Skip to main content

Templating and Pattern Transfer Using Anodized Nanoporous Alumina/Titania

  • Chapter
  • First Online:
Nanofabrication
  • 3795 Accesses

Abstract

This chapter provides an overview of the non-lithographic nanofabrication process known as “hard templating”. Nanoporous alumina fabricated by electrochemical anodization continues to be the most widely used hard template although anodically formed nanotubular titania is increasing in importance for templating applications. Hard templates sustain almost no deformation to minor mechanical loads and are unchanged under the action of organic solvents and neutral salt solutions. Their mechanical robustness and relative chemical inertness allows hard templates to be compatible with a variety of chemical, electrochemical and mechanical processes typically used in nanofabrication, several of which are covered in other chapters of this book. Hard templates typically consist of a self-organized array of nanochannels of similar or identical size oriented orthogonally to a substrate. The last 15 years have seen immense progress in the construction of thinner, more versatile hard templates of greater pattern order prepared on ever more diverse substrates. Hard templating has been at the forefront of nanotechnology research as a method to direct the creation of a wide variety of metallic, semiconducting and organic nanostructures. This chapter is organized as follows: The processes used to form hard templates and to improve their pattern order are presented in Sect. 13.2, the use of the template nanochannels to grow ordered functional one-dimensional nanomaterials in Sects. 13.3 and 13.4, and the use of hard templates to affect nanoscale pattern transfer is presented in Sect. 13.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Renshaw TA. J Appl Phys. 1958;29:1623–4.

    Google Scholar 

  2. Cosgrove LA. J Phys Chem. 1956;60:385–8.

    CAS  Google Scholar 

  3. Gong D, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC. J Mater Res. 2001;16:3331–4.

    CAS  Google Scholar 

  4. Mozalev A, Sakairi M, Saeki I, Takahashi H. Electrochim Acta. 2003;48:3155–70.

    CAS  Google Scholar 

  5. Tsuchiya H, Macak JM, Sieber I, Schmuki P. Small. 2005;1:722–5.

    CAS  Google Scholar 

  6. Tsuchiya H, Schmuki P. Electrochem Commun. 2005;7:49–52.

    CAS  Google Scholar 

  7. Allam NK, Feng XJ, Grimes CA. Chem Mater. 2008;20:6477–81.

    CAS  Google Scholar 

  8. Rabin O, Herz PR, Lin YM, Akinwande AI, Cronin SB, Dresselhaus MS. Adv Funct Mater. 2003;13:631–8.

    CAS  Google Scholar 

  9. Mor GK, Varghese OK, Paulose M, Grimes CA. Adv Funct Mater. 2005;15:1291–6.

    CAS  Google Scholar 

  10. Sadek AZ, Zheng HD, Latham K, Wlodarski W, Kalantar-Zadeh K. Langmuir. 2009;25:509–14.

    CAS  Google Scholar 

  11. Varghese OK, Paulose M, Grimes CA. Nat Nanotechnol. 2009;4:592–7.

    CAS  Google Scholar 

  12. Chu SZ, Wada K, Inoue S, Todoroki S. J Electrochem Soc. 2002;149:B321–7.

    CAS  Google Scholar 

  13. Crouse D, Lo YH, Miller AE, Crouse M. Appl Phys Lett. 2000;76:49–51.

    CAS  Google Scholar 

  14. Premchand YD, Djenizian T, Vacandio F, Knauth P. Electrochem Commun. 2006;8:1840–4.

    CAS  Google Scholar 

  15. Yu XF, Li YX, Ge WY, Yang QB, Zhu NF, Kalantar-Zadeh K. Nanotechnology. 2006;17:808–14.

    CAS  Google Scholar 

  16. Chong ASM, Tan LK, Deng J, Gao H. Adv Funct Mater. 2007;17:1629–35.

    CAS  Google Scholar 

  17. Yin AJ, Guico RS, Xu J. Nanotechnology. 2007;18:035304.

    Google Scholar 

  18. Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng XJ, Paulose M, Seabold JA, Choi KS, Grimes CA. J Phys Chem C. 2009;113:6327–59.

