Skip to main content

Messenger RNA Vaccines

  • Chapter
  • First Online:
Gene Vaccines

Abstract

Twenty years after the seminal observation of Wolff et al. that injection of naked RNA and DNA vectors results in protein expression in vivo, messenger RNA (mRNA) vaccines have found entry into clinical development. Through improved vector design, formulation, and delivery, mRNA, initially perceived as unstable and difficult to manipulate, has been developed into a convenient, efficacious, and flexible vaccine platform. Importantly, the same production process can be used to produce a variety of different vaccines, independent of the specifics of particular constructs, which ultimately decreases costs and development time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Absher M, Stinebring WR (1969) Toxic properties of a synthetic double-stranded RNA. Endotoxin-like properties of poly I. poly C, an interferon stimulator. Nature 223(5207):715–717

    PubMed  CAS  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413(6857):732–738

    PubMed  CAS  Google Scholar 

  • Amiel E, Alonso A, Uematsu S, Akira S, Poynter ME, Berwin B (2009) Pivotal advance: toll-like receptor regulation of scavenger receptor-A-mediated phagocytosis. J Leukoc Biol 85(4):595–605

    PubMed  CAS  Google Scholar 

  • Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH, Weissman D, Karikó K (2010) Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res 38(17):5884–5892

    PubMed  CAS  Google Scholar 

  • Babendure JR, Babendure JL, Ding JH, Tsien RY (2006) Control of mammalian translation by mRNA structure near caps. RNA (New York) 12(5):851–861

    CAS  Google Scholar 

  • Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10(11):787–796

    PubMed  CAS  Google Scholar 

  • Banerjee AK (1980) 5′-terminal cap structure in eucaryotic messenger ribonucleic acids. Microbiol Rev 44(2):175–205

    PubMed  CAS  Google Scholar 

  • Blobel G (1973) A protein of molecular weight 78,000 bound to the polyadenylate region of eukaryotic messenger RNAs. Proc Natl Acad Sci USA 70(3):924–928

    PubMed  CAS  Google Scholar 

  • Boczkowski D, Nair SK, Snyder D, Gilboa E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184(2):465–472

    PubMed  CAS  Google Scholar 

  • Carralot JP, Probst J, Hoerr I, Scheel B, Teufel R, Jung G, Rammensee HG, Pascolo S (2004) Polarization of immunity induced by direct injection of naked sequence-stabilized mRNA vaccines. Cell Mol Life Sci 61(18):2418–2424

    PubMed  CAS  Google Scholar 

  • Carralot J-P, Weide B, Schoor O, Probst J, Scheel B, Teufel R, Hoerr I, Garbe C, Rammensee H-G, Pascolo S (2005) Production and characterization of amplified tumor-derived cRNA libraries to be used as vaccines against metastatic melanomas. Genet Vaccin Ther 3:6–6

    Google Scholar 

  • Chang T-C, Yamashita A, Chen C-YA, Yamashita Y, Zhu W, Durdan S, Kahvejian A, Sonenberg N, Shyu A-B (2004) UNR, a new partner of poly(A)-binding protein, plays a key role in translationally coupled mRNA turnover mediated by the c-fos major coding-region determinant. Genes Dev 18(16):2010–2023

    PubMed  CAS  Google Scholar 

  • Chen C-YA, Shyu A-B (2003) Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway. Mol Cell Biol 23(14):4805–4813

    PubMed  CAS  Google Scholar 

  • Chen CY, Xu N, Shyu AB (1995) mRNA decay mediated by two distinct AU-rich elements from c-fos and granulocyte-macrophage colony-stimulating factor transcripts: different deadenylation kinetics and uncoupling from translation. Mol Cell Biol 15(10):5777–5788

    PubMed  CAS  Google Scholar 

  • Chetverin AB (2004) Replicable and recombinogenic RNAs. FEBS Lett 567(1):35–41

    PubMed  CAS  Google Scholar 

  • Christensen C (1997) The innovator’s dilemma: when new technologies cause great firms to fail. Harvard Business School Press, Boston Mass

