Skip to main content

Pharmaceutical Non-Viral Formulations for Gene Vaccines

  • Chapter
  • First Online:
Gene Vaccines

Abstract

Ever since the ground-breaking findings that immune responses can be provoked by biolistic application of pDNA and subsequent protein expression, no effort has been spared in order to make genetic vaccination feasible. Unfortunately, most approaches failed to convert the promising results from rodents to larger animals and human beings. To make such systems available for a global community, simple, safe and highly effective delivery systems are highly on demand. Since physical methods like the “gene gun” are neither cost-effective nor applicable in an everyday use and viral systems are still subject to heavy safety concerns, chemo-pharmaceutical approaches have become a major area of interest within the field of genetic vaccination. This chapter will shine a light on the barriers that need to be overcome by genetic vaccination systems and on the major approaches to achieve this aim. In particular, approaches based on (cationic) polymers, cationic lipids, combinations of these two major strategies and their in vivo performance will be discussed in detail. Besides, immunostimulatory agents and targeting ligands will be discussed as options to improve the in vivo efficiency of a genetic vaccination system. Finally, alternative routes to intradermal and intramuscular injections will be highlighted as part of future developments in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barouch DH, Letvin NL, Seder RA (2004) The role of cytokine DNAs as vaccine adjuvants for optimizing cellular immune responses. Immunol Rev 202:266–274

    Article  PubMed  CAS  Google Scholar 

  • Bivas-Benita M, Laloup M, Versteyhe S, Dewit J, De Braekeleer J, Jongert E, Borchard G (2003) Generation of Toxoplasma gondii GRA1 protein and DNA vaccine loaded chitosan particles: preparation, characterization, and preliminary in vivo studies. Int J Pharm 266(1–2):17–27

    Article  PubMed  CAS  Google Scholar 

  • Bivas-Benita M, van Meijgaarden KE, Franken KL, Junginger HE, Borchard G, Ottenhoff TH, Geluk A (2004) Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine 22(13–14):1609–1615

    Article  PubMed  CAS  Google Scholar 

  • Bivas-Benita M, Lin MY, Bal SM, van Meijgaarden KE, Franken KL, Friggen AH, Junginger HE, Borchard G, Klein MR, Ottenhoff TH (2009) Pulmonary delivery of DNA encoding Mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA-PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine 27(30):4010–4017

    Article  PubMed  CAS  Google Scholar 

  • Bivas-Benita M, Bar L, Gillard GO, Kaufman DR, Simmons NL, Hovav AH, Letvin NL (2010) Efficient generation of mucosal and systemic antigen-specific CD8+ T-cell responses following pulmonary DNA immunization. J Virol 84(11):5764–5774

    Article  PubMed  CAS  Google Scholar 

  • Cheng JY, Huang HN, Tseng WC, Li TL, Chan YL, Cheng KC, Wu CJ (2009) Transcutaneous immunization by lipoplex-patch based DNA vaccines is effective vaccination against Japanese encephalitis virus infection. J Control Release 135(3):242–249

    Article  PubMed  CAS  Google Scholar 

  • Cui Z, Mumper RJ (2003) Microparticles and nanoparticles as delivery systems for DNA vaccines. Crit Rev Ther Drug Carrier Syst 20(2–3):103–137

    Article  PubMed  CAS  Google Scholar 

  • Dutta T, Garg M, Jain NK (2008) Poly(propyleneimine) dendrimer and dendrosome mediated genetic immunization against hepatitis B. Vaccine 26(27–28):3389–3394

    Article  PubMed  CAS  Google Scholar 

  • Evans RK, Zhu DM, Casimiro DR, Nawrocki DK, Mach H, Troutman RD, Tang A, Wu S, Chin S, Ahn C, Isopi LA, Williams DM, Xu Z, Shiver JW, Volkin DB (2004) Characterization and biological evaluation of a microparticle adjuvant formulation for plasmid DNA vaccines. J Pharm Sci 93(7):1924–1939

