Skip to main content
  • 1119 Accesses

Abstract

“From the moment of conception until death rhythm is as much part of our structure as our bones and flesh” as B. S. Brown wrote in the foreword to the book on “Biological Rhythms in Human and Animal Physiology” by Gay Gaer Luce [36]. In this unique and highly detailed book, the author introduces the scope and influence of many external rhythms and shows that such rhythms underlie “most of what we assume to be constant in ourselves and in the world around us”. Rhythmic variations in body temperature, blood pressure, endurance, metabolic activity and hormone production driven by external variations in temperature, daylight, etc., are observed in humans as well as in animals and plants and at time scales ranging from the 24-h circadian cycle, over monthly rhythms to seasonal and yearly variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott LF (1999) Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Res Bull 50:303–304

    Article  PubMed  CAS  Google Scholar 

  2. Achard S, Salvador R, Whitcher B, Suckling J, Baltimore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72

    Article  PubMed  CAS  Google Scholar 

  3. Atay FM (2006) Oscillator death in coupled functional differential equations near Hopf bifurcation. J Differ Equat 221:190–209

    Article  Google Scholar 

  4. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  PubMed  Google Scholar 

  5. Beuter A, Vasilakos K (1995) Tremor: Is Parkinson’s disease a dynamical disease? Chaos 1995:35–42

    Article  Google Scholar 

  6. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamus nucleus for bilateral Parkinson disease. Stereotact Funct Neurosurg 50:344–346

    Article  CAS  Google Scholar 

  7. Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85:1351–1356

    PubMed  CAS  Google Scholar 

  8. Bota M, Hong-Wei D, Swanson, LW (2003) From gene networks to brain networks. Nat Neurosci 6:795–799

    Article  PubMed  CAS  Google Scholar 

  9. Buzsaki G (2006) Rhythms of the Brain. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  10. von Campenhausen S, Bornschein B, Wick R, Bötzel K, Sampaio C, Poewe W, Oertel W, Siebert U, Berger K, Dodel R (2005) Prevalence and incidence of Parkinson’s disease in Europe. Eur Neuropsychopharmacol 15:473–490

    Article  Google Scholar 

  11. Chang JY (2004) Brain stimulation for neurological and psychiatric disorders, current status and future direction. J Pharmacol Exp Ther 309:1–7

    Article  PubMed  CAS  Google Scholar 

  12. Cziger B, Csikos D, Hidasi Z, Anna Gaal Z, Csibri E, Kiss E, Salacz P, Molnar M (2008) Quantitative EEG in early Alzheimer’s disease patients-power spectrum and complexity features. Int J Psychophysiol 68:75–90

    Article  Google Scholar 

  13. Desthexe A (1994) Stability of periodic oscillations in a network of neurons with time delay. Phys Lett A 187:309–316

    Article  Google Scholar 

  14. Elahi B, Elahi B, Chen R (2009) Effect of transcranial magnetic stimulation on Parkinson motor function-systematic review of controlled clinical trials. Mov Disord 24:357–363

    Article  PubMed  Google Scholar 

  15. Eusebio A, Pogosyan A, Wang S, Averbeck B, Gaynor LD, Cantiniaux S, Witjas T, Limousin P, Azulay JP, Brown P (2009) Resonance in subthalamo-cortical circuits in Parkinson’s disease. Brain 132:2139–2150

    Article  PubMed  Google Scholar 

  16. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480

    Article  PubMed  Google Scholar 

  17. Fries P (2009) Neuronal γ-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224

    Article  PubMed  CAS  Google Scholar 

  18. Fuentealba P, Timofeev I, Bazhenov M, Sejnowski TJ, Steriade M (2005) Membrane bistability in thalamic reticular neurons during spindle oscillations. J Neurophysiol 93:294–304

    Article  PubMed  Google Scholar 

  19. Gerard C, Goldbeter A (2009) Temporal selforganization of the cyclin/Cdk network driving the mammalian cell cycle. Proc Nat Acad Sci USA 106:21643–21648

    Article  PubMed  CAS  Google Scholar 

  20. Gibbs FA, Gibbs EL, Lennox WG (1938) The likeliness of the cortical dysrhythmias of schizophrenia and psychomotor epilepsy. Am J Psychiatry 95:255–269

    Google Scholar 

  21. Goldberger AL (1999) In: Bolis CL, Licinio J (eds) The Autonomic Nervous System. World Health Organization, Geneva

    Google Scholar 

  22. Gray CM, Konig P, Engel AK, Singer W (1980) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337

    Article  Google Scholar 

  23. Hamada M, Ugawa Y, Tsuji S (2008) High-frequency rTMS over the supplementary motor area for treatment of Parkinson’s disease. Mov Disord 23:1524–1531

