Skip to main content

Chemical Characterization of Polysaccharides

  • Chapter
  • First Online:
  • 2496 Accesses

Abstract

The chemical characterization of polysaccharides is an absolute request for a multitude of scientific and industrial applications that go beyond the simple use of polysaccharides where the physical characterization and the knowledge of usage-dependent behavior by specific tests are sufficient. Successful process optimization and development are today only possible by knowing and controlling the details of the molecular basis. Hence, chemical analysis of polysaccharides covers a broad range of chemical problems and structural hierarchies within the molecules. This leads to a diversity of methods necessary for a complete chemical characterization of a polysaccharide sample. This chapter reviews the main methods that can be used for performing a detailed chemical characterization of polysaccharides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adden R, Mischnick P (2005) A novel method for the analysis of the substitution pattern of O-methyl-[alpha]- and [beta]-1,4-glucans by means of electrospray ionisation-mass spectrometry/collision induced dissociation. Int J Mass Spectrom 242(1):63–73

    CAS  Google Scholar 

  • Adden R, Melander C et al (2009) The applicability of enzymes in cellulose ether analysis. Macromol Symp 280:36–44

    CAS  Google Scholar 

  • Adorjan I, Potthast A et al (2005) Discoloration of cellulose solutions in N-methylmorpholine-N-oxide (Lyocell). Part 1: Studies on model compounds and pulps. Cellulose 12(1):51–57

    CAS  Google Scholar 

  • Albersheim P, Nevins DJ et al (1967) A method for the analysis of sugars in plant cell-wall polysaccharides by gas–liquid chromatography. Carbohydr Res 5(3):340–345

    CAS  Google Scholar 

  • Alexandru L, Rogovin ZA (1953) Verteilung der Thiocarbonatgru ppen zwischen den primären und sekundären Alkoholgru ppen im Cellulosexanthogenat. J Allg Chem (USSR) 23:1203–1205

    Google Scholar 

  • Allard B, Derenne S (2009) Microwave assisted extraction and hydrolysis: an alternative to pyrolysis for the analysis of recalcitrant organic matter? Application to a forest soil (Landes de Gascogne, France). Org Geochem 40(9):1005–1017

    CAS  Google Scholar 

  • An HJ, Franz AH et al (2003) Improved capillary electrophoretic separation and mass spectrometric detection of oligosaccharides. J Chromatogr A 1004:121–129

    PubMed  CAS  Google Scholar 

  • Andersson S-I, Samuelson O et al (1983) Structure of the reducing end-groups in spruce xylan. Carbohydr Res 111(2):283–288

    CAS  Google Scholar 

  • Arisz PW, Kauw HJJ et al (1995) Substituent distribution along the cellulose backbone in O-methylcelluloses using GC and FAB-MS for monomer and oligomer analysis. Carbohydr Res 271(1):1–14

    CAS  Google Scholar 

  • Bedouet L, Courtois B et al (2003) Rapid quantification of O-acetyl and O-methyl residues in pectin extracts. Carbohydr Res 338(4):379–383

    PubMed  CAS  Google Scholar 

  • Bikova T, Treimanis A (2002) Problems of the MMD analysis of cellulose by SEC using DMA/LiCl: a review. Carbohydr Polym 48(1):23–28

    CAS  Google Scholar 

  • Black GE, Fox A (1996) Recent progress in the analysis of sugar monomers from complex matrices using chromatography in conjunction with mass spectrometry or stand-alone tandem mass spectrometry. J Chromatogr A 720(1–2):51–60

    CAS  Google Scholar 

  • Blüher A, Vogelsanger B (2001) Mass deacidification of paper. Chimia 55:981

    Google Scholar 

  • Bohrn R, Potthast A et al (2005) Synthesis and testing of a novel fluorescence label for carboxyls in carbohydrates and cellulosics. Synlett 20:3087–3090

    Google Scholar 

  • Bohrn R, Potthast A et al (2006) The FDAM method: determination of carboxyl profiles in cellulosic materials by combining group-selective fluorescence labeling with GPC. Biomacromolecules 7(6):1743–1750

    PubMed  CAS  Google Scholar 

  • Bui A, Kocsis B et al (2008) Methodology to label mixed carbohydrate components by APTS. J Biochem Biophys Methods 70:1313–1316

    PubMed  CAS  Google Scholar 

  • Calvini P, Gorassini A et al (2006) FTIR and WAXS analysis of periodate oxycellulose: evidence for a cluster mechanism of oxidation. Vib Spectrosc 40(2):177–183

    CAS  Google Scholar 

  • Campa C, Coslovi A et al (2006) Overview on advances in capillary electrophoresis-mass spectrometry of carbohydrates: a tabulated review. Electrophoresis 27:2027–2050

    PubMed  CAS  Google Scholar 

  • Capitani D, Porro F et al (2000) High field NMR analysis of the degree of substitution in carboxymethyl cellulose sodium salt. Carbohydr Polym 42(3):283–286

    CAS  Google Scholar 

  • Chandra K, Ghosh K et al (2009) Chemical analysis of a polysaccharide of unripe (green) tomato (Lycopersicon esculentum). Carbohydr Res 344(16):2188–2194

    PubMed  CAS  Google Scholar 

  • Charlwood J, Birrell H et al (2000) A probe for the versatile analysis and characterization of N-linked oligosaccharides. Anal Chem 72:1453–1461

    PubMed  CAS  Google Scholar 

  • Chen F-TA, Evangelista RA (1995) Analysis of mono- and oligosaccharide isomers derivatized with 9-aminopyrene-1,4,6-trisulfonate by capillary electrophoresis with laser-induced fluorescence. Anal Biochem 230:273–280

    PubMed  CAS  Google Scholar 

  • Chen Y-R, Tseng M-C et al (2003) A low-flow ce/electrospray ionization MS interface for capillary zone electrophoresis, large-volume sample stacking, and micellar electrokinetic chromatography. Anal Chem 75:503–508

