Advertisement

Laser Nanopatterning

  • Robert FedosejevsEmail author
  • Ying Tsui
  • Zhijiang Chen
  • Shyama Banerjee
Chapter

Abstract

Over the past decade, a variety of techniques have been developed to allow flexible writing of nanopatterns and structures using visible, infrared and ultraviolet laser radiation on a size scale well below the wavelength of light employed. These include the use of subwavelength near field optical elements, nonlinear interactions such as two photon absorption, nonlinear response of the medium via contrast enhancement agents and coupling to plasmon modes which have shorter wavelengths than the incident radiation. These can be used for writing of surface features, internal features or complete 3D structures via photopolymerization. Also, nanoablation can be employed both for precision nanomilling of surfaces and direct production of nanoparticles. Laser induced forward transfer of micro- and nano-dots of material is under development for the direct deposition of materials onto surfaces with feature sizes down to 100 nm. Finally, a whole new generation of VUV, XUV and x-ray lasers is emerging, promising even smaller feature sizes in the near future.

Keywords

Donor Substrate Free Electron Laser Ablation Threshold Acceptor Substrate Microlens Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gaudiosi DM, Reagan B, Popmintchev T, et al. Phys Rev Lett. 2006;96:203001.CrossRefGoogle Scholar
  2. 2.
    Reagan BA, Popmintchev T, Grisham ME, et al. Phys Rev A. 2007;76:013816.CrossRefGoogle Scholar
  3. 3.
    Popmintchev T, Chen MC, Arpin P, et al. Nat Photonics. 2010;4:822–32.CrossRefGoogle Scholar
  4. 4.
    Chen MC, Arpin P, Popmintchev T, et al. Phys Rev Lett. 2010;105:173901-1-4.Google Scholar
  5. 5.
    Pertot Y, Elouga Bom LB, Bhardwaj VR, et al. Appl Phys Lett. 2011;98:101104-1-3.CrossRefGoogle Scholar
  6. 6.
    Benware BR, Moreno CH, Burd CJ, et al. Opt Lett. 1997;22:796–8.CrossRefGoogle Scholar
  7. 7.
    Macchietto CD, Benware BR, Rocca JJ. Opt Lett. 1999;24(16):1115–7.CrossRefGoogle Scholar
  8. 8.
    Martz DH, Alessi D, Luther BM, et al. Opt Lett. 2010;35:1632–4.CrossRefGoogle Scholar
  9. 9.
    Ayvazyan V, Baboi N, Bohnet I, et al. Phys Rev Lett. 2002;88:104802.CrossRefGoogle Scholar
  10. 10.
    Ayvazyan V, Baboi N, Bahr J, et al. Eur Phys J D. 2006;37:297–303.CrossRefGoogle Scholar
  11. 11.
    Emma P, Akre R, Arthur J, et al. Nat Photonics. 2010;4:641–7.CrossRefGoogle Scholar
  12. 12.
    Born M, Wolf E. Principles of optics. Oxford: Pergamon Press; 1975.Google Scholar
  13. 13.
    Iversen L, Metzler OY, Martinez KL, et al. Langmuir. 2009;25:12819–24.CrossRefGoogle Scholar
  14. 14.
    Kawata S, Sun HB, Tanaka T, et al. Nature. 2001;412:697–8.CrossRefGoogle Scholar
  15. 15.
    Takada K, Sun HB, Kawata S. Appl Phys Lett. 2005;86:071122.CrossRefGoogle Scholar
  16. 16.
    Luo H, Li Y, Cui HB, et al. Appl Phys A. 2009;97:709–12.CrossRefGoogle Scholar
  17. 17.
    Liu X, Du D, Mourou G. IEEE J Quantum Elec. 1997;33:1706–16.CrossRefGoogle Scholar
  18. 18.
    Bonse J, Brzezinka KW, Meixner AJ. Appl Surf Sci. 2004;221:215–30.CrossRefGoogle Scholar
  19. 19.
