Skip to main content

Atomic Layer Deposition for Nanotechnology

  • Chapter
  • First Online:
Book cover Nanofabrication

Abstract

Atomic layer deposition (ALD) is a thin film chemical vapor deposition technology that is uniquely able to deliver extremely conformal, pin hole free, nanometer thick films. It is finding a large number of applications in nanotechnology such as display technology, integrated circuit (IC) fabrication, solar cells and catalysis. In this chapter we will discuss the background behind ALD, its fundamentals, and some of the nanotechnology applications, deposition in nanotubes, deposition of nanoparticles, and deposition of nanometer thick films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Puurunen RL. J Appl Phys. 2005;97:121301.

    Article  Google Scholar 

  2. George SM. Chem Rev. 2010;110:111.

    Article  CAS  Google Scholar 

  3. Delabie A, Puurunen RL, Brijs B, Caymax M, Conard T, Onsia B, Richard O, Vandervorst W, Zhao C, Heyns MM, Meuris M, Viitanen MM, Brongersma HH, De Ridder M, Goncharova LV, Garfunkel E, Gustafsson T, Tsai W. J Appl Phys. 2005;97:064104.

    Article  Google Scholar 

  4. Deshpande A, Inman R, Jursich G, Takoudis C. J Vac Sci Technol A. 2004;22:2035.

    Article  CAS  Google Scholar 

  5. Lee F, Marcus S, Shero E, Wilk G, Swerts J, Maes JW, Blomberg T, Delabie A, Gros-Jean M, Deloffre E, 2007 IEEE/SEMI advanced semiconductor manufacturing conference (2007) 359.

    Google Scholar 

  6. Leskelä M, Ritala M. Angew Chem Int Edit. 2003;42:5548.

    Article  Google Scholar 

  7. No SY, Eom D, Hwang CS, Kim HJ. J Electrochem Soc. 2006;153:87.

    Article  Google Scholar 

  8. Widjaja Y, Musgrave CB. Appl Phys Lett. 2002;80:3304.

    Article  CAS  Google Scholar 

  9. Ka¨a¨ria¨inen TO, Cameron DC. Plasma Process Polym. 2009;6:S237.

    Article  Google Scholar 

  10. Wilson CA, Grubbs RK, George SM. Chem Mater. 2005;17:5625.

    Article  CAS  Google Scholar 

  11. Niskanen A, Arstila K, Ritala M, Leskelä M. J Electrochem Soc. 2005;152:F90.

    Article  CAS  Google Scholar 

  12. Hausmann D, Ph.D. Thesis, Harvard University (2002).

    Google Scholar 

  13. Kukli K, Pilvi T, Ritala M, Sajavaara T, Lu J, Leskelä M. Thin Solid Films. 2005;491:328.

    Article  CAS  Google Scholar 

  14. Kukli K, Ritala M, Sajavaara T, Keinonen J, Leskelä M. Chem Vap Depos. 2002;8:199–204.

    Article  CAS  Google Scholar 

  15. SAFC Hitech Technical Bulletin “New hafnium oxide ALD precursors”, http://www.safcglobal.com/safc-hitech/en-us/home/overview/technical-library.html

  16. Kim H, McIntyre PC. J Korean Phys Soc. 2006;48:5.

    CAS  Google Scholar 

  17. Seidel T, Dalton J, Karim Z, Lindner J, Daulesberg M, Zhang W, 8th International conference on solid-state and integrated circuit technology (2007) 436.

    Google Scholar 

  18. Leskelä M, Ritala M. Thin Solid Films. 2002;409:138.

    Article  Google Scholar 

  19. Niinisto L, Paivasaari J, Niinisto J, Putkonen M, Nieminen M. Phys Status Solid A. 2004;201:1443.

    Article  Google Scholar 

  20. Martin CR. Science. 1994;266:1961.

    Article  CAS  Google Scholar 

  21. Ott AW, Klaus JW, Johnson JM, George SM, McCarley KC, Way JD. Chem Mater. 1997;9:707.

    Article  CAS  Google Scholar 

  22. Elam JW, Routkevitch D, Mardilovich PP, George SM. Chem Mater. 2003;15:3507.

    Article  CAS  Google Scholar 

  23. Pellin MJ, Stair PC, Xiong G, Elam JW, Birrell J, Curtiss L, George SM, Han CY, Iton L, Kung H, Kung M, Wang H-H. Catal Lett. 2005;102:127.

