article  PubMed  CAS  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92(16):7297–7301

    Article  PubMed  CAS  Google Scholar 

  • Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Li D, Gilbert PB, Lama JR, Marmor M, Del Rio C, McElrath MJ, Casimiro DR, Gottesdiener KM, Chodakewitz JA, Corey L, Robertson MN (2008) Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the step study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372(9653):1881–1893

    Article  PubMed  CAS  Google Scholar 

  • Calarota SA, Weiner DB, Lori F, Lisziewicz J (2007) Induction of HIV-specific memory T-cell responses by topical DermaVir vaccine. Vaccine 25(16):3070–3074

    Article  PubMed  CAS  Google Scholar 

  • Calarota SA, Foli A, Maserati R, Baldanti F, Paolucci S, Young MA, Tsoukas CM, Lisziewicz J, Lori F (2008) HIV-1-specific T cell precursors with high proliferative capacity correlate with low viremia and high CD4 counts in untreated individuals. J Immunol 180(9):5907–5915

    PubMed  CAS  Google Scholar 

  • Choosakoonkriang S, Lobo BA, Koe GS, Koe JG, Middaugh CR (2003) Biophysical characterization of PEI/DNA complexes. J Pharm Sci 92(8):1710–1722

    Article  PubMed  CAS  Google Scholar 

  • Cristillo AD, Lisziewicz J, He L, Lori F, Galmin L, Trocio JN, Unangst T, Whitman L, Hudacik L, Bakare N, Whitney S, Restrepo S, Suschak J, Ferrari MG, Chung HK, Kalyanaraman VS, Markham P, Pal R (2007) HIV-1 prophylactic vaccine comprised of topical DermaVir prime and protein boost elicits cellular immune responses and controls pathogenic R5 SHIV162P3. Virology 366(1):197–211

    Article  PubMed  CAS  Google Scholar 

  • Davis BS, Chang GJ, Cropp B, Roehrig JT, Martin DA, Mitchell CJ, Bowen R, Bunning ML (2001) West Nile virus recombinant DNA vaccine protects mouse and horse from virus ­challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J Virol 75(9):4040–4047

    Article  PubMed  CAS  Google Scholar 

  • Donnelly JJ, Ulmer JB, Shiver JW, Liu MA (1997) DNA vaccines. Annu Rev Immunol 15:617–648

    Article  PubMed  CAS  Google Scholar 

  • Douek DC, Kwong PD, Nabel GJ (2006) The rational design of an AIDS vaccine. Cell 124(4):677–681

    Article  PubMed  CAS  Google Scholar 

  • Ellenberger D, Wyatt L, Li B, Buge S, Lanier N, Rodriguez IV, Sariol CA, Martinez M, Monsour M, Vogt J, Smith J, Otten R, Montefiori D, Kraiselburd E, Moss B, Robinson H, McNicholl J, Butera S (2005) Comparative immunogenicity in rhesus monkeys of multi-protein HIV-1 (CRF02_AG) DNA/MVA vaccines expressing mature and immature VLPs. Virology 340(1):21–32

    Article  PubMed  CAS  Google Scholar 

  • Fioretti D, Iurescia S, Fazio VM, Rinaldi M (2010) DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol 2010:174378

    Article  PubMed  Google Scholar 

  • Fischer W, Perkins S, Theiler J, Bhattacharya T, Yusim K, Funkhouser R, Kuiken C, Haynes B, Letvin NL, Walker BD, Hahn BH, Korber BT (2007) Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants. Nat Med 13(1):100–106

    Article  PubMed  CAS  Google Scholar 

  • Garland SM, Hernandez-Avila M, Wheeler CM, Perez G, Harper DM, Leodolter S, Tang GW, Ferris DG, Steben M, Bryan J, Taddeo FJ, Railkar R, Esser MT, Sings HL, Nelson M, Boslego J, Sattler C, Barr E, Koutsky LA (2007) Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med 356(19):1928–1943

    Article  PubMed  CAS  Google Scholar 

  • Garver KA, LaPatra SE, Kurath G (2005) Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon. Dis Aquat Organ 64(1):13–22

    Article  PubMed  CAS  Google Scholar 

  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422

    Article  PubMed  CAS  Google Scholar 

  • Keating SM, Bejon P, Berthoud T, Vuola JM, Todryk S, Webster DP, Dunachie SJ, Moorthy VS, McConkey SJ, Gilbert SC, Hill AV (2005) Durable human memory T cells quantifiable by cultured enzyme-linked immunospot assays are induced by heterologous prime boost immunization and correlate with protection against malaria. J Immunol 175(9):5675–5680