    Article  PubMed  CAS  Google Scholar 

  • Felgner JH, Kumar R, Sridhar CN, Wheeler CJ, Tsai YJ, Border R, Ramsey P, Martin M, Felgner PL (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269(4):2550–2561

    PubMed  CAS  Google Scholar 

  • Fischer L, Minke J, Dufay N, Baudu P, Audonnet JC (2003) Rabies DNA vaccine in the horse: strategies to improve serological responses. Vaccine 21(31):4593–4596

    Article  PubMed  CAS  Google Scholar 

  • Foged C, Brodin B, Frokjaer S, Sundblad A (2005) Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm 298(2):315–322

    Article  PubMed  CAS  Google Scholar 

  • Guliyeva U, Oner F, Ozsoy S, Haziroglu R (2006) Chitosan microparticles containing plasmid DNA as potential oral gene delivery system. Eur J Pharm Biopharm 62(1):17–25

    Article  PubMed  CAS  Google Scholar 

  • Hartikka J, Geall A, Bozoukova V, Kurniadi D, Rusalov D, Enas J, Yi JH, Nanci A, Rolland A (2008) Physical characterization and in vivo evaluation of poloxamer-based DNA vaccine formulations. J Gene Med 10(7):770–782

    Article  PubMed  CAS  Google Scholar 

  • He X, Jiang L, Wang F, Xiao Z, Li J, Liu LS, Li D, Ren D, Jin X, Li K, He Y, Shi K, Guo Y, Zhang Y, Sun S (2005) Augmented humoral and cellular immune responses to hepatitis B DNA vaccine adsorbed onto cationic microparticles. J Control Release 107(2):357–372

    Article  PubMed  CAS  Google Scholar 

  • Howard KA, Li XW, Somavarapu S, Singh J, Green N, Atuah KN, Ozsoy Y, Seymour LW, Alpar HO (2004) Formulation of a microparticle carrier for oral polyplex-based DNA vaccines. Biochim Biophys Acta 1674(2):149–157

    PubMed  CAS  Google Scholar 

  • Jain S, Singh P, Mishra V, Vyas SP (2005) Mannosylated niosomes as adjuvant-carrier system for oral genetic immunization against hepatitis B. Immunol Lett 101(1):41–49

    Article  PubMed  CAS  Google Scholar 

  • Jain K, Kesharwani P, Gupta U, Jain NK (2010) Dendrimer toxicity: let’s meet the challenge. Int J Pharm 394(1–2):122–142

    Article  PubMed  CAS  Google Scholar 

  • Kaneko H, Bednarek I, Wierzbicki A, Kiszka I, Dmochowski M, Wasik TJ, Kaneko Y, Kozbor D (2000) Oral DNA vaccination promotes mucosal and systemic immune responses to HIV envelope glycoprotein. Virology 267(1):8–16

    Article  PubMed  CAS  Google Scholar 

  • Khatri K, Goyal AK, Gupta PN, Mishra N, Mehta A, Vyas SP (2008a) Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine 26(18):2225–2233

    Article  PubMed  CAS  Google Scholar 

  • Khatri K, Goyal AK, Gupta PN, Mishra N, Vyas SP (2008b) Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Int J Pharm 354(1–2):235–241

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Kim SW (2005) Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm Res 22(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Lodmell DL, Ray NB, Ulrich JT, Ewalt LC (2000) DNA vaccination of mice against rabies virus: effects of the route of vaccination and the adjuvant monophosphoryl lipid A (MPL). Vaccine 18(11–12):1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Lv H, Zhang S, Wang B, Cui S, Yan J (2006) Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 114(1):100–109

    Article  PubMed  CAS  Google Scholar 

  • Mahor S, Rawat A, Dubey PK, Gupta PN, Khatri K, Goyal AK, Vyas SP (2007) Cationic transfersomes based topical genetic vaccine against hepatitis B. Int J Pharm 340(1–2):13–19

    Article  PubMed  CAS  Google Scholar 

  • Margalith M, Vilalta A (2006) Sustained protective rabies neutralizing antibody titers after administration of cationic lipid-formulated pDNA vaccine. Genet Vaccines Ther 4:2