    PubMed  CAS  Google Scholar 

  • Chen G, Zhang L et al (2005) Determination of mannitol and three sugars in Ligustrum lucidum Ait. by capillary electrophoresis with electrochemical detection. Anal Chim Acta 530:15–21

    CAS  Google Scholar 

  • Chen G, Zhang L et al (2006) Determination of glycosides and sugars in Moutan Cortex by capillary electrophoresis with electrochemical detection. J Pharm Biomed Anal 41:129–134

    PubMed  CAS  Google Scholar 

  • Chen Y, Xie M-Y et al (2008) Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem 107(1):231–241

    CAS  Google Scholar 

  • Cheng X, Zhang S et al (2008) Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a nano-nickel oxide modified carbon paste electrode. Food Chem 106:830–835

    CAS  Google Scholar 

  • Chiesa C, Horvath C (1993) Capillary zone electrophoresis of malto-oligosaccharides derivatized with 8-aminonaphthalene-1,3,6-trisulfonic acid. J Chromatogr A 645(2):337–352

    CAS  Google Scholar 

  • Chiesa C, O'Neil RA et al (eds) (1996) Capillary electrophoresis in analytical biotechnology. CRC Press, Boca Raton, FL

    Google Scholar 

  • Chu Q, Fu L et al (2005) Fast determination of sugars in Coke and Diet Coke by miniaturized capillary electrophoresis with amperometric detection. J Sep Sci 28:234–238

    PubMed  CAS  Google Scholar 

  • Ciucanu I, Kerek F (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131(2):209–217

    CAS  Google Scholar 

  • Cohen A, Schagerlöf H et al (2004) Liquid chromatography-mass spectrometry analysis of enzyme-hydrolysed carboxymethylcellulose for investigation of enzyme selectivity and substituent pattern. J Chromatogr A 1029(1–2):87–95

    PubMed  CAS  Google Scholar 

  • Cortacero-Ramirez S, Segura-Carretero A et al (2004) Analysis of carbohydrates in beverages by capillary electrophoresis with precolumn derivatization and UV detection. Food Chem 87:471–476

    CAS  Google Scholar 

  • Cui SW (2005) Structural analysis of polysaccharides. In: Cui SW (ed) Food carbohydrates - chemistry, physical properties and applications. CRC Press, Boca Raton, FL, p 56

    Google Scholar 

  • Cyrot J (1957) Dosage des fonctions oximables de la cellulose dégradée. J Chim Anal 39:449

    CAS  Google Scholar 

  • Dabek-Zlotorzynska E, Dlouhy JF (1994) Capillary zone electrophoresis with indirect UV detection of organic anions using 2,6-naphthalenedicarboxylic acid. J Chromatogr A 685(1):145–153

    CAS  Google Scholar 

  • Dahlman O, Jacobs A et al (2000) Analysis of carbohydrates in wood and pulps employing enzymatic hydrolysis and subsequent capillary zone electrophoresis. J Chromatogr A 891(1):157–174

    PubMed  CAS  Google Scholar 

  • De Ruiter GA, Schols HA et al (1992) Carbohydrate analysis of water-soluble uronic acid-containing polysaccharides with high-performance anion-exchange chromatography using methanolysis combined with TFA hydrolysis is superior to four other methods. Anal Biochem 207(1):176–185

    PubMed  Google Scholar 

  • Dicke R, Rahn K et al (2001) Starch derivatives of high degree of functionalization. Part 2. Determination of the functionalization pattern of p-toluenesulfonyl starch by peracylation and NMR spectroscopy. Carbohydr Polym 45(1):43–51

    CAS  Google Scholar 

  • Doering H (1956) Determination of carboxyl groups in cellulose by complexometry. Das Papier 10:140–141

    CAS  Google Scholar 

  • Donald AM, Buschow KHJ, et al. (2001) Polysaccharide crystallization. In: Buschow et al. (eds) Encyclopedia of materials: science and technology. Elsevier, Oxford, pp 77147718

    Google Scholar 

  • Dong S, Zhang S et al (2007) Simultaneous determination of sugars and ascorbic acid by capillary zone electrophoresis with amperometric detection at a carbon paste electrode modified with polyethylene glycol and Cu2O. J Chromatogr A 1161:327–333

    PubMed  CAS  Google Scholar 

  • Dunbrant SSO (1965) Determination of primary and secondary xanthate groups in cellulose-xanthate. J Appl Polym Sci 9:2489–2499

    CAS  Google Scholar 

  • Dupont A-L, Mortha G (2004) Comparative evaluation of size-exclusion chromatography and viscometry for the characterisation of cellulose. J Chromatogr A 1026(1–2):129–141

    PubMed  CAS  Google Scholar 

  • Ebringerova A (2006) Structural diversity and application potential of hemicelluloses. Macromol Symp 232:1–12

    CAS  Google Scholar 

  • Ebringerova A, Hromadkova Z et al (2005) Hemicellulose. Adv Polym Sci 186:1–67

    CAS  Google Scholar 

  • Eremeeva T (2003) Size-exclusion chromatography of enzymatically treated cellulose and related polysaccharides: a review. J Biochem Biophysl Methods 56(1–3):253–264

    CAS  Google Scholar 

  • Eremeeva TE, Bykova TO (1998) SEC of mono-carboxymethyl cellulose (CMC) in a wide range of pH; Mark-Houwink constants. Carbohydr Polym 36(4):319–326

    CAS  Google Scholar 

  • Erler U, Mischnick P et al (1992) Determination of the substitution patterns of cellulose methyl ethers by HPLC and GLC - comparison of methods. Polym Bull 29:349–356

    CAS  Google Scholar 

  • France RR, Cumpstey I et al (2000) Fluorescence labelling of carbohydrates with 2-aminobenzamide (2AB). Tetrahedron Asymmetry 11(24):4985–4994

    CAS  Google Scholar 

  • García O, Torres AL et al (2002) Effect of cellulase-assisted refining on the properties of dried and never-dried eucalyptus pulp. Cellulose 9(2):115–125