    PubMed  CAS  Google Scholar 

  • Kitahata MM, Gange SJ, Abraham AG, Merriman B, Saag MS, Justice AC, Hogg RS, Deeks SG, Eron JJ, Brooks JT, Rourke SB, Gill MJ, Bosch RJ, Martin JN, Klein MB, Jacobson LP, Rodriguez B, Sterling TR, Kirk GD, Napravnik S, Rachlis AR, Calzavara LM, Horberg MA, Silverberg MJ, Gebo KA, Goedert JJ, Benson CA, Collier AC, Van Rompaey SE, Crane HM, McKaig RG, Lau B, Freeman AM, Moore RD (2009) Effect of early versus deferred antiretroviral therapy for HIV on survival. N Engl J Med 360(18):1815–1826

    Article  PubMed  CAS  Google Scholar 

  • Ladell K, Hellerstein MK, Cesar D, Busch R, Boban D, McCune JM (2008) Central memory CD8+ T cells appear to have a shorter lifespan and reduced abundance as a function of HIV disease progression. J Immunol 180(12):7907–7918

    PubMed  CAS  Google Scholar 

  • Le Gall S, Erdtmann L, Benichou S, Berlioz-Torrent C, Liu L, Benarous R, Heard JM, Schwartz O (1998) Nef interacts with the mu subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity 8(4):483–495

    Article  PubMed  Google Scholar 

  • Lisziewicz J, Rosenberg E, Lieberman J, Jessen H, Lopalco L, Siliciano R, Walker B, Lori F (1999) Control of HIV despite the discontinuation of antiretroviral therapy. N Engl J Med 340(21):1683–1684

    Article  PubMed  CAS  Google Scholar 

  • Lisziewicz J, Gabrilovich DI, Varga G, Xu J, Greenberg PD, Arya SK, Bosch M, Behr JP, Lori F (2001) Induction of potent human immunodeficiency virus type 1-specific T-cell-restricted immunity by genetically modified dendritic cells. J Virol 75(16):7621–7628

    Article  PubMed  CAS  Google Scholar 

  • Lisziewicz J, Trocio J, Whitman L, Varga G, Xu J, Bakare N, Erbacher P, Fox C, Woodward R, Markham P, Arya S, Behr JP, Lori F (2005a) DermaVir: a novel topical vaccine for HIV/AIDS. J Invest Dermatol 124(1):160–169

    Article  PubMed  CAS  Google Scholar 

  • Lisziewicz J, Trocio J, Xu J, Whitman L, Ryder A, Bakare N, Lewis MG, Wagner W, Pistorio A, Arya S, Lori F (2005b) Control of viral rebound through therapeutic immunization with DermaVir. AIDS 19(1):35–43

    Article  PubMed  Google Scholar 

  • Lisziewicz J, Calarota S, Banhegyi D, LIsziewicz Z, Ujhelyi E, Lori F (2008) Single DermaVir patch treatment of HIV+ individuals induces long-lasting, high-magnitude, and broad HIV-specific T cell responses. Paper presented at the 15th conference on retroviruses and opportunistic infections, Boston, MA, 3–6 Feb 2008

    Google Scholar 

  • Liu L, Zhong Q, Tian T, Dubin K, Athale SK, Kupper TS (2010) Epidermal injury and infection during poxvirus immunization is crucial for the generation of highly protective T cell-mediated immunity. Nat Med 16(2):224–227

    Article  PubMed  CAS  Google Scholar 

  • Lori F, Lewis MG, Xu J, Varga G, Zinn DE Jr, Crabbs C, Wagner W, Greenhouse J, Silvera P, Yalley-Ogunro J, Tinelli C, Lisziewicz J (2000) Control of SIV rebound through structured treatment interruptions during early infection. Science 290(5496):1591–1593

    Article  PubMed  CAS  Google Scholar 

  • Matzinger P (2002) The danger model: a renewed sense of self. Science 296(5566):301–305