    Google Scholar 

  • Conry RM, LoBuglio AF, Wright M, Sumerel L, Pike MJ, Johanning F, Benjamin R, Lu D, Curiel DT (1995) Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res 55(7):1397–1400

    PubMed  CAS  Google Scholar 

  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reise Sousa (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science (New York) 303(5663):1529–1531

    CAS  Google Scholar 

  • Diebold SS, Massacrier C, Akira S, Paturel C, Morel Y, Reis e Sousa C (2006) Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur J Immunol 36(12):3256–3267

    PubMed  CAS  Google Scholar 

  • Duret L (2002) Evolution of synonymous codon usage in metazoans. Curr Opin Genet Dev 12(6):640–649

    PubMed  CAS  Google Scholar 

  • FDA Guidance for Industry (2006) Gene therapy clinical trials; observing subjects for delayed adverse events. http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/CellularandGeneTherapy/ucm078719.pdf. Accessed 12 july 2011

  • Field AK, Tytell AA, Lampson GP, Hilleman MR (1967) Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes. Proc Natl Acad Sci USA 58(3):1004–1010

    PubMed  CAS  Google Scholar 

  • Forde GM (2005) Rapid-response vaccines – does DNA offer a solution? Nat Biotechnol 23(9):1059–1062

    PubMed  CAS  Google Scholar 

  • Fotin-Mleczek M, Duchardt KM, Lorenz C, Pfeiffer R, Ojkic´-Zrna S, Probst J, Kallen K-J (2011) Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother (Hagerstown, MD: 1997) 34(1):1–15

    CAS  Google Scholar 

  • Freigang S, Egger D, Bienz K, Hengartner H, Zinkernagel RM (2003) Endogenous neosynthesis vs. cross-presentation of viral antigens for cytotoxic T cell priming. Proc Natl Acad Sci USA 100(23):13477–13482

    PubMed  CAS  Google Scholar 

  • Friedmann T (2007) Gene transfer: delivery and expression of DNA and RNA: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Funakoshi Y, Doi Y, Hosoda N, Uchida N, Osawa M, Shimada I, Tsujimoto M, Suzuki T, Katada T, Hoshino S-i (2007) Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes Dev 21(23):3135–3148

    PubMed  CAS  Google Scholar 

  • Gallie DR (1991) The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev 5(11):2108–2116

    PubMed  CAS  Google Scholar 

  • Granstein RD, Ding W, Ozawa H (2000) Induction of anti-tumor immunity with epidermal cells pulsed with tumor-derived RNA or intradermal administration of RNA. J Investig Dermatol 114(4):632–636

    PubMed  CAS  Google Scholar 

  • Grosset C, Chen CY, Xu N, Sonenberg N, Jacquemin-Sablon H, Shyu AB (2000) A mechanism for translationally coupled mRNA turnover: interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex. Cell 103(1):29–40

    PubMed  CAS  Google Scholar 

  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science (New York) 303(5663):1526–1529

    CAS  Google Scholar 

  • Heiser A, Maurice MA, Yancey DR, Wu NZ, Dahm P, Pruitt SK, Boczkowski D, Nair SK, Ballo MS, Gilboa E, Vieweg J (2001) Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J Immunol (Baltimore, MD: 1950) 166(5):2953–2960

    CAS  Google Scholar 

  • Herweijer H, Wolff JA (2007) Gene therapy progress and prospects: hydrodynamic gene delivery. Gene Ther 14(2):99–107

    PubMed  CAS  Google Scholar 

  • Hess PR, Boczkowski D, Nair SK, Snyder D, Gilboa E (2006) Vaccination with mRNAs encoding tumor-associated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. Cancer Immunol Immunother 55(6):672–683

    PubMed  CAS  Google Scholar 

  • Hilleman MR (1994) Recombinant vector vaccines in vaccinology. Dev Biol Stand 82:3–20

    PubMed  CAS  Google Scholar 

  • Hoare M, Levy MS, Bracewell DG, Doig SD, Kong S, Titchener-Hooker N, Ward JM, Dunnill P (2005) Bioprocess engineering issues that would be faced in producing a DNA vaccine at up to 100 m3 fermentation scale for an influenza pandemic. Biotechnol Prog 21(6):1577–1592