    Google Scholar 

  • Gillespie DT, Hammons HK (1999) Analysis of polysaccharides by SEC3. In: Provder T (ed) Chromatography of Polymers, vol 731. American Chemical Society, Washington, DC, pp 288–310

    Google Scholar 

  • Gohdes M, Mischnick P (1998) Determination of the substitution pattern in the polymer chain of cellulose sulfates. Carbohydr Res 309(1):109–115

    CAS  Google Scholar 

  • Gohdes M, Mischnick P et al (1997) Methylation analysis of cellulose sulphates. Carbohydr Polym 33(2–3):163–168

    CAS  Google Scholar 

  • Gonera A, Goclik V et al (2002) Preparation and structural characterisation of O-aminopropyl starch and amylose. Carbohydr Res 337(21–23):2263–2272

    PubMed  CAS  Google Scholar 

  • Gratzl JS (1985) Lichtinduzierte Vergilbund von Zellstoffen pp Ursachen und Verhütung. Das Papier 39(10A):V14–V23

    CAS  Google Scholar 

  • Grill E, Huber C et al (1993) Capillary zone electrophoresis of p-aminobenzoic acid derivatives of aldoses, ketoses and uronic acids. Electrophoresis 14:1004–1010

    PubMed  CAS  Google Scholar 

  • Haggkvist M, Li T-Q et al (1998) Effects of drying and pressing on the pore structure in the cellulose fibre wall studied by 1 H and 2 H NMR relaxation. Cellulose 5(1):33–49

    CAS  Google Scholar 

  • Harding SE (2005) Analysis of polysaccharides by ultracentrifugation. size, conformation and interactions in solution. In: Heinze T (ed) Polysaccharides I - structure, characterisation and use. Springer, Berlin, pp 211–254

    Google Scholar 

  • Hase S, Ibuki T et al (1984) Reexamination of the pyridylamination used for fluorescence labeling of oligosaccharides and its application to glycoproteins. J Biochem 95:197–203

    PubMed  CAS  Google Scholar 

  • Heinrich J (1999a) Strukturaufklärung von Cellulosederivaten und Galactanen mittels chemischer, chromatographischer und massenspektrometrischer Methoden. Fachbereich Chemie, Universität Hamburg, Hamburg

    Google Scholar 

  • Heinrich JPM (1999b) Determination of the substitution pattern in the polymer chain of cellulose acetates. J Polym Sci A Polym Chem 37(15):3011–3016

    CAS  Google Scholar 

  • Heinze U, Heinze T et al (1999) Synthesis and structure characterization of 2,3-O-carboxymethylcellulose. Macromol Chem Phys 200(4):896–902

    CAS  Google Scholar 

  • Heinze U, Schaller J et al (2000) Characterisation of regioselectively functionalized 2,3-O-carboxymethyl cellulose by enzymatic and chemical methods. Cellulose 7:161–175

    CAS  Google Scholar 

  • Henniges U, Prohaska T et al (2006) A fluorescence labeling approach to assess the deterioration state of aged papers. Cellulose 13(4):421–428

    CAS  Google Scholar 

  • Holfstetter-Kuhn S, Paulus A et al (1991) Influence of borate complexation on the electrophoretic behavior of carbohydrates in capillary electrophoresis. Anal Chem 63:1541–1547

    Google Scholar 

  • Honda S, Suzuki S et al (1991a) Capillary zone electrophoresis of reducing mono- and oligo-saccharides as the borate complexes of their 3-methyl-1-phenyl-2-pyrazolin-5-one derivatives. Carbohydr Res 215(1):193–198

    CAS  Google Scholar 

  • Honda S, Yamamoto K et al (1991b) High-performance capillary zone electrophoresis of carbohydrates in the presence of alkaline earth metal ions. J Chromatogr A 588(1–2):327–333

    CAS  Google Scholar 

  • Horner S, Puls J et al (1999) Enzyme-aided characterisation of carboxymethylcellulose. Carbohydr Polym 40(1):1–7

    CAS  Google Scholar 

  • Huber CG, Hoelzl G (eds) (2001) CapillaryElectrochromatography. Amsterdam, Elsevier

    Google Scholar 

  • Hult E-L, Larsson PT et al (2002) A comparative CP/MAS 13C-NMR study of the supermolecular structure of polysaccharides in sulphite and kraft pulps. Holzforschung 56(2):179–184

    CAS  Google Scholar 

  • Husemann E, Weber OH (1942) Der Carboxylgehalt von Faser- und Holzcellulosen. J Prakt Chem 159:334–342

    CAS  Google Scholar 

  • Issaq HJ, Janini GM et al (2004) Sheathless electrospray ionization interfaces for capillary electrophoresis–mass spectrometric detection. Advantages and limitations. J Chromatogr A 1053:37–42

    PubMed  CAS  Google Scholar 

  • Ivanov AR, Nazimov IV et al (2000) Direct determination of amino acids and carbohydrates by high-performance capillary electrophoresis with refractometric detection. J Chromatogr A 894:253–257

    CAS  Google Scholar 

  • Jager AV, Tonin FG et al (2007) Comparative evaluation of extraction procedures and method validation for determination of carbohydrates in cereals and dairy products by capillary electrophoresis. J Sep Sci 30:586–594

    PubMed  CAS  Google Scholar 

  • Kabel MA (2002) Characterisation of complex xylo-oligosaccharides from xylan rich by-products. PhD thesis. Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen

    Google Scholar 

  • Kabel MA, de Waard P et al (2003) Location of O-acetyl substituents in xylo-oligosaccharides obtained from hydrothermally treated Eucalyptus wood. Carbohydr Res 338(1):69–77

    PubMed  CAS  Google Scholar 

  • Kato KL, Cameron RE (1999) A review of the relationship between thermally-accelerated ageing of paper and hornification. Cellulose 6(1):23–40

    CAS  Google Scholar 

  • Katzenellenbogen E, Kocharova NA et al (2009) Structure of an abequose-containing O-polysaccharide from Citrobacter freundii O22 strain PCM 1555. Carbohydr Res 344(13):1724–1728