    Article  PubMed  CAS  Google Scholar 

  • Mouquet H, Scheid JF, Zoller MJ, Krogsgaard M, Ott RG, Shukair S, Artyomov MN, Pietzsch J, Connors M, Pereyra F, Walker BD, Ho DD, Wilson PC, Seaman MS, Eisen HN, Chakraborty AK, Hope TJ, Ravetch JV, Wardemann H, Nussenzweig MC (2010) Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467(7315):591–595

    Article  PubMed  CAS  Google Scholar 

  • NCT00270205 Safety and tolerability of and immune response to LC002, an experimental therapeutic vaccine, in adults receiving anti-HIV treatment. http://clinicaltrials.gov/ct2/show/NCT00270205. Accessed July 2011

  • NCT00711230 DermaVir patch (LC002) in HIV-1 infected treatment-naïve patients. http://clinicaltrials.gov/ct2/show/NCT00711230. Accessed July 2011

  • NCT00918840 antiretroviral-sparing concept: investigate the effect of therapeutic immunization with DermaVir patch. http://clinicaltrials.gov/ct2/show/NCT00918840. Accessed July 2011

  • Nicolas JF, Guy B (2008) Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. Expert Rev Vaccines 7(8):1201–1214

    Article  PubMed  Google Scholar 

  • Ohana P, Gofrit O, Ayesh S, Al-Sharef W, Mizrahi A, Birman T, Schneider T, Matouk I, de Groot N, Tavdy E, Sidi A, Hochberg A (2004) Regulatory sequences of the H19 gene in DNA based therapy of bladder cancer. Gene Ther Mol Biol 8:181–192

    Google Scholar 

  • Paavonen J, Naud P, Salmeron J, Wheeler CM, Chow SN, Apter D, Kitchener H, Castellsague X, Teixeira JC, Skinner SR, Hedrick J, Jaisamrarn U, Limson G, Garland S, Szarewski A, Romanowski B, Aoki FY, Schwarz TF, Poppe WA, Bosch FX, Jenkins D, Hardt K, Zahaf T, Descamps D, Struyf F, Lehtinen M, Dubin G, Greenacre M (2009) Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet 374(9686):301–314

    Article  PubMed  CAS  Google Scholar 

  • Peachman KK, Rao M, Alving CR (2003) Immunization with DNA through the skin. Methods 31(3):232–242

    Article  PubMed  CAS  Google Scholar 

  • Piccinini G, Foli A, Comolli G, Lisziewicz J, Lori F (2002) Complementary antiviral efficacy of hydroxyurea and protease inhibitors in human immunodeficiency virus-infected dendritic cells and lymphocytes. J Virol 76(5):2274–2278

    Article  PubMed  CAS  Google Scholar 

  • Porgador A, Irvine KR, Iwasaki A, Barber BH, Restifo NP, Germain RN (1998) Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 188(6):1075–1082

    Article  PubMed  CAS  Google Scholar 

  • Powles T, Robinson D, Stebbing J, Shamash J, Nelson M, Gazzard B, Mandelia S, Moller H, Bower M (2009) Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection. J Clin Oncol 27(6):884–890

    Article  PubMed  Google Scholar 

  • Quan FS, Steinhauer D, Huang C, Ross TM, Compans RW, Kang SM (2008) A bivalent influenza VLP vaccine confers complete inhibition of virus replication in lungs. Vaccine 26(26):3352–3361

    Article  PubMed  CAS  Google Scholar 

  • Rappuoli R (2000) Reverse vaccinology. Curr Opin Microbiol 3(5):445–450

    Article  PubMed  CAS  Google Scholar 

  • Reddy ST, Swartz MA, Hubbell JA (2006) Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol 27(12):573–579

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez B, Asmuth D, Matining R, Spritzler J, Li X, Jacobson J, Read S, Lisziewicz J, Lori F, Pollard R, Team AS (2010) Repeated-dose transdermal administration of DermaVir, a candidate plasmid DNA-based therapeutic HIV vaccine, is safe and well-tolerated: a 61-week analysis of ACTG study 5176. Paper presented at the XVIII international AIDS conference, Vienna, Austria

    Google Scholar 

  • Sandstrom E, Nilsson C, Hejdeman B, Brave A, Bratt G, Robb M, Cox J, Vancott T, Marovich M, Stout R, Aboud S, Bakari M, Pallangyo K, Ljungberg K, Moss B, Earl P, Michael N, Birx D, Mhalu F, Wahren B, Biberfeld G (2008) Broad immunogenicity of a multigene, multiclade HIV-1 DNA vaccine boosted with heterologous HIV-1 recombinant modified vaccinia virus Ankara. J Infect Dis 198(10):1482–1490