    Article  CAS  Google Scholar 

  24. Mertinson ABF, Elam JW, Hupp JT, Pellin MJ. Nano Lett. 2007;8:2183.

    Article  Google Scholar 

  25. Comstock DJ, Christensen ST, Elam JW, Pellin MJ, Hemson MC. Adv Funct Mat. 2010;20:3099.

    Article  CAS  Google Scholar 

  26. Xiong G, Elam JW, Feng H, Han CY, Wang H-H, Iton LE, Curtiss LA, Pellin MJ, Kung M, Kung H, Stair PC. J Phys Chem B. 2005;109:14059.

    Article  CAS  Google Scholar 

  27. Banerjee P, Perez I, Henn-Lecordier L, Lee SB, Rubloff GW. Nat Nanotechnol. 2009;4:292.

    Article  CAS  Google Scholar 

  28. Yeo Y-C, King T-J, Hu C. IEEE Trans Electr Dev. 2003;50:1027.

    Article  CAS  Google Scholar 

  29. Moore GE, Electronics (1965) 38/8, April 19.

    Google Scholar 

  30. Taur Y, Ning T. Fundamentals of modern VLSI devices. New York: Cambridge University Press; 1998. ISBN 9780521559591.

    Google Scholar 

  31. Robertson J. J Vac Sci Technol B. 2000;18:1785.

    Article  CAS  Google Scholar 

  32. Intel Corporation, High K metal gate press foils, Nov. 2003.

    Google Scholar 

  33. Wang C-C, Kei C-C, Perng T-P. Electrochem Sol State Lett. 2009;12:K49.

    Article  CAS  Google Scholar 

  34. Elam JW, Nelson CE, Grubbs RK, George SM. Thin Solid Films. 2001;386:41.

    Article  CAS  Google Scholar 

  35. Elam JW, Zinovev A, Han CY, Wang HH, Welp U, Hryn JN, Pellin MJ. Thin Solid Films. 2006;515:1664.

    Article  CAS  Google Scholar 

  36. Aaltonen T, Ritala M, Sajavaara T, Keinonen J, Leskelä M. Chem Mater. 2003;15:1924.

    Article  CAS  Google Scholar 

  37. Aaltonen T, Ritala M, Tung YL, et al. J Mater Res. 2004;19:3353.

    Article  CAS  Google Scholar 

  38. Hiratani M, Nabatame T, Matsui Y, Imagawa K, Kimura S. J Electrochem Soc. 2001;148:C524.

    Article  CAS  Google Scholar 

  39. Zhu Y, Dunn KA, Kaloyeros AE. J Mater Res. 2007;22:1292.

    Article  CAS  Google Scholar 

  40. Jiang XR, Huang H, Prinz FB, Bent SF. Chem Mater. 2008;20:3897.

    Article  CAS  Google Scholar 

  41. Hsueh Y-C, Hu C-T, Wang C-C, Liu C, Perng T-P. ECS T. 2008;16:855.

    Article  CAS  Google Scholar 

  42. Liu C, Wang C-C, Kei C-C, Hsueh Y-C, Perng T-P. Small. 2009;5:1535.

    Article  CAS  Google Scholar 

  43. Christensen ST, Elam JW, Lee B, Feng Z, Bedzyk MJ, Hersam MC. Chem Mater. 2009;21:516.

    Article  CAS  Google Scholar 

  44. Christensen ST, Elam JW, Rabuffetti FA, Ma Q, Weigand SJ, Lee B, Seifert S, Stair PC, Poeppelmeier KR, Hersam MC, Bedzyk MJ. Small. 2009;5:750.

    Article  CAS  Google Scholar 

  45. Feng H, Lu J, Stair PC, Elam JW, Catal Lett, Published online 25 January 2011.

    Google Scholar 

  46. Christensen ST, Feng H, Libera JL, Guo N, Miller JT, Stair PC, Elam JW. Nano Lett. 2010;10:3047.

    Article  CAS  Google Scholar 

  47. Miller JT, Kropf AJ, Zha Y, Regalbuto JR, Delannoy L, Louis C, Bus E, van Bokhoven JA. J Catal. 2006;240:222.

    Article  CAS  Google Scholar 

  48. Setthapun W, Williams WD, Kim SM, Feng H, Elam JW, Rabuffetti FA, Poeppelmeier KR, Stair PC, Stach EA, Ribeiro FH, Miller JT, Marshall CL. J Phys Chem C. 2010;114:9758.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Cadien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Foroughi-Abari, A., Cadien, K. (2012). Atomic Layer Deposition for Nanotechnology. In: Stepanova, M., Dew, S. (eds) Nanofabrication. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0424-8_6

Download citation

Publish with us

Policies and ethics