    PubMed  CAS  Google Scholar 

  • Kelli JF, Ramaley L et al (1997) Capillary zone electrophoresis-electrospray mass spectrometry at submicroliter flow rates: practical considerations and analytical performance. Anal Chem 69:51–60

    Google Scholar 

  • Kiwitt-Haschemie K, Renger A et al (1996) A comparison between reductive-cleavage and standard methylation analysis for determining structural features of galactomannans. Carbohydr Polym 30(1):31–35

    CAS  Google Scholar 

  • Klampfl C (2006) Recent advances in the application of capillary electrophoresis with mass spectrometric detection. Electrophoresis 27:3–34

    PubMed  CAS  Google Scholar 

  • Klampfl CW, Buchberger W (2001) Determination of carbohydrates by capillary electrophoresis with electrospray-mass spectrometric detection. Electrophoresis 22(13):2737–2742

    PubMed  CAS  Google Scholar 

  • Klemm D, Philipp B et al (1998) Comprehensive cellulose chemistry, vol 1, Fundamentals and analytical methods. Wiley-VCH, Weinheim

    Google Scholar 

  • Klockow A, Amado R et al (1995) Separation of 8-aminonaphthalene-l,3,6-trisulfonic acid-labelled neutral and sialylated N-linked complex oligosaccharides by capillary electrophoresis. J Chromatogr A 716:241–257

    PubMed  CAS  Google Scholar 

  • Klockow A, Amado R et al (1996) The influence of buffer composition on separation efficiency and resolution in capillary electrophoresis of 8-aminonaphthalene-1,3,6-trisulfonic acid labeled monosaccharides and complex carbohydrates. Electrophoresis 17:110–119

    PubMed  CAS  Google Scholar 

  • Koelhed M, Karlberg B (2005) Capillary electrophoretic separation of sugars in fruit juices using on-line mid infrared Fourier transform detection. Analyst 130:772–778

    CAS  Google Scholar 

  • Kondo A, Suzuki J et al (1990) Improved method for fluorescence labeling of sugar chains with sialic acid residues. Agric Biol Chem 54(8):2169–2170

    PubMed  CAS  Google Scholar 

  • Krainz K, Potthast A et al (2009) Effects of selected key chromophores on cellulose integrity upon bleaching 10th EWLP, Stockholm, Sweden, August 25-28, 2008. Holzforschung 63(6):647–655

    CAS  Google Scholar 

  • Kristiansen KA, Ballance S et al (2009) An evaluation of tritium and fluorescence labelling combined with multi-detector SEC for the detection of carbonyl groups in polysaccharides. Carbohydr Polym 76(2):196–205

    CAS  Google Scholar 

  • Kumirska J, Czerwicka M et al (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 8(5):1567–1635

    PubMed  CAS  Google Scholar 

  • Laine CTTVAVT (2002) Methylation analysis as a tool for structural analysis of wood polysaccharides. Holzforschung 56(6):607–614

    CAS  Google Scholar 

  • Larsson PT, Wickholm K et al (1997) A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25

    CAS  Google Scholar 

  • Lee CK, Gray GR (1995) Analysis of positions of substitution of O-acetyl groups in partially O-acetylated cellulose by the reductive-cleavage method. Carbohydr Res 269(1):167–174

    CAS  Google Scholar 

  • Lee S-J, Altaner C et al (2003) Determination of the substituent distribution along cellulose acetate chains as revealed by enzymatic and chemical methods. Carbohydr Polym 54(3):353–362

    CAS  Google Scholar 

  • Levigne S, Thomas M et al (2002) Determination of the degrees of methylation and acetylation of pectins using a C18 column and internal standards. Food Hydrocolloids 16(6):547–550

    CAS  Google Scholar 

  • Lewin L (1972) In: Whistler RL, BeMiller JN (eds) Methods in carbohydrate chemistry, vol 6. Academic, New York, p 76

    Google Scholar 

  • Lewin M (1997) Oxidation and aging of cellulose. Macromol Symp 118:715–724

    CAS  Google Scholar 

  • Li DT, Sheen JF et al (2000) Structural analysis of chromophore-labeled disaccharides by capillary electrophoresis tandem mass spectrometry using ion trap mass spectrometry. J Am Soc Mass Spectrom 11:292–300

    PubMed  CAS  Google Scholar 

  • Li J, Wan Y et al (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C 29(5):1635–1642

    CAS  Google Scholar 

  • Liebert T, Pfeiffer K et al (2005) Carbamoylation applied for structure determination of cellulose derivatives. Macromol Symp 223(1):93–108

    CAS  Google Scholar 

  • Liitiä T, Maunu SL et al (2000) Solid state NMR studies on cellulose crystallinity in fines and bulk fibres separated from refined kraft pulp. Holzforschung 54(6):618–624

    Google Scholar 

  • Liu J, Shirota O et al (1991) Capillary electrophoresis of amino sugars with laser-induced fluorescence detection. Anal Chem 63:413–417

    PubMed  CAS  Google Scholar 

  • Liu Y, Shu C et al (1997) High-performance capillary electrophoretic separation of carbohydrates with indirect UV detection using diethylamine and borate as electrolyte additives. J Capillary Electrophor 4(3):97–103

    PubMed  CAS  Google Scholar 

  • Manelius R, Buléon A et al (2000) The substitution pattern in cationised and oxidised potato starch granules. Carbohydr Res 329(3):621–633

    PubMed  CAS  Google Scholar 

  • Mazumder S, Lerouge P et al (2005) Structural characterisation of hemicellulosic polysaccharides from Benincasa hispida using specific enzyme hydrolysis, ion exchange chromatography and MALDI-TOF mass spectroscopy. Carbohydr Polym 59(2):231–238

    CAS  Google Scholar 

  • Mazzarino M, De Angelis F et al (2010) Microwave irradiation for a fast gas chromatography–mass spectrometric analysis of polysaccharide-based plasma volume expanders in human urine. J Chromatogr B 878(29):3024–3032