    CAS  Google Scholar 

  19. Foong TRB, Sellinger A, Hu X. ACS Nano. 2008;2:2250–6.

    CAS  Google Scholar 

  20. Patermarakis G. J Electroanal Chem. 2009;635:39–50.

    CAS  Google Scholar 

  21. Houser JE, Hebert KR. Nat Mater. 2009;8:415–20.

    CAS  Google Scholar 

  22. Parkhutik VP, Shershulsky VI. J Phys D. 1992;25:1258–63.

    CAS  Google Scholar 

  23. Thompson GE, Furneaux RC, Wood GC, Richardson JA, Goode JS. Nature. 1978;272:433–5.

    CAS  Google Scholar 

  24. Osulliva J, Wood GC. Proc R Soc Lond Ser A Math Phys Sci. 1970;317:511.

    Google Scholar 

  25. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA. Sol Energy Mater Sol C. 2006;90:2011–75.

    CAS  Google Scholar 

  26. Hwang SK, Jeong SH, Hwang HY, Lee OJ, Lee KH. Korean J Chem Eng. 2002;19:467–73.

    CAS  Google Scholar 

  27. Sui YC, Cui BZ, Martinez L, Perez R, Sellmyer DJ. Thin Solid Films. 2002;406:64–9.

    CAS  Google Scholar 

  28. Sulka GD, Stroobants S, Moshchalkov V, Borghs G, Celis JP. J Electrochem Soc. 2002;149:D97–103.

    CAS  Google Scholar 

  29. Lee W, Ji R, Gosele U, Nielsch K. Nat Mater. 2006;5:741–7.

    CAS  Google Scholar 

  30. Masuda H. In: Wehrspohn RB, editor. Ordered porous nanostructures and applications. New York: Springer; 2005. p. 37–56.

    Google Scholar 

  31. Kustandi TS, Loh WW, Gao H, Low HY. ACS Nano. 2010;4:2561–8.

    CAS  Google Scholar 

  32. Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T. Appl Phys Lett. 1997;71:2770–2.

    CAS  Google Scholar 

  33. Matsui Y, Nishio K, Masuda H. Small. 2006;2:522–5.

    CAS  Google Scholar 

  34. Liu CY, Datta A, Wang YL. Appl Phys Lett. 2001;78:120–2.

    CAS  Google Scholar 

  35. Lee W, Ji R, Ross CA, Gosele U, Nielsch K. Small. 2006;2:978–82.

    CAS  Google Scholar 

  36. Sun ZJ, Kim HK. Appl Phys Lett. 2002;81:3458–60.

    CAS  Google Scholar 

  37. Fournier-Bidoz S, Kitaev V, Routkevitch D, Manners I, Ozin GA. Adv Mater. 2004;16:2193.

    CAS  Google Scholar 

  38. Kim BY, Park SJ, McCarthy TJ, Russell TP. Small. 2007;3(11):1869–72.

    CAS  Google Scholar 

  39. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA. Nano Lett. 2005;5:191–5.

    CAS  Google Scholar 

  40. Prakasam HE, Shankar K, Paulose M, Varghese OK, Grimes CA. J Phys Chem C. 2007;111:7235–41.

    CAS  Google Scholar 

  41. Shankar K, Mor GK, Fitzgerald A, Grimes CA. J Phys Chem C. 2007;111:21–6.

    CAS  Google Scholar 

  42. Mohammadpour A, Shankar K. J Mater Chem. 2010;20:8474–7.

    CAS  Google Scholar 

  43. Macak JM, Albu SP, Schmuki P. Phys Status Solidi-Rapid Res Lett. 2007;1:181–3.

    CAS  Google Scholar 

  44. Mor GK, Shankar K, Varghese OK, Grimes CA. J Mater Res. 2004;19:2989–96.

    CAS  Google Scholar 

  45. Cai QY, Paulose M, Varghese OK, Grimes CA. J Mater Res. 2005;20:230–6.

    CAS  Google Scholar 

  46. Varghese CK, Paulose M, Shankar K, Mor GK, Grimes CA. J Nanosci Nanotechnol. 2005;5:1158–65.

    CAS  Google Scholar 

  47. Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TA, Fitzgerald A, Grimes CA. J Phys Chem B. 2006;110:16179–84.