    Article  PubMed  Google Scholar 

  24. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    PubMed  CAS  Google Scholar 

  25. Hurtado JM, Gray CM, Tamas LB, Sigvardt KA (1999) Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proc Natl Acad Sci USA 96:1674–1679

    Article  PubMed  CAS  Google Scholar 

  26. Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222

    Article  PubMed  CAS  Google Scholar 

  27. Hutt A, Atay FM (2005) Analysis of nonlocal neural fields for both general and gamma-distributed connectivities. Physica D 203(1-2):30–54

    Article  Google Scholar 

  28. Lapicque L (1907) Considérations préalables sur la nature du phénomène par lequel l’électricité excite les nerfs. J Physiol Pathol Génér 1907:565–578

    Google Scholar 

  29. Lenz FA, Kwan HC, Martin RL, Tasker RR, Dostrovsky YE, Lenz YE (1994) Single-unit analysis of the human ventral thalamic nuclear group. Tremor related activity in functionally identified cells. Brain 117:531–543

    Google Scholar 

  30. Levi F, Altinok A, Clairambault J, Goldbeter A (2008) Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Phil Trans Roy Soc A 366:3575–3598

    Article  Google Scholar 

  31. Levy R, Hutchison WD, Lozano AM, Dostrovsky JO (2000) High-frequency synchronization of neuronal activity in the subthalamic nucleus of Parkinsonian patients with limb tremor. J Neurosci 20:7766–7775

    PubMed  CAS  Google Scholar 

  32. Lipsitz LA, Goldberger AL (1992) Loss of “complexity” and aging: potential applications of fractals and chaos theory to senescence. JAMA 267:1806–1809

    Article  PubMed  CAS  Google Scholar 

  33. de la Prida LM (2009) Oscillations and brain function: setting the neuronal tempo in health and disease. In Meeting of the Society for Neuroscience, Chicago

    Google Scholar 

  34. Llinas RR (2007) Review of Gyorgy Buzsaki’s book rhythms of the brain. Neuroscience 149:726–727

    Article  CAS  Google Scholar 

  35. Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA 96:15222–15227

    Article  PubMed  CAS  Google Scholar 

  36. Luce GG (1970) Biological Rhythms in Human and Animal Physiology. Dover Publications, New York

    Google Scholar 

  37. Mackey MC, Glass L (1977) Oscillations and chaos in physiological control systems. Science 197:287–289

    Article  PubMed  CAS  Google Scholar 

  38. Mackey MC, Milton JG (1987) Dynamical diseases. Ann New York Acad Sci 504:16–32

    Article  CAS  Google Scholar 

  39. McAuley JH, Marsden CD (2000) Physiological and pathological tremors and rhythmic central motor control. Brain 123:1545–1567

    Article  PubMed  Google Scholar 

  40. Milton J, Black D (1995) Dynamic diseases in neurology and psychiatry. Chaos 1995:8–13

    Article  Google Scholar 

  41. Miocinovic S, Parent M, Butson CR, Hahn PJ, Russo GS, Vitek JL, McIntyre CC (2006) Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. J Neurophysiol 96:1569–1580

    Article  PubMed  Google Scholar 

  42. Modolo J, Henry J, Beuter A (2008a) Dynamics of the subthalamo-pallidal complex during deep brain stimulation in Parkinson’s disease. J Biol Phys 34:351–366

    Article  Google Scholar 

  43. Modolo J, Beuter A (2008b) Impact of cortical input on subthalamic activity during deep brain stimulation. Proceedings of the NeuroComp 2008 conference, Marseille, France

    Google Scholar 

  44. Modolo J, Bhattacharya B, Edwards R, Campagnaud J, Legros A, Beuter A (2010) Modulating brain rhythms in Parkinson’s disease using a neural field model. Front Neuroprosth 4:45

    Google Scholar 

  45. Modolo J, Beuter A (2009) Linking brain dynamics, neural mechanisms and deep brain stimulation in Parkinson’s disease: an integrated perspective. Med Eng Phys 31:615–623

    Article  PubMed  Google Scholar 

  46. Modolo J, Beuter A, Cates J, Jog M, Buhran A, Prato FS, Thomas AW, Legros A (2011a) Bidirectional coupling between motor cortex and muscle activity in rest tremor in Parkinson’s disease. 4th International Conference of Parkinson’s Disease and Movement Disorders, Toronto, June 5–9, 2011

