Advertisement

Deposition, Milling, and Etching with a Focused Helium Ion Beam

  • P. F. A. AlkemadeEmail author
  • E. van Veldhoven
Chapter

Abstract

The recent successful development of the helium ion microscope has produced both a new type of microscopy and a new tool for nanoscale manufacturing. This chapter reviews the first explorations in this new field in nanofabrication. The studies that utilize the Orion helium ion microscope to grow or remove material are described, concentrating on helium ion beam deposition, milling, and etching. Helium ion beam induced deposition combines the advantage of electron beam deposition, namely high spatial resolution, with that of heavy-ion beam induced deposition, namely high efficiency. Helium milling is much slower than gallium milling, but ideal for structuring thin slabs of material with high precision. A handful of studies has demonstrated the possibility of helium ion beam etching. Experimental and theoretical studies suggest that secondary electron emission is the dominant mechanism in helium ion beam induced processing.

Keywords

Proximity Effect Helium Milling Precursor Decomposition Helium Beam Tungsten Hexacarbonyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research is part of NanoNed, a national research program on nanotechnology, funded by the Dutch ministry of Economic Affairs in the Netherlands. Our colleagues P. Chen, E. van der Drift, H. Salemink from Delft University of Technology and D. Maas from TNO are gratefully acknowledged for their contributions and discussions. The authors acknowledge L. Scipioni, S. Boden, R. Hill, R. Livengood, S. Tan, I. Utke, C. Sanford, M. Rudneva, and F. Tichelaar for giving permission to use their figures.

References

  1. 1.
    Dubner AD, Wagner A, Melngailis J, Thompson CV. J Appl Phys. 1991;70:665–73.CrossRefGoogle Scholar
  2. 2.
    Ward BW, Notte JA, Economou NP. J Vac Sci Technol B. 2006;24:2871–4.CrossRefGoogle Scholar
  3. 3.
    Morgan J, Notte J, Hill R, Ward B. Microsc Today. 2006;14(4):24–31.Google Scholar
  4. 4.
    Sanford CA, Stern L, Barriss L, Farkas L, DiManna M, Mello R, Maas DJ, Alkemade PFA. J Vac Sci Technol B. 2009;27:2660–7.CrossRefGoogle Scholar
  5. 5.
    Hill R, Faridur Rahman FHM. Nucl Instr Meth A. Nucl Instr Meth A. 2011;645:96–101.Google Scholar
  6. 6.
    Alkemade PFA, Chen P, van Veldhoven E, Maas D. J Vac Sci Technol B. 2010;28:C6F22–5.CrossRefGoogle Scholar
  7. 7.
    Chen P, van Veldhoven E, Sanford CA, Salemink HWM, Maas DJ, Smith DA, Rack PD, Alkemade PFA. Nanotechnology. 2010;21:455302. 7 pp.CrossRefGoogle Scholar
  8. 8.
    Maas D, van Veldhoven E, Chen P, Sidorkin V, Salemink H, van der Drift E, Alkemade P. Proc SPIE. 2010;7638:763814. 10 pp.CrossRefGoogle Scholar
  9. 9.
    Boden SA, Moktadir Z, Bagnall DM, Mizuta H, Rutt HN. Microelectron Eng. Microelectron Eng. 2011;88:2452–5.Google Scholar
  10. 10.
    Pickard D, Scipioni L. Graphene nano-ribbon patterning in the orion plus (Zeiss Application Note, Oct 2009).Google Scholar
  11. 11.
    Bell DC, Lemme MC, Stern LA, Marcus CM. J Vac Sci Technol B. 2009;27:2755–8.CrossRefGoogle Scholar
  12. 12.
    Scipioni L, Ferranti DC, Smentkowski VS, Potyrailo RA. J Vac Sci Technol B. 2010;28:C6P18–23.CrossRefGoogle Scholar
  13. 13.
    Rudneva MI, van Veldhoven E, Shu MS, Maas D, Zandbergen HW. Abstract 17th international microscopy conference, Rio de Janeiro; 2010.Google Scholar
  14. 14.
    Randolph SJ, Fowlkes JD, Rack PD. Crit Rev Solid State Mater Sci. 2006;31:55–89.CrossRefGoogle Scholar
  15. 15.
    Utke I, Hoffmann P, Melngailis J. J Vac Sci Technol B. 2008;26:1197–276.CrossRefGoogle Scholar
  16. 16.
    van Dorp WF, Hagen CW. J Appl Phys. 2008;104:081301. 42 pp.CrossRefGoogle Scholar
  17. 17.
    Rabalais JW. Principles and applications of ion scattering spectrometry. New York: Wiley-Interscience; 2003.Google Scholar
  18. 18.
    Livengood R, Tan S, Greenzweig Y, Notte J, McVey S. J Vac Sci Technol B. 2009;27:3244–9.CrossRefGoogle Scholar
  19. 19.
    Castaldo V, Hagen CW, Kruit P, van Veldhoven E, Maas D. J Vac Sci Technol B. 2009;27:3196–202.CrossRefGoogle Scholar
  20. 20.
    Eckstein W, Behrisch R, editors. ‘Sputtering yields’ in sputtering by particle bombardment. Berlin: Springer; 2007.Google Scholar
  21. 21.
    Chen P, Salemink HWM, Alkemade PFA. J Vac Sci Technol B. 2009;27:2718–21.CrossRefGoogle Scholar
  22. 22.
    Silvis-Cividjian N, Hagen CW, Teunissen LH, Kruit P. Microelectron Eng. 2002;61–62:693–9.CrossRefGoogle Scholar
  23. 23.
    Fowlkes JD, Randolph SJ, Rack PD. J Vac Sci Technol B. 2005;23:2825–32.CrossRefGoogle Scholar
  24. 24.
    Smith DA, Joy DC, Rack PD. Nanotechnology. 2010;21:175302. 7 pp.CrossRefGoogle Scholar
  25. 25.
    van Dorp WF, van Someren B, Hagen CW, Kruit P, Crozier PA. Nano Lett. 2005;5:1303–7.CrossRefGoogle Scholar
  26. 26.
    Chen P. PhD thesis, Delft University of Technology; 2010.Google Scholar
  27. 27.
    Chen P, Salemink HWM, Alkemade PFA. J Vac Sci Technol B. 2009;27:1838–43.CrossRefGoogle Scholar
  28. 28.
    Scipioni L, Sanford C, van Veldhoven E, Maas D. Microsc Today. 2011;19(3):22–6.CrossRefGoogle Scholar
  29. 29.
    Botman A, Mulders JJL, Weemaes R, Mentink S. Nanotechnology. 2006;17:3779–85.CrossRefGoogle Scholar
  30. 30.
    Winters HF, Coburn JW. Appl Phys Lett. 1979;34:70–3.CrossRefGoogle Scholar
  31. 31.
    Flamm DL, Donnelly VM. Plasma Chem Plasma Process. 1981;1:317–63.CrossRefGoogle Scholar
  32. 32.
    Lobo CJ, Toth M, Wagner R, Thiel BL, Lysaght M. Nanotechnology. 2008;19:025303. 6 pp.CrossRefGoogle Scholar
  33. 33.
    Livengood RH, Tan S, Hallstein R, Notte J, McVey S, Faridur Rahman FHM. Nucl Instr Meth A. 2011;645:136–40.Google Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  1. 1.Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
  2. 2.TNO Science and IndustryDelftThe Netherlands

Personalised recommendations