    PubMed  CAS  Google Scholar 

  • Hoerr I, Obst R, Rammensee HG, Jung G (2000) In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 30(1):1–7

    PubMed  CAS  Google Scholar 

  • Holtkamp S, Kreiter S, Selmi A, Simon P, Koslowski M, Huber C, Türeci O, Sahin U (2006) Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108(13):4009–4017

    PubMed  CAS  Google Scholar 

  • Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann K-K, Schlee M, Endres S, Hartmann G (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science (New York) 314(5801):994–997

    Google Scholar 

  • Hornung V, Barchet W, Schlee M, Hartmann G (2008) RNA recognition via TLR7 and TLR8. Handb Exp Pharmacol 183:71–86

    PubMed  CAS  Google Scholar 

  • Hovanessian AG (2007) On the discovery of interferon-inducible, double-stranded RNA activated enzymes: the 2′–5′ oligoadenylate synthetases and the protein kinase PKR. Cytokine Growth Factor Rev 18(5–6):351–361

    PubMed  CAS  Google Scholar 

  • Imataka H, Gradi A, Sonenberg N (1998) A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J 17(24):7480–7489

    PubMed  CAS  Google Scholar 

  • Isaacs A, Cox RA, Rotem Z (1963) Foreign nucleic acids as the stimulus to make interferon. Lancet 2(7299):113–116

    PubMed  CAS  Google Scholar 

  • Jäschke A, Helm M (2003) RNA sex. Chem Biol 10(12):1148–1150

    PubMed  Google Scholar 

  • Kanaya S, Yamada Y, Kinouchi M, Kudo Y, Ikemura T (2001) Codon usage and tRNA genes in eukaryotes: correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. J Mol Evol 53(4–5):290–298

    PubMed  CAS  Google Scholar 

  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422

    PubMed  CAS  Google Scholar 

  • Karikó K, Weissman D (2007) Naturally occurring nucleoside modifications suppress the immunostimulatory activity of RNA: implication for therapeutic RNA development. Curr Opin Drug Discov Dev 10(5):523–532

    Google Scholar 

  • Karikó K, Ni H, Capodici J, Lamphier M, Weissman D (2004) mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 279(13):12542–12550

    PubMed  Google Scholar 

  • Karikó K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23(2):165–175

    PubMed  Google Scholar 

  • Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, Weissman D (2008) Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther J Am Soc Gene Ther 16(11):1833–1840

    Google Scholar 

  • Kaslow DC (2004) A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases. Trans R Soc Trop Med Hyg 98(10):593–601

    PubMed  CAS  Google Scholar 

  • Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh C-S, Reis e Sousa C, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441(7089):101–105

    PubMed  CAS  Google Scholar 

  • Kim D-H, Longo M, Han Y, Lundberg P, Cantin E, Rossi JJ (2004) Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol 22(3):321–325

    PubMed  CAS  Google Scholar 

  • Kreiter S, Selmi A, Diken M, Sebastian M, Osterloh P, Schild H, Huber C, Türeci O, Sahin U (2008) Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J Immunol (Baltimore, MD: 1950) 180(1):309–318

    CAS  Google Scholar 

  • Kreiter S, Selmi A, Diken M, Koslowski M, Britten CM, Huber C, Türeci O, Sahin U (2010) Intranodal vaccination with naked antigen-encoding rna elicits potent prophylactic and ­therapeutic antitumoral immunity. Cancer Res 70:9031–9040

    Google Scholar 

  • Kuhn AN, Diken M, Kreiter S, Selmi A, Kowalska J, Jemielity J, Darzynkiewicz E, Huber C, Türeci O, Sahin U (2010) Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther 17(8):961–971

    PubMed  CAS  Google Scholar 

  • Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang Y-H, Homey B, Cao W, Wang Y-H, Su B, Nestle FO, Zal T, Mellman I, Schröder J-M, Liu Y-J, Gilliet M (2007) Plasmacytoid ­dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449(7162):564–569