    CAS  Google Scholar 

  • Mechref Y, Ostrander GK et al (1995) Capillary electrophoresis of carboxylated carbohydrates. Part 2. Selective precolumn derivatization of sialooligosaccharides derived from gangliosides with 7-aminonaphthalene-l,3-disulfonic acid fluorescing tag. Electrophoresis 16:1499–1504

    PubMed  CAS  Google Scholar 

  • Mechref Y, Ostrander GK et al (1997) Capillary electrophoresis of carboxylated carbohydrates. IV. Adjusting the separation selectivity of derivatized carboxylated carbohydrates by controlling the electrolyte ionic strength at subambient temperature and in the absence of electroosmotic flow. J Chromatogr A 792:75–82

    PubMed  CAS  Google Scholar 

  • Melander C, Tømmeraas K (2010) Heterogeneous hydrolysis of hyaluronic acid in ethanolic HCl slurry. Carbohydr Polym 82(3):874–879

    CAS  Google Scholar 

  • Mihranyan A, Llagostera AP et al (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269(2):433–442

    PubMed  CAS  Google Scholar 

  • Mischnick P (1991) Determination of the substitution pattern of cellulose acetates. J Carbohydr Chem 10(4):711–722

    CAS  Google Scholar 

  • Mischnick P (1997) New developments in the analysis of the substitution pattern of polysaccharide derivatives. Macromol Symp 120:281–290

    CAS  Google Scholar 

  • Mischnick P (2001) Challenges in structure analysis of polysaccharide derivatives. Cellulose 8(4):245–257

    CAS  Google Scholar 

  • Mischnick P (2002) Challenges in structure analysis of polysaccharide derivatives. Cellulose 00:1–13

    Google Scholar 

  • Mischnick P, Adden R (2008) Fractionation of polysaccharide derivatives and subsequent analysis to differentiate heterogeneities on various hierarchical levels. Macromol Symp 262:1–7

    CAS  Google Scholar 

  • Mischnick P, Hennig C (2001) A new model for the substitution patterns in the polymer chain of polysaccharide derivatives. Biomacromolecules 2(1):180–184

    PubMed  CAS  Google Scholar 

  • Mischnick P, Evers B et al (1994) Analysis of oligosaccharides containing 2-deoxy-alpha-D-arabino-hexosyl residues by the reductive-cleavage method. Carbohydr Res 264(2):293–304

    PubMed  CAS  Google Scholar 

  • Mischnick P, Heinrich J et al (2000) Structure analysis of 1,4-glucan derivatives. Macromol Chem Phys 201:1985–1995

    CAS  Google Scholar 

  • Mischnick P, Niedner W et al (2005) Possibilities of mass spectrometry and tandem-mass spectrometry in the analysis of cellulose ethers. Macromol Symp 223(1):67–78

    CAS  Google Scholar 

  • Mischnick P, Momcilovic D et al (2010) Chemical structure analysis of starch and cellulose derivatives. Adv Carbohydr Chem Biochem 64:117–210

    PubMed  CAS  Google Scholar 

  • Momenbeik F, Johns C et al (2006) Sensitive determination of carbohydrates labelled with p-nitroaniline by capillary electrophoresis with photometric detection using a 406 nm light-emitting diode. Electrophoresis 27:4039–4046

    PubMed  CAS  Google Scholar 

  • Mort AJ, Chen EMW (1996) Separation of 8-aminonaphthalene-l,3,6-trisulfonate (ANTS)-labeled oligomers containing galacturonic acid by capillary electrophoresis: application to determining the substrate specificity of endopolygalacturonases. Electrophoresis 17:379–383

    PubMed  CAS  Google Scholar 

  • Mukerjea R, Kim D et al (1996) Simplified and improved methylation analysis of saccharides, using a modified procedure and thin-layer chromatography. Carbohydr Res 292:11–20

    CAS  Google Scholar 

  • Newman RH, Davidson TC (2004) Molecular conformations at the cellulose-water interface. Cellulose 11:23–32

    CAS  Google Scholar 

  • Nguyen DT, Lerch H et al (1997) Separation of derivatized carbohydrates by co-electroosmotic capillary electrophoresis. Chromatographia 46(3/4):113–121

    CAS  Google Scholar 

  • Nie S-P, Xie M-Y (2011) A review on the isolation and structure of tea polysaccharides and their bioactivities. Food Hydrocolloids 25(2):144–149

    CAS  Google Scholar 

  • Oh SY, Yoo DI et al (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340(3):417–428

    PubMed  CAS  Google Scholar 

  • Osborn HMI, Lochey F et al (1999) Analysis of polysaccharides and monosaccharides in the root mucilage of maize (Zea mays L.) by gas chromatography. J Chromatogr A 831(2):267–276

    CAS  Google Scholar 

  • Oudhoff KA, Buijtenhuijs FA et al (2004) Determination of the degree of substitution and its distribution of carboxymethylcelluloses by capillary zone electrophoresis. Carbohydr Res 339(11):1917–1924

    PubMed  CAS  Google Scholar 

  • Perera A, Meda V et al (2010) Resistant starch: a review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods. Food Res Int 43(8):1959–1974

    CAS  Google Scholar 

  • Petzold K, Schwikal K et al (2006) Carboxymethyl xylan - synthesis and detailed structure characterization. Carbohydr Polym 64(2):292–298

    CAS  Google Scholar 

  • Phillipp B, Rehder W et al (1965) Carboxylgruppenbestimmung in Chemiezellstoffen. Das Papier 19:1–9

    Google Scholar 

  • Plocek J, Chmelik J (1997) Separation of disaccharides as their borate complexes by capillary electrophoresis with indirect detection in visible range. Electrophoresis 18:1148–1152

    PubMed  CAS  Google Scholar 

  • Potthast A, Röhrling J et al (2003) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 3. Monitoring oxidative processes. Biomacromolecules 4(3):743–749

    PubMed  CAS  Google Scholar 

  • Potthast A, Schiehser S et al (2004) Effect of UV radiation on the carbonyl distribution in different pulps. Holzforschung 58(6):597–602