    CAS  Google Scholar 

  48. Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Angew Chem-Int Edit. 2005;44:7463–5.

    CAS  Google Scholar 

  49. Macak JM, Hildebrand H, Marten-Jahns U, Schmuki P. J Electroanal Chem. 2008;621:254–66.

    CAS  Google Scholar 

  50. Grimes CA, Mor GK. TiO2 Nanotube Arrays. New York: Springer; 2009. ISBN 9781441900678.

    Google Scholar 

  51. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA. Nano Lett. 2006;6:215–8.

    CAS  Google Scholar 

  52. Zhang JP, Kielbasa JE, Carroll DL. J Mater Res. 2009;24:1735–40.

    CAS  Google Scholar 

  53. Liang JY, Chik H, Yin AJ, Xu J. J Appl Phys. 2002;91:2544–6.

    CAS  Google Scholar 

  54. Cho SG, Yoo B, Kim KH, Kim J. IEEE Trans Magn. 2010;46:420–3.

    Google Scholar 

  55. Guo YG, Wan LJ, Zhu CF, Yang DL, Chen DM, Bai CL. Chem Mater. 2003;15:664–7.

    CAS  Google Scholar 

  56. Zeng H, Skomski R, Menon L, Liu Y, Bandyopadhyay S, Sellmyer DJ. Phys Rev B. 2002;65:134426.

    Google Scholar 

  57. Prida VM, Hernandez-Velez M, Pirota KR, Menendez A, Vazquez M. Nanotechnology. 2005;16:2696–702.

    CAS  Google Scholar 

  58. Shukla S, Kim KT, Baev A, Yoon YK, Litchinitser NM, Prasad PN. ACS Nano. 2010;4:2249–55.

    CAS  Google Scholar 

  59. Schmucker AL, Harris N, Banholzer MJ, Blaber MG, Osberg KD, Schatz GC, Mirkin CA. ACS Nano. 2010;4:5453–63.

    CAS  Google Scholar 

  60. Zong RL, Zhou J, Li Q, Du B, Li B, Fu M, Qi XW, Li LT, Buddhudu S. J Phys Chem B. 2004;108:16713–6.

    CAS  Google Scholar 

  61. Zhao C, Tang SL, Du YW. Chem Phys Lett. 2010;491:183–6.

    CAS  Google Scholar 

  62. Zong RL, Zhou J, Li B, Fu M, Shi SK, Li LT. J Chem Phys. 2005;123:094710.

    Google Scholar 

  63. McPhillips J, Murphy A, Jonsson MP, Hendren WR, Atkinson R, Hook F, Zayats AV, Pollard RJ. ACS Nano. 2010;4:2210–6.

    CAS  Google Scholar 

  64. Dickson W, Wurtz GA, Evans P, O’Connor D, Atkinson R, Pollard R, Zayats AV. Phys Rev B. 2007;76:115411.

    Google Scholar 

  65. Zong RL, Zhou J, Li Q, Li LT, Wang WT, Chen ZH. Chem Phys Lett. 2004;398:224–7.

    CAS  Google Scholar 

  66. Habouti S, Solterbeck CH, Es-Souni M. J Mater Chem. 2010;20:5215–9.

    CAS  Google Scholar 

  67. Hendren WR, Murphy A, Evans P, O’Connor D, Wurtz GA, Zayats AV, Atkinson R, Pollard RJ. J Phys Condens Matter. 2008;20:362203.