    Dassow R, Kohler JR, Helen Y, et al. Semicond Sci Technol. 2000;15:L31–4.CrossRefGoogle Scholar
  20. 20.
    Le Harzig R, Huot N, Audouard E, et al. Appl Phys Lett. 2002;80:3886–8.CrossRefGoogle Scholar
  21. 21.
    Beresna M, Gertus T, Tomasiunas R et al. Laser Chem. 2008 doi:  10.1155/2008/976205.
  22. 22.
    Singh R, Alberts MJ, Melkote SN. Int J Mach Tool Manu. 2008;48:994–1004.CrossRefGoogle Scholar
  23. 23.
    Tan B, Dalili A, Venkatakrishnan K. Appl Phys A. 2009;95:537–45.CrossRefGoogle Scholar
  24. 24.
    Bonse J, Krüger J. J Appl Phys. 2010;107:054902.CrossRefGoogle Scholar
  25. 25.
    Mainfray G, Manus C. Rep Prog Phys. 1991;54:1333–72.CrossRefGoogle Scholar
  26. 26.
    Schaffer CB, Brodeur A, Mazur E. Meas Sci Technol. 2001;12:1784–94.CrossRefGoogle Scholar
  27. 27.
    Stuart BC, Feit MD, Herman S, et al. Phys Rev B. 1996;53:1749–61.CrossRefGoogle Scholar
  28. 28.
    von der Linde D, Schuler HJ. Opt Soc Am B. 1996;13:216–22.CrossRefGoogle Scholar
  29. 29.
    Ganeev RA, Bom LBE, Kieffer JC, et al. Phys Rev A. 2007;76:023831.CrossRefGoogle Scholar
  30. 30.
    Shiner AD, Trallero-Herrero C, Kajumba N, et al. Phys Rev B. 2009;103:073902.CrossRefGoogle Scholar
  31. 31.
    McFarland BK, Farrell JP, Bucksbaum PH, et al. Phys Rev A. 2009;80:033412.CrossRefGoogle Scholar
  32. 32.
    Hergott JF, Kovacev M, Merdji H, et al. Phys Rev A. 2002;66:021801.CrossRefGoogle Scholar
  33. 33.
    Nolte S, Chichkov BN, Welling H, et al. Opt Lett. 1999;24:914–6.CrossRefGoogle Scholar
  34. 34.
    Taylor RS, Hnatovsky C, Simova E, et al. Opt Lett. 2003;28:1043–5.CrossRefGoogle Scholar
  35. 35.
    Zorba V, Mao X, Russo RE. Appl Phys Lett. 2009;95:041110.CrossRefGoogle Scholar
  36. 36.
    Zorba V, Mao X, Russo RE. Anal Bioanal Chem. 2010;396:173–80.CrossRefGoogle Scholar
  37. 37.
    Joglekar AP, Liu H, Spooner GJ, et al. Appl Phys B. 2003;77:25–30.CrossRefGoogle Scholar
  38. 38.
    Pan H, Hwang DJ, Ko SH, et al. Small. 2010;6:1812–21.CrossRefGoogle Scholar
  39. 39.
    McLeod E, Arnold CB. Nat Nanotechnol. 2008;3:413–7.CrossRefGoogle Scholar
  40. 40.
    Li L, Guo W, Wang ZB, et al. J Micromech Microeng. 2009;19:054002.CrossRefGoogle Scholar
  41. 41.
    Brodoceanu D, Landstrom L, Bauerle DB. Appl Phys A. 2007;86:313–4.CrossRefGoogle Scholar
  42. 42.
    Tan LS, Hong M. Int J Optomechatronics. 2008;2:382–289.CrossRefGoogle Scholar
  43. 43.
    Chimmalgi A, Grigoropoulos CP, Komvopoulos K. J Appl Phys. 2005;97:104319.CrossRefGoogle Scholar
  44. 44.