    Article  PubMed  Google Scholar 

  • Schnuriger A, Dominguez S, Guiguet M, Harfouch S, Samri A, Ouazene Z, Slama L, Simon A, Valantin MA, Thibault V, Autran B (2009) Acute hepatitis C in HIV-infected patients: rare spontaneous clearance correlates with weak memory CD4 T-cell responses to hepatitis C virus. AIDS 23(16):2079–2089

    Article  PubMed  Google Scholar 

  • Somogyi E, Xu J, Gudics A, Tóth J, Kovács A, Lori F, Lisziewicz J (2011) A plasmid DNA immunogen expressing fifteen protein antigens and complex virus-like particles (VLP+) mimicking naturally occurring HIV. Vaccine 29(4):744-53 doi:10.1016/j.vaccine.2010.11.019

    Google Scholar 

  • Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296

    Article  PubMed  CAS  Google Scholar 

  • Stevenson FK, Ottensmeier CH, Rice J (2010) DNA vaccines against cancer come of age. Curr Opin Immunol 22(2):264–270

    Article  PubMed  CAS  Google Scholar 

  • Tang DC, DeVit M, Johnston SA (1992) Genetic immunization is a simple method for eliciting an immune response. Nature 356(6365):152–154

    Article  PubMed  CAS  Google Scholar 

  • Thacker EL, Holtkamp DJ, Khan AS, Brown PA, Draghia-Akli R (2006) Plasmid-mediated growth hormone-releasing hormone efficacy in reducing disease associated with Mycoplasma hyopneumoniae and porcine reproductive and respiratory syndrome virus infection. J Anim Sci 84(3):733–742

    PubMed  CAS  Google Scholar 

  • Toke ER, Lorincz O, Somogyi E, Lisziewicz J (2010) Rational development of a stable liquid formulation for nanomedicine products. Int J Pharm 392(1–2):261–267

    Article  PubMed  CAS  Google Scholar 

  • Tomalia DA (2009) In quest of a systematic framework for unifying and defining nanoscience. J Nanopart Res 11:1251–1310

    Article  PubMed  CAS  Google Scholar 

  • van Lunzen J, Pollard R, Stellbrink HJ, Plettenberg A, Natz E, Lisziewicz Z, Freese R, Molnar L, Calarota SA, Lori F, Lisziewicz J (2010) DermaVir for initial treatment of HIV-infected subjects demonstrates preliminary safety, immunogenicity and HIV-RNA reduction versus placebo immunization. Paper presented at the XVIII international AIDS conference, Vienna, Austria

    Google Scholar 

  • von Harpe A, Petersen H, Li Y, Kissel T (2000) Characterization of commercially available and synthesized polyethylenimines for gene delivery. J Control Release 69(2):309–322

    Article  Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247(4949 Pt 1):1465–1468

    Article  PubMed  CAS  Google Scholar 

  • Yang OO, Nguyen PT, Kalams SA, Dorfman T, Gottlinger HG, Stewart S, Chen IS, Threlkeld S, Walker BD (2002) Nef-mediated resistance of human immunodeficiency virus type 1 to antiviral cytotoxic T lymphocytes. J Virol 76(4):1626–1631

    Article  PubMed  CAS  Google Scholar 

  • Zinkernagel RM (2000) Localization dose and time of antigens determine immune reactivity. Semin Immunol 12(3):163–171; discussion 257–344

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Institute for Genetic and Human Therapy (RIGHT), the European Union FP6 Marie Curie Excellence Chair Programme, and the Hungarian National Office for Research and Technology (NKTH) (HIKC05 and DVCLIN01). We are grateful for DAIDS, NIAID, NIH for several preclinical and clinical studies. We thank for the Hungarian, German, Italian, Swedish and US clinical study teams, DermaVir treated patients, L. Molnár, Z. Lisziewicz for the IT support, E.Tőke, E. Somogyi, M. Stevens and J. Chafouleas for the critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julianna Lisziewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Nátz, E., Lisziewicz, J. (2012). Rational Design of Formulated DNA Vaccines: The DermaVir Approach. In: Thalhamer, J., Weiss, R., Scheiblhofer, S. (eds) Gene Vaccines. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0439-2_6

Download citation

Publish with us

Policies and ethics