    Google Scholar 

  68. Foss CA, Hornyak GL, Stockert JA, Martin CR. J Phys Chem. 1992;96:7497–9.

    CAS  Google Scholar 

  69. Foss CA, Hornyak GL, Stockert JA, Martin CR. J Phys Chem. 1994;98:2963–71.

    CAS  Google Scholar 

  70. Hornyak GL, Patrissi CJ, Martin CR. J Phys Chem B. 1997;101:1548–55.

    CAS  Google Scholar 

  71. Cepak VM, Martin CR. J Phys Chem B. 1998;102:9985–90.

    CAS  Google Scholar 

  72. Wirtz M, Martin CR. Adv Mater. 2003;15:455–8.

    CAS  Google Scholar 

  73. Losic D, Shapter JG, Mitchell JG, Voelcker NH. Nanotechnology. 2005;16:2275–81.

    CAS  Google Scholar 

  74. Zhao WB, Zhu JJ, Chen HY. J Cryst Growth. 2003;258:176–80.

    CAS  Google Scholar 

  75. Li XM, Wang DS, Tang LB, Dong K, Wu YJ, Yang PZ, Zhang PX. Appl Surf Sci. 2009;255:7529–31.

    CAS  Google Scholar 

  76. Kang Y, Kim D. Sol Energy Mater Sol C. 2006;90:166–74.

    CAS  Google Scholar 

  77. Martinson ABF, Elam JW, Hupp JT, Pellin MJ. Nano Lett. 2007;7:2183–7.

    CAS  Google Scholar 

  78. Liu CH, Zapien JA, Yao Y, Meng XM, Lee CS, Fan SS, Lifshitz Y, Lee ST. Adv Mater. 2003;15:838.

    CAS  Google Scholar 

  79. Ding JX, Zapien JA, Chen WW, Lifshitz Y, Lee ST, Meng XM. Appl Phys Lett. 2004;85:2361–3.

    CAS  Google Scholar 

  80. Routkevitch D, Tager AA, Haruyama J, Almawlawi D, Moskovits M, Xu JM. IEEE Trans Electr Dev. 1996;43:1646–58.

    CAS  Google Scholar 

  81. Heremans JP, Thrush CM, Morelli DT, Phys MCWu. Rev Lett. 2002;88:216801.

    Google Scholar 

  82. Routkevitch D, Bigioni T, Moskovits M, Xu JM. J Phys Chem. 1996;100:14037–47.

    CAS  Google Scholar 

  83. Shen XP, Yuan AH, Wang F, Hong JM, Xu Z. Solid State Commun. 2005;133:19–22.

    CAS  Google Scholar 

  84. Ergen O, Ruebusch DJ, Fang H, Rathore AA, Kapadia R, Fan ZF, Takei K, Jamshidi A, Wu M, Javey A. J ACS. 2010;132:13972–4.