    Milner AA, Zhang K, Prior Y. Nano Lett. 2008;8:2017–22.CrossRefGoogle Scholar
  45. 45.
    Yu M, Kim HS, Blick RH. Opt Express. 2009;17:10044–9.CrossRefGoogle Scholar
  46. 46.
    Herman PR, Chen KP, Wei M, et al. Proc SPIE. 2001;4274:149–57.CrossRefGoogle Scholar
  47. 47.
    Ihlemann J, Uller SM, Puschmann S, et al. Appl Phys A. 2003;76:751–3.CrossRefGoogle Scholar
  48. 48.
    Bloomstein TM, Marchant MF, Deneault S, et al. Opt Express. 2006;14(14):6434–43.CrossRefGoogle Scholar
  49. 49.
    Choi WK, Liew TH, Dawood MK. Nano Lett. 2008;8:3799–802.CrossRefGoogle Scholar
  50. 50.
    Choi WK, Liew TH, Chew HG, et al. Small. 2008;4:330–3.CrossRefGoogle Scholar
  51. 51.
    de Boor J, Geyer N, Wittemann JV, et al. Nanotechnology. 2010;21:095302.CrossRefGoogle Scholar
  52. 52.
    Li X, Feng D, Jia T, et al. Micro Nano Lett. 2011;6:177–80.CrossRefGoogle Scholar
  53. 53.
    Zhu M, Zhou L, Li B et al. Nanoscale (2011) doi:  10.1039/C1NR00015B.
  54. 54.
    Borowiec A, Haugen HK. Appl Phys Lett. 2003;82:4462–4.CrossRefGoogle Scholar
  55. 55.
    Bonse J, Munz M, Sturm H. J Appl Phys. 2005;97:013538-1-9.CrossRefGoogle Scholar
  56. 56.
    Wang XC, Lim GC, Ng FL, et al. Appl Surf Sci. 2005;252:1492–7.CrossRefGoogle Scholar
  57. 57.
    Vorobyev AY, Guo C. Opt Express. 2006;14:2164–9.CrossRefGoogle Scholar
  58. 58.
    Golosov EV, Ionin AA, Kolobov YR, et al. Phys Rev B. 2011;83:115426.CrossRefGoogle Scholar
  59. 59.
    Sun Q, Liang F, Vallée R, et al. Opt Lett. 2008;33:2713–5.CrossRefGoogle Scholar
  60. 60.
    Capeluto MG, Vaschenko G, Grisham M, et al. IEEE Trans Nanotechnol. 2006;5:3–7.CrossRefGoogle Scholar
  61. 61.
    Capeluto MG, Wachulak P, Marconi MC, et al. Microelectron Eng. 2007;84:721–4.CrossRefGoogle Scholar
  62. 62.
    Wachulak PW, Capeluto MG, Menoni CS, et al. Opto-Electron Rev. 2008;16:444–50.CrossRefGoogle Scholar
  63. 63.
    Vaschenko G, Garcia EA, Menoni CS, et al. Opt Lett. 2006;31:3615–7.CrossRefGoogle Scholar
  64. 64.
    Dromey B, Kar S, Bellei C, et al. Phys Rev Lett. 2007;99:085001.CrossRefGoogle Scholar
  65. 65.
    Andreasson J, Iwan B, Andrejczuk A, et al. Phys Rev E. 2011;83:016403.CrossRefGoogle Scholar
  66. 66.
    Sun HB, Kawata S. Adv Polym Sci. 2004;170:169–273.Google Scholar
  67. 67.
    Tan D, Li Y, Qi F, et al. Appl Phys Lett. 2007;90:071106 -1-3.Google Scholar
  68. 68.
    Ovsianikov A, Ostendorf A, Chichkov BN. Appl Surf Sci. 2007;253:6599–602.CrossRefGoogle Scholar
  69. 69.