    PubMed  CAS  Google Scholar 

  • Le H, Tanguay RL, Balasta ML, Wei CC, Browning KS, Metz AM, Goss DJ, Gallie DR (1997) Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J Biol Chem 272(26):16247–16255

    PubMed  CAS  Google Scholar 

  • Levine M (2009) New generation vaccines. Informa Healthcare, New York

    Google Scholar 

  • Liu MA (2010) Immunologic basis of vaccine vectors. Immunity 33(4):504–515

    PubMed  CAS  Google Scholar 

  • Liu H, Kiledjian M (2006) Decapping the message: a beginning or an end. Biochem Soc Trans 34(Pt 1):35–38

    PubMed  Google Scholar 

  • Mandl CW, Aberle JH, Aberle SW, Holzmann H, Allison SL, Heinz FX (1998) In vitro-synthesized infectious RNA as an attenuated live vaccine in a flavivirus model. Nat Med 4(12):1438–1440

    PubMed  CAS  Google Scholar 

  • Martinon F, Krishnan S, Lenzen G, Magné R, Gomard E, Guillet JG, Lévy JP, Meulien P (1993) Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 23(7):1719–1722

    PubMed  CAS  Google Scholar 

  • McCartney SA, Colonna M (2009) Viral sensors: diversity in pathogen recognition. Immunol Rev 227(1):87–94

    PubMed  CAS  Google Scholar 

  • Meyer S, Temme C, Wahle E (2004) Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 39(4):197–216

    PubMed  CAS  Google Scholar 

  • Michel YM, Poncet D, Piron M, Kean KM, Borman AM (2000) Cap-Poly(A) synergy in mammalian cell-free extracts. Investigation of the requirements for poly(A)-mediated stimulation of translation initiation. J Biol Chem 275(41):32268–32276

    PubMed  CAS  Google Scholar 

  • Mockey M, Bourseau E, Chandrashekhar V, Chaudhuri A, Lafosse S, Le Cam E, Quesniaux VFJ, Ryffel B, Pichon C, Midoux P (2007) mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther 14(9):802–814

    PubMed  CAS  Google Scholar 

  • Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E (1998) Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 16(4):364–369

    PubMed  CAS  Google Scholar 

  • Nallagatla SR, Hwang J, Toroney R, Zheng X, Cameron CE, Bevilacqua PC (2007) 5′-triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science (New York) 318(5855):1455–1458

    CAS  Google Scholar 

  • Ozgur S, Chekulaeva M, Stoecklin G (2010) Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies. Mol Cell Biol 30(17):4308–4323

    PubMed  CAS  Google Scholar 

  • Parker R, Song H (2004) The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11(2):121–127

    PubMed  CAS  Google Scholar 

  • Pascolo S (2006) Vaccination with messenger RNA. Methods Mol Med 127:23–40

    PubMed  CAS  Google Scholar 

  • Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F, Reise Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science (New York) 314(5801):997–1001

    CAS  Google Scholar 

  • Probst J, Brechtel S, Scheel B, Hoerr I, Jung G, Rammensee H-G, Pascolo S (2006) Characterization of the ribonuclease activity on the skin surface. Genet Vaccin Ther 4:4–4

    Google Scholar 

  • Probst J, Weide B, Scheel B, Pichler BJ, Hoerr I, Rammensee HG, Pascolo S (2007) Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Ther 14(15):1175–1180

    PubMed  CAS  Google Scholar 

  • Pulendran B, Ahmed R (2006) Translating innate immunity into immunological memory: implications for vaccine development. Cell 124(4):849–863

    PubMed  CAS  Google Scholar 

  • Qiu P, Ziegelhoffer P, Sun J, Yang NS (1996) Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization. Gene Ther 3(3):262–268

    PubMed  CAS  Google Scholar 

  • Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K, Robb N, Vreede F, Barclay W, Fodor E, Reis e Sousa C (2010) RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140(3):397–408