    Google Scholar 

  47. Modolo J, Legros A, Thomas AW, Beuter A (2011b) Modelling-driven therapeutic treatment of neurological disorders: reshaping brain rhythms with neuromodulation. Interface Focus 1:61–74

    Article  PubMed  Google Scholar 

  48. Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG, 2nd edn. Oxford University Press, New York

    Book  Google Scholar 

  49. Plenz D, Kitai S (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400:677–682

    Article  PubMed  CAS  Google Scholar 

  50. Polonksy KS, Given BD, van Cauter E (1988) Twenty-four-hour profiles and pulsatile patterns in insulin secretion in normal and obese subjects. J Clin Invest 81:442–448

    Article  Google Scholar 

  51. Popovych OV, Hauptmann C, Tass PA (2005) Effective desynchronization by nonlinear delayed feedback. Phys Rev Lett 94:164102

    Article  PubMed  Google Scholar 

  52. Siegelmann HT (2010) Complex system science and brain dynamics. Front Comput Neurosci 4:1–2

    Article  Google Scholar 

  53. Shadlen MN, Movshon JA (1999) Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24:67–77

    Article  PubMed  CAS  Google Scholar 

  54. Raethjen J, Govindan RB, Muthuraman M, Kopper F, Volkmann J, Deuschl G (2009) Cortical correlates of the basic and first harmonic frequency of Parkinsonian tremor. Clin Neurophysiol 120:1866–1867

    Article  PubMed  Google Scholar 

  55. Reimann HA (1963) Periodic Diseases. F.A. Davis Company, Philadelphia

    Google Scholar 

  56. Rubin JE, Terman D (2004) High frequency of the subthalamic nucleus eliminates pathological rhythmicity in a computational model. J Comput Neurosci 16:211–235

    Article  PubMed  Google Scholar 

  57. Rodriguez-Oroz MC, Rodriguez M, Guridi J, Mewes K, Chockmann V, Vitek J, DeLong MR, Obeso JA (2001) The subthalamic nucleus in Parkinson’s disease: somatotopic organization and physiological characteristics. Brain 124:1777–1790

    Article  PubMed  CAS  Google Scholar 

  58. Roman FS (2008) Editorial, J Integr Neuroscience 7(2): ix–xi.

    Google Scholar 

  59. Rosenblum MG, Pikovsky AS (2004) Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. Phys Rev E 70:041904

    Article  Google Scholar 

  60. Rothwell JC, Bhatia K, Filipovic SR (2010) Slow (1Hz) repetitive transcranial magnetic stimulation (rTMS) induces a sustained change in cortical excitability in patients with Parkinson’s disease. Clin Neurophysiol 121:1129–1137

    Article  PubMed  Google Scholar 

  61. Tass PA (1999) Phase Resetting in Medicine and Biology. Springer, Berlin, Germany

    Google Scholar 

  62. Timmermann L, Gross J, Dirks M, Volkmann J, Freund HJ, Schnitzler A (2003) The cerebral oscillatory network of parkinsonian resting tremor. Brain 126:199–212

    Article  PubMed  Google Scholar 

  63. Traub RT, Whittington M (2010) Cortical oscillations in health and disease. Oxford University Press, UK

    Book  Google Scholar 

  64. Thut G, Minussi C (2009) New insights into rhythmic brain activity from TMS-EEG studies. Trends Cognit Sci 13:182–189

    Article  Google Scholar 

  65. Usrey WM, Reid RC (1999) Synchronous activity in the visual system. Ann Rev Phys 61:435–456

    Article  CAS  Google Scholar 

  66. Varela F (1995) Resonant cell assemblies: a new approach to cognitive functions and neuronal synchrony. Biol Res 28:81–95

    PubMed  CAS  Google Scholar 

  67. Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393:409–410

    Article  Google Scholar 

  68. Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13:55–80

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work presented here could not have been possible without the support of BIOSIM (2005-2010), contract N ∘ SHB-CT-2004-005137. The authors wish to thank Professor Erik Mosekilde, administrator of this network, for his constant support, encouragements and constructive suggestions during the five year project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Beuter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Beuter, A., Modolo, J. (2011). Closed-Loop Control of Brain Rhythms. In: Mosekilde, E., Sosnovtseva, O., Rostami-Hodjegan, A. (eds) Biosimulation in Biomedical Research, Health Care and Drug Development. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0418-7_8

Download citation

Publish with us

Policies and ethics