    Juodkazis S, Mizeikis V, Seet KK, et al. Nanotechnology. 2005;16:846–9.CrossRefGoogle Scholar
  70. 70.
    Lee KS, Kim RH, Yang DY, et al. Prog Polym Sci. 2008;33:631–81.CrossRefGoogle Scholar
  71. 71.
    Zhang YL, Chen QD, Xia H, et al. Nano Today. 2010;5:435–48.CrossRefGoogle Scholar
  72. 72.
    Chanda D, Zachari N, Haque M, et al. Opt Lett. 2009;34:3920–2.CrossRefGoogle Scholar
  73. 73.
    Hnatovsky C, Taylor RS, Simova E, et al. Appl Phys A. 2006;84:47–61.CrossRefGoogle Scholar
  74. 74.
    Bhardwaj VR, Simova E, Rajeev PP, et al. Phys Rev Lett. 2006;96:057404-1-4.CrossRefGoogle Scholar
  75. 75.
    Jee Y, Beckera MF, Walser RM. J Opt Soc Am B. 1988;5:648–59.CrossRefGoogle Scholar
  76. 76.
    Kirkwood SE, van Popta AC, Tsui YY et al. Appl Phys A 2004. doi:  10.1007/s00339-004-3135-7.
  77. 77.
    Kirkwood SE, Taschuk MT, Tsui YY, et al. J Phys Conf Ser. 2007;59:591–4.CrossRefGoogle Scholar
  78. 78.
    Bachman D, Chen Z, Prabhu A et al. Integrated photonics research, silicon and nano photonics (IPR) topical meeting (2011), June 12–16, 2011, Toronto.Google Scholar
  79. 79.
    Kirkwood SE, Shadnam MR, Amirfazli A, et al. J Phys Conf Ser. 2007;59:428–31.CrossRefGoogle Scholar
  80. 80.
    Hartmann N, Franzka S, Koch J, et al. Appl Phys Lett. 2008;92:223111.CrossRefGoogle Scholar
  81. 81.
    Klingebiel B, Scheres L, Franzka S, et al. Langmuir. 2010;26(9):6826–31.CrossRefGoogle Scholar
  82. 82.
    Compagnini G, Scalisi AA, Puglisi O. Phys Chem Chem Phys. 2002;4:2787–91.CrossRefGoogle Scholar
  83. 83.
    Kabashin AV, Meunier M. J Appl Phys. 2003;94(12):7941–3.CrossRefGoogle Scholar
  84. 84.
    Muto H, Miyajima K, Mafuné F. J Phys Chem C. 2008;112:5810–5.CrossRefGoogle Scholar
  85. 85.
    Khang Y, Lee J. J Nanopart Res. 2010;12:1349–54.CrossRefGoogle Scholar
  86. 86.
    Semaltianos NG, Logothetidis S, Perrie W, et al. J Nanopart Res. 2010;12:573–80.CrossRefGoogle Scholar
  87. 87.
    Abid JP, Girault HH, Brevet PF. Chem Commun. 2001:829–30.Google Scholar
  88. 88.
    Amendola V, Meneghetti M. Phys Chem Chem Phys. 2009;11:3805–21.CrossRefGoogle Scholar
  89. 89.
    Besner S, Kabashin AV, Winnik FM, et al. Appl Phys A. 2008;93:955–9.CrossRefGoogle Scholar
  90. 90.
    Bohandy J, Kim BF, Adrian J, et al. J Appl Phys. 1986;60:1538–9.CrossRefGoogle Scholar
  91. 91.
    Kuznetsov AI, Koch J, Chichkov BN, et al. Opt Express. 2009;17:18820–5.CrossRefGoogle Scholar
  92. 92.
    Toth Z, Szörényia T, Tóthb AL. App Surf Sci. 1993;69:317–20.CrossRefGoogle Scholar
  93. 93.
    Nakate Y, Okada T, Maeda M. Jpn J Appl Phys. 2002;41:L839–41.CrossRefGoogle Scholar
  94. 94.