    PubMed  CAS  Google Scholar 

  • Rittig SM, Haentschel M, Weimer KJ, Heine A, Muller MR, Brugger W, Horger MS, Maksimovic O, Stenzl A, Hoerr I, Rammensee H-G, Holderried TA, Kanz L, Pascolo S, Brossart P (2011) Intradermal vaccinations with RNA coding for TAA generate CD8(+) and CD4(+) immune responses and induce clinical benefit in vaccinated patients. Mol Ther 19(5):990-999

    Google Scholar 

  • Roesler E, Weiss R, Weinberger EE, Fruehwirth A, Stoecklinger A, Mostböck S, Ferreira F, Thalhamer J, Scheiblhofer S (2009) Immunize and disappear-safety-optimized mRNA vaccination with a panel of 29 allergens. J Allergy Clin Immunol 124(5):1070–1077, e1071-1011-1070-1077.e1071-1011

    PubMed  CAS  Google Scholar 

  • Sadler AJ, Williams BRG (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8(7):559–568

    PubMed  CAS  Google Scholar 

  • Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M (2008) Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454(7203):523–527

    PubMed  CAS  Google Scholar 

  • Scheel B, Braedel S, Probst J, Carralot J-P, Wagner H, Schild H, Jung G, Rammensee H-G, Pascolo S (2004) Immunostimulating capacities of stabilized RNA molecules. Eur J Immunol 34(2):537–547

    PubMed  CAS  Google Scholar 

  • Scheel B, Teufel R, Probst J, Carralot J-P, Geginat J, Radsak M, Jarrossay D, Wagner H, Jung G, Rammensee H-G, Hoerr I, Pascolo S (2005) Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur J Immunol 35(5):1557–1566

    PubMed  CAS  Google Scholar 

  • Schleef M (2005) DNA pharmaceuticals: formulation and delivery in gene therapy, DNA vaccination and immunotherapy. Wiley-VCH, Weinheim

    Google Scholar 

  • Sederoff R, Lowenstein L, Mayer A, Stone J, Birnboim HC (1975) Acid treatment of Drosophila deoxyribonucleic acid. J Histochem Cytochem: Off J Histochem Soc 23(7):482–492

    CAS  Google Scholar 

  • Sohn RL, Murray MT, Schwarz K, Nyitray J, Purray P, Franko AP, Palmer KC, Diebel LN, Dulchavsky SA (2001) In-vivo particle mediated delivery of mRNA to mammalian tissues: ballistic and biologic effects. Wound Repair Regen: Off Publ Wound Heal Soc Eur Tissue Repair Soc 9(4):287–296

    CAS  Google Scholar 

  • Song M-G, Li Y, Kiledjian M (2010) Multiple mRNA decapping enzymes in mammalian cells. Mol Cell 40(3):423–432

    PubMed  CAS  Google Scholar 

  • Sorrentino S (1998) Human extracellular ribonucleases: multiplicity, molecular diversity and catalytic properties of the major RNase types. Cell Mol Life Sci 54(8):785–794

    PubMed  CAS  Google Scholar 

  • Steitz J, Britten CM, Wölfel T, Tüting T (2006) Effective induction of anti-melanoma immunity following genetic vaccination with synthetic mRNA coding for the fusion protein EGFP.TRP2. Cancer Immunol Immunother 55(3):246–253

    PubMed  CAS  Google Scholar 

  • Su Z, Dannull J, Yang BK, Dahm P, Coleman D, Yancey D, Sichi S, Niedzwiecki D, Boczkowski D, Gilboa E, Vieweg J (2005) Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol (Baltimore, MD: 1950) 174(6):3798–3807

    CAS  Google Scholar 

  • Tarun SZ, Sachs AB (1995) A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev 9(23):2997–3007

    PubMed  CAS  Google Scholar 

  • Tarun SZ, Sachs AB (1996) Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J 15(24):7168–7177

    PubMed  CAS  Google Scholar 

  • Uchida N, Hoshino S-I, Katada T (2004) Identification of a human cytoplasmic poly(A) nuclease complex stimulated by poly(A)-binding protein. J Biol Chem 279(2):1383–1391