    Article  PubMed  Google Scholar 

  • Martien R, Loretz B, Schnurch AB (2006) Oral gene delivery: design of polymeric carrier systems shielding toward intestinal enzymatic attack. Biopolymers 83(4):327–336

    Article  PubMed  CAS  Google Scholar 

  • Martien R, Loretz B, Thaler M, Majzoob S, Bernkop-Schnurch A (2007) Chitosan-thioglycolic acid conjugate: an alternative carrier for oral nonviral gene delivery? J Biomed Mater Res A 82(1):1–9

    PubMed  Google Scholar 

  • Meyer M, Zintchenko A, Ogris M, Wagner E (2007) A dimethylmaleic acid-melittin-polylysine conjugate with reduced toxicity, pH-triggered endosomolytic activity and enhanced gene transfer potential. J Gene Med 9(9):797–805

    Article  PubMed  CAS  Google Scholar 

  • Minigo G, Scholzen A, Tang CK, Hanley JC, Kalkanidis M, Pietersz GA, Apostolopoulos V, Plebanski M (2007) Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine 25(7):1316–1327

    Article  PubMed  CAS  Google Scholar 

  • Mislick KA, Baldeschwieler JD (1996) Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci USA 93(22):12349–12354

    Article  PubMed  CAS  Google Scholar 

  • Mounkes LC, Zhong W, Cipres-Palacin G, Heath TD, Debs RJ (1998) Proteoglycans mediate cationic liposome-DNA complex-based gene delivery in vitro and in vivo. J Biol Chem 273(40):26164–26170

    Article  PubMed  CAS  Google Scholar 

  • Oster CG, Kim N, Grode L, Barbu-Tudoran L, Schaper AK, Kaufmann SH, Kissel T (2005) Cationic microparticles consisting of poly(lactide-co-glycolide) and polyethylenimine as carriers systems for parental DNA vaccination. J Control Release 104(2):359–377

    Article  PubMed  CAS  Google Scholar 

  • Ott G, Singh M, Kazzaz J, Briones M, Soenawan E, Ugozzoli M, O’Hagan DT (2002) A cationic sub-micron emulsion (MF59/DOTAP) is an effective delivery system for DNA vaccines. J Control Release 79(1–3):1–5

    Article  PubMed  CAS  Google Scholar 

  • Perrie Y, McNeil S, Vangala A (2003) Liposome-mediated DNA immunisation via the subcutaneous route. J Drug Target 11(8–10):555–563

    Article  PubMed  CAS  Google Scholar 

  • Pichon C, Goncalves C, Midoux P (2001) Histidine-rich peptides and polymers for nucleic acids delivery. Adv Drug Deliv Rev 53(1):75–94

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro S, Rijpkema SG, Durrani Z, Florence AT (2007) PLGA-dendron nanoparticles enhance immunogenicity but not lethal antibody production of a DNA vaccine against anthrax in mice. Int J Pharm 331(2):228–232

    Article  PubMed  CAS  Google Scholar 

  • Rogers JV, Hull BE, Fink PS, Chiou HC, Bigley NJ (2000) Murine response to DNA encoding herpes simplex virus type-1 glycoprotein D targeted to the liver. Vaccine 18(15):1522–1530

    Article  PubMed  CAS  Google Scholar 

  • Ruponen M, Yla-Herttuala S, Urtti A (1999) Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: physicochemical and transfection studies. Biochim Biophys Acta 1415(2):331–341

    Article  PubMed  CAS  Google Scholar 

  • Sasaki S, Sumino K, Hamajima K, Fukushima J, Ishii N, Kawamoto S, Mohri H, Kensil CR, Okuda K (1998) Induction of systemic and mucosal immune responses to human immunodeficiency virus type 1 by a DNA vaccine formulated with QS-21 saponin adjuvant via intramuscular and intranasal routes. J Virol 72(6):4931–4939