    CAS  Google Scholar 

  • Potthast A, Rosenau T et al (2006) Analysis of oxidized functionalities in cellulose. In: Klemm D (ed) Polysaccharides II. Springer, Heidelber, pp 1–48

    Google Scholar 

  • Putnam ES (1964) The exchange reaction between calcium and carboxyl groups in cellulose. TAPPI J 47:549–554

    CAS  Google Scholar 

  • Racaityte K, Kiessig S et al (2005) Application of capillary zone electrophoresis and reversed-phase high-performance liquid chromatography in the biopharmaceutical industry for the quantitative analysis of the monosaccharides released from a highly glycosylated therapeutic protein. J Chromatogr A 1079:354–365

    PubMed  CAS  Google Scholar 

  • Rana V, Kumar V et al (2009) Structure of the oligosaccharides isolated from Dalbergia sissoo Roxb. leaf polysaccharide. Carbohydr Polym 78(3):520–525

    CAS  Google Scholar 

  • Rehder W, Philipp B et al (1965) Ein Beitrag zur Analytik der Carbonylgru ppen in Oxycellulosen und technischen Zellstoffen. Das Papier 19(9):502

    Google Scholar 

  • Ren J-L, Sun R-C (2010) Hemicelluloses. In: Sun R-C (ed) Cereal straw as a resource for sustainable biomaterials and biofuels. Elsevier, Amsterdam, pp 73–130

    Google Scholar 

  • Ristolainen M (1999) Characterization of totally chlorine-free effluents from Kraft pulp bleaching II. Analysis of carbohydrate-derived constituents after acid hydrolysis by capillary zone electrophoresis. J Chromatogr A 832:203–209

    CAS  Google Scholar 

  • Röder T, Moosbauer J et al (2006a) Crystallinity determination of man-made cellulose fibers – comparison of analytical methods. Lenzinger Ber 86:132–136

    Google Scholar 

  • Röder T, Moosbauer J et al (2006b) Crystallinity determination of native cellulose – comparison of analytical methods. Lenzinger Ber 86:85–89

    Google Scholar 

  • Röder T, Moosbauer J et al (2009) Comparative characterisation of man-made regenerated cellulose fibres. Lenzinger Ber 87:98–105

    Google Scholar 

  • Röhrling J, Potthast A et al (2001) Synthesis and testing of a novel fluorescence label for carbonyls in carbohydrates and cellulosics. Synlett 5:682–684

    Google Scholar 

  • Röhrling J, Potthast A et al (2002a) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 2. Validation and applications. Biomacromolecules 3(5):969–975

    PubMed  Google Scholar 

  • Röhrling J, Potthast A et al (2002b) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 1. Method development. Biomacromolecules 3(5):959–968

    PubMed  Google Scholar 

  • Rosenau T, Potthast A et al (2001) Hydrolytic processes and condensation reactions in the cellulose solvent system N, N-dimethylacetamide/lithium chloride. Part 1. Holzforschung 55(6):661–666

    CAS  Google Scholar 

  • Rosenau T, Potthast A et al (2004) Isolation and identification of residual chromophores in cellulosic materials. Polymer 45(19):6437–6443

    CAS  Google Scholar 

  • Rosenau T, Potthast A et al (2005a) Isolation and identification of residual chromophores in cellulosic materials, vol 223. Wiley-VCH, Weinheim, pp 239–252

    Google Scholar 

  • Rosenau T, Potthast A et al (2005b) Discoloration of cellulose solutions in N-methylmorpholine-N-oxide (Lyocell). Part 2: Isolation and identification of chromophores. Cellulose 12(2):197–208

    CAS  Google Scholar 

  • Rosenau T, Potthast A et al (2007) Isolation and identification of residual chromophores from aged bleached pulp samples. Holzforschung 61:656–661

    CAS  Google Scholar 

  • Rovio S, Yli-Kauhaluoma J et al (2007) Determination of neutral carbohydrates by CZE with direct UV detection. Electrophoresis 28:3129–3135

    PubMed  CAS  Google Scholar 

  • Rovio S, Simolin H et al (2008) Determination of monosaccharide composition in plant fiber materials by capillary zone electrophoresis. J Chromatogr A 1185:139–144

    PubMed  CAS  Google Scholar 

  • Rovio S, Siren K et al (2011) Application of capillary electrophoresis to determine metal cations, anions, organic acids, and carbohydrates in some Pinot Noir red wines. Food Chem 124:1194–1200

    CAS  Google Scholar 

  • Ruiz-Matute AI, Hernández-Hernández O et al (2010) Derivatization of carbohydrates for GC and GC-MS analyses. J Chromatogr B Analyt Technol Biomed Life Sci 879(17–18):1226–1240

    PubMed  Google Scholar 

  • Rußler A, Lange T et al (2005a) A novel method for analysis of xanthate group distribution in viscoses. Macromol Symp 223(1):189–200

    Google Scholar 

  • Russler A, Potthast A, et al (2005a) New methylation analysis of viscose. Institute of Chemistry, Slovak Academy of Sciences: 13th European carbohydrate symposium, 21–26 August, Bratislava; Book of Abstracts, Institute of Chemistry, Slovak Academy of Sciences

    Google Scholar 

  • Russler A, Saake B, et al (2005b) A novel approach to assess xanthate group distribution in viscose. Japanese-European workshop on cellulose and functional polysaccharides. Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, p 74

    Google Scholar 

  • Rußler A, Potthast A et al (2006) Determination of substituent distribution of viscoses by GPC. Holzforschung 60(5):467–473

    Google Scholar 

  • Rydlund A, Dahlman O (1996) Efficient capillary zone electrophoretic separation of wood-derived neutral and acidic mono- and oligosaccharides. J Chromatogr A 738:129–140

    PubMed  CAS  Google Scholar 

  • Rydlund A, Dahlman O (1997) Oligosaccharides obtained by enzymatic hydrolysis of birch kraft pulp xylan: analysis by capillary zone electrophoresis and mass spectrometry. Carbohydr Res 30:95–102