    CAS  Google Scholar 

  85. Mu C, He JH. J Nanosci Nanotechnol. 2010;10:8191–8.

    CAS  Google Scholar 

  86. Xu DS, Shi XS, Guo GL, Gui LL, Tang YQ. J Phys Chem B. 2000;104:5061–3.

    CAS  Google Scholar 

  87. Zhao AW, Meng GW, Zhang LD, Gao T, Sun SH, Pang YT. Appl Phys A Mater Sci Process. 2003;76:537–9.

    CAS  Google Scholar 

  88. Li Y, Meng GW, Zhang LD, Phillipp F. Appl Phys Lett. 2000;76:2011–3.

    CAS  Google Scholar 

  89. Zheng MJ, Zhang LD, Li GH, Shen WZ. Chem Phys Lett. 2002;363:123–8.

    CAS  Google Scholar 

  90. Shen XP, Han M, Hong JM, Xue ZL, Xu Z. Chem Vapor Depos. 2005;11:250–3.

    CAS  Google Scholar 

  91. Xu XJ, Fei GT, Yu WH, Wang XW, Chen L, Zhang LD. Nanotechnology. 2006;17:426–9.

    CAS  Google Scholar 

  92. Zhai TY, Gu ZJ, Ma Y, Yang WS, Zhao LY, Yao JN. Mater Chem Phys. 2006;100:281–4.

    CAS  Google Scholar 

  93. Farhangfar S, Yang RB, Pelletier M, Nielsch K. Nanotechnology. 2009;20:325602.

    Google Scholar 

  94. Li L, Yang YW, Huang XH, Li GH, Zhang LD. J Phys Chem B. 2005;109:12394–8.

    CAS  Google Scholar 

  95. Wu C, Shi JB, Chen CJ, Lin JY. Mater Lett. 2006;60:3618–21.

    CAS  Google Scholar 

  96. Peng XS, Meng GW, Zhang J, Wang XF, Wang CZ, Liu X, Zhang LD. J Mater Res. 2002;17:1283–6.

    CAS  Google Scholar 

  97. Sander MS, Gronsky R, Sands T, Stacy AM. Chem Mater. 2003;15:335–9.

    CAS  Google Scholar 

  98. Jin CG, Xiang XQ, Jia C, Liu WF, Cai WL, Yao LZ, Li XG. J Phys Chem B. 2004;108:1844–7.

    CAS  Google Scholar 

  99. Menke EJ, Li Q, Penner RM. Nano Lett. 2004;4:2009–14.

    CAS  Google Scholar 

  100. Zhang J, Zhang LD, Wang XF, Liang CH, Peng XS, Wang YW. J Chem Phys. 2001;115:5714–7.

    CAS  Google Scholar 

  101. Deb P, Kim H, Rawat V, Oliver M, Kim S, Marshall M, Stach E, Sands T. Nano Lett. 2005;5:1847–51.

    CAS  Google Scholar 

  102. Chen SG, Paulose M, Ruan C, Mor GK, Varghese OK, Kouzoudis D, Grimes CA. J Photochem Photobiol A Chem. 2006;177:177–84.

    CAS  Google Scholar 

  103. Seabold JA, Shankar K, Wilke RHT, Paulose M, Varghese OK, Grimes CA, Choi KS. Chem Mater. 2008;20:5266–73.

    CAS  Google Scholar 

  104. Hornyak GL, Dillon AC, Parilla PA, Schneider JJ, Czap N, Jones KM, Fasoon FS, Mason A, Heben MJ. Nanostruct Mater. 1999;12:83–8.

    Google Scholar 

  105. Iwasaki T, Motoi T, Den T. Appl Phys Lett. 1999;75:2044–6.

    CAS  Google Scholar 

  106. Jeong SH, Hwang HY, Lee KH, Jeong Y. Appl Phys Lett. 2001;78:2052–4.

    CAS  Google Scholar 

  107. Lee JS, Gu GH, Kim H, Jeong KS, Bae J, Suh JS. Chem Mater. 2001;13:2387–91.

    CAS  Google Scholar 

  108. Choi WB, Cheong BH, Kim JJ, Chu J, Bae E. Adv Funct Mater. 2003;13:80–4.

    CAS  Google Scholar 

  109. Gao H, Mu C, Wang F, Xu DS, Wu K, Xie YC, Liu S, Wang EG, Xu J, Yu DP. J Appl Phys. 2003;93:5602–5.

    CAS  Google Scholar 

  110. Jeong SH, Lee KH. Synth Met. 2003;139:385–90.

    CAS  Google Scholar 

  111. Hwang SK, Lee J, Jeong SH, Lee PS, Lee KH. Nanotechnology. 2005;16:850–8.

    CAS  Google Scholar 

  112. Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM. Nano Lett. 2009;9:1002–6.