    PubMed  CAS  Google Scholar 

  • Sedegah M, Rogers WO, Belmonte M, Belmonte A, Banania G, Patterson NB, Rusalov D, Ferrari M, Richie TL, Doolan DL (2010) Vaxfectin enhances both antibody and in vitro T cell responses to each component of a 5-gene Plasmodium falciparum plasmid DNA vaccine mixture administered at low doses. Vaccine 28(17):3055–3065

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Vajdy M, Gardner J, Briones M, O’Hagan D (2001) Mucosal immunization with HIV-1 gag DNA on cationic microparticles prolongs gene expression and enhances local and systemic immunity. Vaccine 20(3–4):594–602

    Article  PubMed  CAS  Google Scholar 

  • Smith KA (1980) T-cell growth factor. Immunol Rev 51:337–357

    Article  PubMed  CAS  Google Scholar 

  • Smith LR, Wloch MK, Ye M, Reyes LR, Boutsaboualoy S, Dunne CE, Chaplin JA, Rusalov D, Rolland AP, Fisher CL, Al-Ibrahim MS, Kabongo ML, Steigbigel R, Belshe RB, Kitt ER, Chu AH, Moss RB (2010) Phase 1 clinical trials of the safety and immunogenicity of adjuvanted plasmid DNA vaccines encoding influenza A virus H5 hemagglutinin. Vaccine 28(13):2565–2572

    Article  PubMed  CAS  Google Scholar 

  • Somavarapu S, Bramwell VW, Alpar HO (2003) Oral plasmid DNA delivery systems for genetic immunisation. J Drug Target 11(8–10):547–553

    Article  PubMed  CAS  Google Scholar 

  • Tang DC, DeVit M, Johnston SA (1992) Genetic immunization is a simple method for eliciting an immune response. Nature 356(6365):152–154

    Article  PubMed  CAS  Google Scholar 

  • Thanou M, Florea BI, Geldof M, Junginger HE, Borchard G (2002) Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 23(1):153–159

    Article  PubMed  CAS  Google Scholar 

  • Thomsen LL, Topley P, Daly MG, Brett SJ, Tite JP (2004) Imiquimod and resiquimod in a mouse model: adjuvants for DNA vaccination by particle-mediated immunotherapeutic delivery. Vaccine 22(13–14):1799–1809

    Article  PubMed  CAS  Google Scholar 

  • van den Berg JH, Nuijen B, Schumacher TN, Haanen JB, Storm G, Beijnen JH, Hennink WE (2010) Synthetic vehicles for DNA vaccination. J Drug Target 18(1):1–14

    Article  PubMed  Google Scholar 

  • Verbaan FJ, Klein Klouwenberg P, van Steenis JH, Snel CJ, Boerman O, Hennink WE, Storm G (2005) Application of poly(2-(dimethylamino)ethyl methacrylate)-based polyplexes for gene transfer into human ovarian carcinoma cells. Int J Pharm 304(1–2):185–192

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Kennedy JS, West K, Montefiori DC, Coley S, Lawrence J, Shen S, Green S, Rothman AL, Ennis FA, Arthos J, Pal R, Markham P, Lu S (2008) Cross-subtype antibody and cellular immune responses induced by a polyvalent DNA prime-protein boost HIV-1 vaccine in healthy human volunteers. Vaccine 26(8):1098–1110

    Article  PubMed  CAS  Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247(4949 Pt 1):1465–1468

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Yuan X, Cai D, Wang S, Zong L (2009) Low molecular weight chitosan in DNA vaccine delivery via mucosa. Int J Pharm 375(1–2):123–132

    Article  PubMed  CAS  Google Scholar 

  • Zhang A, Jin H, Zhang F, Ma Z, Tu Y, Ren Z, Zhang X, Zhu K, Wang B (2005) Effects of multiple copies of CpG on DNA vaccination. DNA Cell Biol 24(5):292–298

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen Perera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Perera, G., Bernkop-Schnürch, A. (2012). Pharmaceutical Non-Viral Formulations for Gene Vaccines. In: Thalhamer, J., Weiss, R., Scheiblhofer, S. (eds) Gene Vaccines. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0439-2_5

Download citation

Publish with us

Policies and ethics