    Google Scholar 

  • Saake B, Horner S et al (2000) Detailed investigation on the molecular structure of carboxymethyl cellulose with unusual substitution pattern by means of an enzyme-supported analysis. Macromol Chem Phys 201(15):1996–2002

    CAS  Google Scholar 

  • Saake B, Kruse T et al (2001) Investigation on molar mass, solubility and enzymatic fragmentation of xylans by multi-detected SEC chromatography. Bioresour Technol 80(3):195–204

    PubMed  CAS  Google Scholar 

  • Sanz ML, Martínez-Castro I (2007) Recent developments in sample preparation for chromatographic analysis of carbohydrates. J Chromatogr A 1153(1–2):74–89

    PubMed  CAS  Google Scholar 

  • Sartori J, Potthast A et al (2003) Alkaline degradation kinetics and CE-separation of cello- and xylooligomers. Part I. Carbohydr Res 338:1209–1216

    PubMed  CAS  Google Scholar 

  • Sato H, Mizutani S-I et al (2002) Determination of degree of substitution in N-carboxyethylated chitin derivatives by pyrolysis-gas chromatography in the presence of oxalic acid. J Anal Appl Pyrolysis 64(2):177–185

    CAS  Google Scholar 

  • Schelosky N, Röder T et al (1999) Molmasseverteilug cellulosischer Produkte mittels Grössenausschlusschromatographie in DMAc/LiCl. Das Papier 53(12):728–738

    CAS  Google Scholar 

  • Schleicher H, Lang H (1994) Carbonyl and carboxyl groups in pulps and cellulose products. Das Papier 12:765–768

    Google Scholar 

  • Schwaiger H, Oefner PJ et al (1994) Capillary zone electrophoresis and micellar electrokinetic chromatography of 4-aminobenzonitrile carbohydrate derivatives. Electrophoresis 15:941–952

    PubMed  CAS  Google Scholar 

  • Schwikal K, Heinze T et al (2005) Cationic xylan derivatives with high degree of functionalization. Macromol Symp 232(1):49–56

    Google Scholar 

  • Senso A, Franco P et al (2000) Characterization of doubly substituted polysaccharide derivatives. Carbohydr Res 329(2):367–376

    PubMed  CAS  Google Scholar 

  • Singh V, Tiwari A et al (2006) Microwave-promoted hydrolysis of plant seed gums on alumina support. Carbohydr Res 341(13):2270–2274

    PubMed  CAS  Google Scholar 

  • Sixta H (1995). Habilitation thesis, Zellstoffherstellung unter Berücksichtigung umweltfreundlicher, Aufschluß- und Bleichverfahren am Beispiel von Chemiezellstoffen. Technical University of Graz, Graz

    Google Scholar 

  • Sjöberg J, Adorjan I et al (2004) An optimized CZE method for analysis of mono- and oligomeric aldose mixtures. Carbohydr Res 339:2037–2043

    PubMed  Google Scholar 

  • Snyder DS, Gibson D et al (2006) Structure of a capsular polysaccharide isolated from Salmonella enteritidis. Carbohydr Res 341(14):2388–2397

    PubMed  CAS  Google Scholar 

  • Soga T, Heiger DN (1998) Simultaneous determination of monosaccharides in glycoproteins by capillary electrophoresis. Anal Biochem 261:73–78

    PubMed  CAS  Google Scholar 

  • Soga T, Ross GA (1999) Simultaneous determination of inorganic anions, organic acids, amino acids and carbohydrates by capillary electrophoresis. J Chromatogr A 837:231–239

    CAS  Google Scholar 

  • Soga T, Serwe M (2000) Determination of carbohydrates in food samples by capillary electrophoresis with indirect UV detection. Food Chem 69:339–344

    CAS  Google Scholar 

  • Steeneken PAM, Woortman AJJ (1994) Substitution patterns in methylated starch as studied by enzymic degradation. Carbohydr Res 258:207–221

    CAS  Google Scholar 

  • Stefansson M, Novotny M (1994) Separation of complex oligosaccharide mixtures by capillary electrophoresis in the open-tubular format. Anal Chem 66:1134–1140

    PubMed  CAS  Google Scholar 

  • Sun Y-X, Liu J-C et al (2010) Purification, composition analysis and antioxidant activity of different polysaccharide conjugates (A PPs) from the fruiting bodies of Auricularia polytricha. Carbohydr Polym 82(2):299–304

    CAS  Google Scholar 

  • Szabolcs O (1961) A colorimetric method for the determination of reducing carbonyl groups in cellulose. Das Papier 15:41

    CAS  Google Scholar 

  • TAPPI (2009) T 249 - Carbohydrate composition of extractive-free wood and wood pulp by gas–liquid chromatography, p 8

    Google Scholar 

  • TAPPI (2009) TAPPI method T-430 om-99 Copper number of pulp, paper, and paperboard (Braidy)

    Google Scholar 

  • Thomas M, Chauvelon G et al (2003) Location of sulfate groups on sulfoacetate derivatives of cellulose. Carbohydr Res 338(8):761–770

    PubMed  CAS  Google Scholar 

  • Tüting W, Adden R et al (2004a) Fragmentation pattern of regioselectively O-methylated maltooligosaccharides in electrospray ionisation-mass spectrometry/collision induced dissociation. Int J Mass Spectrom 232(2):107–115

    Google Scholar 

  • Tüting W, Wegemann K et al (2004b) Enzymatic degradation and electrospray tandem mass spectrometry as tools for determining the structure of cationic starches prepared by wet and dry methods. Carbohydr Res 339(3):637–648

    PubMed  Google Scholar 

  • Vaca-Garcia C, Borredon ME et al (2001) Determination of the degree of substitution (DS) of mixed cellulose esters by elemental analysis. Cellulose 8(3):225–231

    CAS  Google Scholar 

  • van der Burgt YEM, Bergsma J et al (1998) Distribution of methyl substituents over branched and linear regions in methylated starches. Carbohydr Res 312(4):201–208