    CAS  Google Scholar 

  113. Takami S, Shirai Y, Chikyow T, Wakayama Y. Thin Solid Films. 2009;518:692–4.

    CAS  Google Scholar 

  114. Chintakula G, Rajaputra S, Singh VP. Sol Energy Mater Sol C. 2010;94:34–9.

    CAS  Google Scholar 

  115. Haberkorn N, Gutmann JS, Theato P. ACS Nano. 2009;3:1415–22.

    CAS  Google Scholar 

  116. Al-Kaysi RO, Muller AM, Frisbee RJ, Bardeen CJ. Cryst Growth Des. 2009;9:1780–5.

    CAS  Google Scholar 

  117. Guo YG, Li CJ, Wan LJ, Chen DM, Wang CR, Bai CL, Wang YG. Adv Funct Mater. 2003;13:626–30.

    CAS  Google Scholar 

  118. Park DH, Kim BH, Jang MG, Bae KY, Joo J. Appl Phys Lett. 2005;86:113116.

    Google Scholar 

  119. Park DH, Kim BH, Jang MK, Bae KY, Lee SJ, Joo J. Synth Met. 2005;153:341–4.

    CAS  Google Scholar 

  120. Park DH, Lee YB, Kim BH, Hong YK, Lee SJ, Lee SH, Kim HS, Joo J. J Korean Phys Soc. 2006;48:1468–71.

    CAS  Google Scholar 

  121. Kim HS, Park DH, Lee YB, Kim DC, Kim HJ, Kim J, Joo J. Synth Met. 2007;157:910–3.

    CAS  Google Scholar 

  122. Wang HS, Lin LH, Chen SY, Wang YL, Wei KH. Nanotechnology. 2009;20:075201.

    Google Scholar 

  123. Haberkorn N, Weber SAL, Berger R, Theato P. ACS Appl Mater Interfaces. 2010;2:1573–80.

    CAS  Google Scholar 

  124. Masuda H, Abe A, Nakao M, Yokoo A, Tamamura T, Nishio K. Adv Mater. 2003;15:161.

    CAS  Google Scholar 

  125. Matsumoto F, Harada M, Nishio K, Masuda H. Adv Mater. 2005;17:1609.

    CAS  Google Scholar 

  126. Harada M, Kondo T, Yanagishita T, Nishio K, Masuda H. Appl Phys Express. 2010;3:015001.

    Google Scholar 

  127. Razpet A, Possnert G, Johansson A, Abid M, Hallen A. Radiation effects and ion-beam processing of materials. In: Wang LM, Fromknecht R, Snead LL, Downey DF, Takahashi H, editors. Materials research society symposium proceedings, 2004, vol 792, p. 575–580.

    Google Scholar 

  128. Zacharatos F, Gianneta V, Nassiopoulou AG. Nanotechnology. 2008;19:495306.

    Google Scholar 

  129. Menon L, Ram KB, Patibandla S, Aurongzeb D, Holtz M, Yun J, Kuryatkov V, Zhu K. J Electrochem Soc. 2004;151:C492–4.

    CAS  Google Scholar 

  130. Jung M, Lee S, Byun YT, Jhon YM, Kim SH, Mho SI, Woo DH. Advances in nanomaterials and processing, Pts 1 and 2.In: Ahn BT, Jeon H, Hur BY, Kim K, Park JW, editors. Solid state phenomena, 2007, vol 124–126, p. 1301–1304.

    Google Scholar 

  131. Nakao M, Oku S, Tamamura T, Yasui K, Masuda H. Jpn J Appl Phys Part 1. 1999;38:1052–5.

    CAS  Google Scholar 

  132. Sai H, Fujii H, Arafune K, Ohshita Y, Yamaguchi M, Kanamori Y, Yugami H. Appl Phys Lett. 2006;88:201116–201113.

    Google Scholar 

  133. Lei Y, Chim WK, Sun HP, Wilde G. Appl Phys Lett. 2005;86:103106.

    Google Scholar 

  134. Liang JY, Luo HL, Beresford R, Xu J. Appl Phys Lett. 2004;85:5974–6.

    CAS  Google Scholar 

  135. Nakayama K, Tanabe K, Atwater HA. Appl Phys Lett. 2008;93:121904.

    Google Scholar 

  136. Matsuura N, Simpson TW, Mitchell IV, Mei XY, Morales P, Ruda HE. Phys Lett. 2002;81:4826–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Shankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Shankar, K. (2012). Templating and Pattern Transfer Using Anodized Nanoporous Alumina/Titania. In: Stepanova, M., Dew, S. (eds) Nanofabrication. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0424-8_13

Download citation

Publish with us

Policies and ethics