    PubMed  CAS  Google Scholar 

  • Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ, Gromkowski SH, Deck RR, DeWitt CM, Friedman A (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science (New York) 259(5102):1745–1749

    CAS  Google Scholar 

  • Ulmer JB, Valley U, Rappuoli R (2006) Vaccine manufacturing: challenges and solutions. Nat Biotechnol 24(11):1377–1383

    PubMed  CAS  Google Scholar 

  • Uzri D, Gehrke L (2009) Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities. J Virol 83(9):4174–4184

    PubMed  CAS  Google Scholar 

  • Wang Z, Day N, Trifillis P, Kiledjian M (1999) An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol Cell Biol 19(7):4552–4560

    PubMed  CAS  Google Scholar 

  • Wang Z, Troilo PJ, Wang X, Griffiths TG, Pacchione SJ, Barnum AB, Harper LB, Pauley CJ, Niu Z, Denisova L, Follmer TT, Rizzuto G, Ciliberto G, Fattori E, Monica NL, Manam S, Ledwith BJ (2004) Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther 11(8):711–721

    PubMed  CAS  Google Scholar 

  • Wei CC, Balasta ML, Ren J, Goss DJ (1998) Wheat germ poly(A) binding protein enhances the binding affinity of eukaryotic initiation factor 4F and (iso)4F for cap analogues. Biochemistry 37(7):1910–1916

    PubMed  CAS  Google Scholar 

  • Weide B, Carralot J-P, Reese A, Scheel B, Eigentler TK, Hoerr I, Rammensee H-G, Garbe C, Pascolo S (2009a) Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J Immunother (Hagerstown, MD: 1997) 31(2):180–188

    Google Scholar 

  • Weide B, Pascolo S, Scheel B, Derhovanessian E, Pflugfelder A, Eigentler TK, Pawelec G, Hoerr I, Rammensee H-G, Garbe C (2009b) Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother (Hagerstown, MD: 1997) 32(5):498–507

    CAS  Google Scholar 

  • Weiss R, Scheiblhofer S, Roesler E, Ferreira F, Thalhamer J (2010) Prophylactic mRNA vaccination against allergy. Curr Opin Allergy Clin Immunol 10(6):567–574

    PubMed  CAS  Google Scholar 

  • Wickens M (1990) How the messenger got its tail: addition of poly(A) in the nucleus. Trends Biochem Sci 15(7):277–281

    PubMed  CAS  Google Scholar 

  • Wilkins C, Gale M (2010) Recognition of viruses by cytoplasmic sensors. Curr Opin Immunol 22(1):41–47

    PubMed  CAS  Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science (New York) 247(4949 Pt 1):1465–1468

    CAS  Google Scholar 

  • Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 103(11):4034–4039

    PubMed  CAS  Google Scholar 

  • Yamamoto A, Kormann M, Rosenecker J, Rudolph C (2009) Current prospects for mRNA gene delivery. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft Für Pharm Verfahrenstechnik eV 71(3):484–489

    CAS  Google Scholar 

  • Yamashita A, Chang T-C, Yamashita Y, Zhu W, Zhong Z, Chen C-YA, Shyu A-B (2005) Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 12(12):1054–1063

    PubMed  CAS  Google Scholar 

  • Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, Nakasato M, Lu Y, Hangai S, Koshiba R, Savitsky D, Ronfani L, Akira S, Bianchi ME, Honda K, Tamura T, Kodama T, Taniguchi T (2009) HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462(7269):99–103

    PubMed  CAS  Google Scholar 

  • Zhou WZ, Hoon DS, Huang SK, Fujii S, Hashimoto K, Morishita R, Kaneda Y (1999) RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum Gene Ther 10(16):2719–2724

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Probst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Probst, J., Fotin-Mleczek, M., Schlake, T., Thess, A., Kramps, T., Kallen, KJ. (2012). Messenger RNA Vaccines. In: Thalhamer, J., Weiss, R., Scheiblhofer, S. (eds) Gene Vaccines. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0439-2_11

Download citation

Publish with us

Policies and ethics