    Google Scholar 

  • van der Burgt YEM, Bergsma J et al (1999) Distribution of methyl substituents over crystalline and amorphous domains in methylated starches. Carbohydr Res 320(1–2):100–107

    Google Scholar 

  • van der Burgt YE, Bergsma J et al (2000a) Substituent distribution in highly branched dextrins from methylated starches. Carbohydr Res 327(4):423–429

    PubMed  Google Scholar 

  • van der Burgt YEM, Bergsma J et al (2000b) Distribution of methyl substituents in amylose and amylopectin from methylated potato starches. Carbohydr Res 325(3):183–191

    PubMed  Google Scholar 

  • van der Burgt YEM, Bergsma J et al (2000c) FAB CIDMS/MS analysis of partially methylated maltotrioses derived from methylated amylose: a study of the substituent distribution. Carbohydr Res 329:341–349

    PubMed  Google Scholar 

  • Vlasenko EY, Ryan AI et al (1998) The use of capillary viscometry, reducing end-group analysis, and size exclusion chromatography combined with multi-angle laser light scattering to characterize endo-1,4-[beta]-glucanases on carboxymethylcellulose: a comparative evaluation of the three methods. Enzym Microb Technol 23(6):350–359

    CAS  Google Scholar 

  • Walter RH (1998) Isolation, purification, and characterization. In: Steve T (ed) Polysaccharide dispersions. Academic, San Diego, CA, Chapter 7, pp 123155

    Google Scholar 

  • Wang X, Chen Y (2001) Determination of carbohydrates as their p-sulfophenylhydrazones by capillary zone electrophoresis. Carbohydr Res 332:191–196

    PubMed  CAS  Google Scholar 

  • Wang X, Chen Y et al (2002) Analysis of carbohydrates by capillary zone electrophoresis with on-line capillary derivatization. J Liq Chrom Rel Technol 25(4):589–600

    CAS  Google Scholar 

  • Wennerblom A (1961) Determination of carbonyl groups in hydrocellulose. Sven Pap 14:519

    Google Scholar 

  • Wickholm K, Larsson PT et al (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129

    CAS  Google Scholar 

  • Wilke O, Mischnick P (1995) Analysis of cationic starches: determination of the substitution pattern of O-(2-hydroxy-3-trimethylammonium)propyl ethers. Carbohydr Res 275(2):309–318

    CAS  Google Scholar 

  • Willför S, Sundberg K et al (2008) Spruce-derived mannans - a potential raw material for hydrocolloids and novel advanced natural materials. Carbohydr Polym 72(2):197–210

    Google Scholar 

  • Willför S, Pranovich A et al (2009) Carbohydrate analysis of plant materials with uronic acid-containing polysaccharides-A comparison between different hydrolysis and subsequent chromatographic analytical techniques. Ind Crop Prod 29(2–3):571–580

    Google Scholar 

  • Wilson K (1948) Determination of carboxylic groups in pulp. Sven Pap 51:45–49

    CAS  Google Scholar 

  • Wittgren B, Porsch B (2002) Molar mass distribution of hydroxypropyl cellulose by size exclusion chromatography with dual light scattering and refractometric detection. Carbohydr Polym 49(4):457–469

    CAS  Google Scholar 

  • Yamamoto K, Hamase K et al (2003) 2-Amino-3-phenylpyrazine, a sensitive fluorescence prelabeling reagent for the chromatographic or electrophoretic determination of saccharides. J Chromatogr A 1004(1–2):99–106

    PubMed  CAS  Google Scholar 

  • Yang L, Wang Z et al (2010) Isolation and structural characterization of a polysaccharide FCAP1 from the fruit of Cornus officinalis. Carbohydr Res 345(13):1909–1913

    PubMed  CAS  Google Scholar 

  • You J, Sheng X et al (2008) Detection of carbohydrates using new labeling reagent 1-(2-naphthyl)-3-methyl-5-pyrazolone by capillary zone electrophoresis with absorbance (UV). Anal Chim Acta 609:66–75

    PubMed  CAS  Google Scholar 

  • Yu N, Gray GR (1998a) Analysis of the positions of substitution of acetate and butyrate groups in cellulose acetate-butyrate by the reductive-cleavage method. Carbohydr Res 312(4):225–231

    CAS  Google Scholar 

  • Yu N, Gray GR (1998b) Analysis of the positions of substitution of acetate and propionate groups in cellulose acetate-propionate by the reductive-cleavage method. Carbohydr Res 313(1):29–36

    CAS  Google Scholar 

  • Zamfir A, Peter-Katalinic J (2004) Capillary electrophoresis-mass spectrometry for glycoscreening in biomedical research. Electrophoresis 25:1949–1963

    PubMed  CAS  Google Scholar 

  • Zatkovskis Carvalho A, da Silva JAF et al (2003) Determination of mono- and disaccharides by capillary electrophoresis with contactless conductivity detection. Electrophoresis 24:2138–2143

    Google Scholar 

  • Zemann A, Nguyen DT et al (1997) Fast separation of underivatized carbohydrates by coelectroosmotic capillary electrophoresis. Electrophoresis 18:1142– 1147

    PubMed  CAS  Google Scholar 

  • Zhou W, Baldwin RP (1996) Capillary electrophoresis and electrochemical detection of underivatized oligo- and polysaccharides with surfactant-controlled electroosmotic flow. Electrophoresis 17:319–324

    PubMed  CAS  Google Scholar 

  • Zuckerstätter G, Schild G et al (2009) The elucidation of cellulose supramolecular structure by 13C CP-MAS NMR. Lenzinger Ber 87:41–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Rosenau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Rußler, A., Bogolitsyna, A., Zuckerstätter, G., Potthast, A., Rosenau, T. (2012). Chemical Characterization of Polysaccharides. In: Navard, P. (eds) The European Polysaccharide Network of Excellence (EPNOE). Springer, Vienna. https://doi.org/10.1007/978-3-7091-0421-7_4

Download citation

Publish with us

Policies and ethics