    Fitz-Gerald JM, Pique A, Chrisey DB, et al. Appl Phys Lett. 2000;76:1386–8.CrossRefGoogle Scholar
  95. 95.
    Boutopoules C, Tsouti V, Goustouridis D, et al. Appl Phys Lett. 2008;93:191109.CrossRefGoogle Scholar
  96. 96.
    Rapp L, Cibert C, Alloncle PA, et al. Appl Surf Sci. 2009;255:5439–43.CrossRefGoogle Scholar
  97. 97.
    Fernández-Pradas JM, Colina M, Serra P, et al. Thin Solid Films. 2004;27:453–4.Google Scholar
  98. 98.
    Serra P, Fernández-Pradas JM, Berthet FX, et al. Appl Phys A. 2004;79:949–52.Google Scholar
  99. 99.
    Duocastella M, Fernández-Pradas JM, Serra P, et al. J Laser Micro/Nanoeng. 2008;3:1–4.CrossRefGoogle Scholar
  100. 100.
    Dinca V, Kasotakis E, Catherine J, et al. Appl Surf Sci. 2007;254:1160–3.CrossRefGoogle Scholar
  101. 101.
    Barron JA, Young HD, Dlott DD, et al. Proteomics. 2005;5:4138–44.CrossRefGoogle Scholar
  102. 102.
    Barron JA, Rosen R, Jones-Meehan J, et al. Biosens Bioelectron. 2004;20:246–52.CrossRefGoogle Scholar
  103. 103.
    Doraiswamy A, Narayan RJ, Lippert T, et al. Appl Sufi Sci. 2006;252:4743–7.CrossRefGoogle Scholar
  104. 104.
    Kattamis NT, Purnic PE, Weiss R, et al. Appl Phys Lett. 2007;91:171120.CrossRefGoogle Scholar
  105. 105.
    Fardel R, Nagel M, Nuesch F, et al. Appl Phys Lett. 2007;91:061103.CrossRefGoogle Scholar
  106. 106.
    Up J, Liu J, Cui D, et al. Nanotechnology. 2007;18:025403.CrossRefGoogle Scholar
  107. 107.
    Chrisey DB, Piqué A, Fitz-Gerald JM, et al. Appl Surf Sci. 2000;154–155:593–600.CrossRefGoogle Scholar
  108. 108.
    Chrisey DB, Piqué A, Mode R, et al. Appl Surf Sci. 2000;168:345–52.CrossRefGoogle Scholar
  109. 109.
    Piqué A, Chrisey DB, Fitz-Gerald JM, et al. J Mater Res. 2000;15:1872–5.CrossRefGoogle Scholar
  110. 110.
    Piqué A, Arnold CB, Warden RC, et al. RIKEN Rev. 2003;50:57–62.Google Scholar
  111. 111.
    Piqué A, Eyeing RCY, Kim H, et al. J Laser Micro/Nanoeng. 2008;3:163–9.CrossRefGoogle Scholar
  112. 112.
    Piqué A, Eyeing RC, Markus KM, et al. Proc SPIE. 2008;6879:687911.CrossRefGoogle Scholar
  113. 113.
    Kononenko TV, Alloncle P,Konov VI, et al. Appl Phys A. 2009;94:531–6.CrossRefGoogle Scholar
  114. 114.
    Chang-Jian SK, Ho JR, Cheng JWJ, et al. Nanotechnology. 2006;17:1184–7.CrossRefGoogle Scholar
  115. 115.
    Wang Q. MSc thesis, University of Alberta, 2009.Google Scholar
  116. 116.
    Banks DP, Grivas C, Mills JD, et al. Appl Phys Lett. 2006;89:192107.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  • Robert Fedosejevs
    • 1
    Email author
  • Ying Tsui
    • 1
  • Zhijiang Chen
    • 1
  • Shyama Banerjee
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations