Skip to main content

Abstract

External control of tissues and cells, by hormones, nerves, and other stimuli, involves the transduction of signals from ligand-activated receptors to control of rate-limiting enzymes or proteins that affect key steps in metabolism, gene transcription or other processes within the cells. The signal transduction is carried out by a network of interacting signal mediators, i.e. proteins and small molecule transducers. Such signaling transduction networks display a high degree of complexity, which is due to the presence of feed-forward and feedback loops, both negative and positive, and to the fact that interactions change over time and according to intracellular location. In combination with multiple layers of control, redundancy, shared signal mediators, shared signal paths, and cross-talk between signals, this leads to a complexity that poses new challenges to progress in dissecting and understanding cellular control. Furthermore, many diseases, such as cancer, insulin resistance, and type 2 diabetes, are associated with malfunctioning in the complex signaling networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abduljallil K, Furness P, Johnson TN, Rostami-Hodjegan A, Soltani H (2011) Physiological, anatomical and metabolic changes with gestational age during normal pregnancy; creating a database and analysing trends for parameters required in physiologically based pharmacokinetic modelling. In preparation

    Google Scholar 

  2. Agoram B, Woltosz WS, Bolger MB (2001) Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev 50(Suppl 1): S41–S67

    Article  CAS  PubMed  Google Scholar 

  3. Anderson GD (2005) Pregnancy-induced changes in pharmacokinetics: a mechanistic-based approach. Clin Pharmacokinet 44(10):989–1008

    Article  CAS  PubMed  Google Scholar 

  4. Anjum S, Swan SK, Lambrecht LJ, Radwanski E, Cutler DL, Affrime MB, Halstenson CE (1999) Pharmacokinetics of flutamide in patients with renal insufficiency. Br J Clin Pharmacol 47(1):43–47

    Article  CAS  PubMed  Google Scholar 

  5. Aparicio M, Chauveau P, De Precigout V, Bouchet JL, Lasseur C, Combe C (2000) Nutrition and outcome on renal replacement therapy of patients with chronic renal failure treated by a supplemented very low protein diet. J Am Soc Nephrol 11(4):708–716

    CAS  PubMed  Google Scholar 

  6. Atkinson AJ Jr., Lyster PM (2010) Systems clinical pharmacology. Clin Pharmacol Ther 88(1):3–6

    Article  PubMed  Google Scholar 

  7. Avdeef A (2003) Solubility. In: Absorption and Drug Development: Solubility, Permeability, and Charge State. John Wiley & Sons Inc. Hoboken, NJ, USA

    Google Scholar 

  8. Avdeef A, Kansy M, Bendels S, Tsinman K (2008) Absorption-excipient-pH classification gradient maps: sparingly soluble drugs and the pH partition hypothesis. Eur J Pharm Sci 33(1):29–41

    Article  CAS  PubMed  Google Scholar 

  9. Barter ZE, Bayliss MK, Beaune PH, Boobis AR, Carlile DJ, Edwards RJ, Houston JB, Lake BG, Lipscomb JC, Pelkonen OR, Tucker GT, Rostami-Hodjegan A (2007) Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Curr Drug Metab 8(1):33–45

    Article  CAS  PubMed  Google Scholar 

  10. Berezhkovskiy LM (2004) Volume of distribution at steady state for a linear pharmacokinetic system with peripheral elimination. J Pharm Sci 93(6):1628–1640

    Article  CAS  PubMed  Google Scholar 

  11. Bois FY, Jamei M, Clewell HJ (2010), PBPK modelling of inter-individual variability in the pharmacokinetics of environmental chemicals. Toxicology 278(3):256–267

    Article  CAS  PubMed  Google Scholar 

  12. Chapelsky MC, Thompson-Culkin K, Miller AK, Sack M, Blum R, Freed MI (2003) Pharmacokinetics of rosiglitazone in patients with varying degrees of renal insufficiency. J Clin Pharmacol 43(3):252–259

    Article  CAS  PubMed  Google Scholar 

  13. Chetty M, Mattison D, Rostami-Hodjegan A (2011) Sex differences in the clearance of CYP3A4 substrates: exploring possible reasons for the substrate dependency and lack of consensus. In preparation.

    Google Scholar 

  14. Cong D, Doherty M, Pang KS (2000) A new physiologically based, segregated-flow model to explain route-dependent intestinal metabolism. Drug Metab Dispos 28(2):224–235

    CAS  PubMed  Google Scholar 

  15. Dimmitt DC, Shah AK, Arumugham T, Cramer MB, Halstenson C, Horton M, Weir SJ (1998) Pharmacokinetics of oral and intravenous dolasetron mesylate in patients with renal impairment. J Clin Pharmacol 38(9):798–806

    CAS  PubMed  Google Scholar 

  16. Dingemanse J, van Giersbergen PL (2002) Influence of severe renal dysfunction on the pharmacokinetics and metabolism of bosentan, a dual endothelin receptor antagonist. Int J Clin Pharmacol Ther 40(7):310–316

    CAS  PubMed  Google Scholar 

  17. Doyle GD, Laher M, Kelly JG, Byrne MM, Clarkson A, Zussman BD (1989) The pharmacokinetics of paroxetine in renal impairment. Acta Psychiatr Scand Suppl 350: 89–90

    Article  CAS  PubMed  Google Scholar 

  18. Ghibellini G, Vasist LS, Hill TE, Heizer WD, Kowalsky RJ, Brouwer KL (2006) Determination of the biliary excretion of piperacillin in humans using a novel method. Br J Clin Pharmacol 62(3):304–308

    Article  CAS  PubMed  Google Scholar 

  19. Ghibellini G, Vasist LS, Leslie EM, Heizer WD, Kowalsky RJ, Calvo BF, Brouwer KL (2007) In vitro-in vivo correlation of hepatobiliary drug clearance in humans. Clin Pharmacol Ther 81(3):406–413

    Article  CAS  PubMed  Google Scholar 

  20. Gibson GG, Rostami-Hodjegan A (2007) Modelling and simulation in prediction of human xenobiotic absorption, distribution, metabolism and excretion (ADME): in vitro-in vivo extrapolations (IVIVE). Xenobiotica 37(10-11):1013–1014

    CAS  PubMed  Google Scholar 

  21. Grover A, Benet LZ (2009) Effects of drug transporters on volume of distribution. AAPS J 11(2):250–261

    Article  CAS  PubMed  Google Scholar 

  22. Haddock RE, Jackson D, Woods FR (1989) Paroxetine: lack of effect on hepatic drug metabolizing enzymes. Acta Psychiatr Scand Suppl 350:93–94

    Article  CAS  PubMed  Google Scholar 

  23. Ho RH, Kim RB (2005) Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 78(3):260–277

    Article  CAS  PubMed  Google Scholar 

  24. Hoglund P, Nilsson LG (1989) Pharmacokinetics of diltiazem and its metabolites after single and multiple dosing in healthy volunteers. Ther Drug Monit 11(5):558–566

    Article  CAS  PubMed  Google Scholar 

  25. Hsu CY, McCulloch CE, Curhan GC (2002) Iron status and hemoglobin level in chronic renal insufficiency. J Am Soc Nephrol 13(11):2783–2786

    Article  CAS  PubMed  Google Scholar 

  26. Huang SM, Temple R (2008) Is this the drug or dose for you? Impact and consideration of ethnic factors in global drug development, regulatory review, and clinical practice. Clin Pharmacol Ther 84(3):287–294

    Article  PubMed  Google Scholar 

  27. Jamei M, Dickinson GL, Rostami-Hodjegan A (2009) A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: A tale of ’bottom-up’ vs ’top-down’ recognition of covariates. Drug Metab Pharmacokinet 24:53–75

    Article  CAS  PubMed  Google Scholar 

  28. Jamei M, Marciniak S, Feng K, Barnett A, Tucker GT, Rostami-Hodjegan A (2009) The Simcyp Population-Based ADME Simulator. Expert Opin Drug Metab Toxicol 5(2):211–223

    Article  CAS  PubMed  Google Scholar 

  29. Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, Tucker G (2009) Population-based mechanistic prediction of oral drug absorption. AAPS J 11:225–237

    Article  CAS  PubMed  Google Scholar 

  30. Janku I (1993) Physiological modelling of renal drug clearance. Eur J Clin Pharmacol 44(6):513–519

    Article  CAS  PubMed  Google Scholar 

  31. Jeong H (2010) Altered drug metabolism during pregnancy: hormonal regulation of drug-metabolizing enzymes. Expert Opin Drug Metab Toxicol 6(6):689–699

    Article  CAS  PubMed  Google Scholar 

  32. Johnson TN, Rostami-Hodjegan A (2011) Resurgence in the use of physiologically based pharmacokinetic models in pediatric clinical pharmacology: parallel shift in incorporating the knowledge of biological elements and increased applicability to drug development and clinical practice. Paediatr Anaesth 21(3):291–301

    Article  PubMed  Google Scholar 

  33. Kleinbloesem CH, van Brummelen P, van Harten J, Danhof M, Breimer DD (1985) Nifedipine: influence of renal function on pharmacokinetic/hemodynamic relationship. Clin Pharmacol Ther 37(5):563–574

    Article  CAS  PubMed  Google Scholar 

  34. Korashy HM, Elbekai RH, El-Kadi AO (2004) Effects of renal diseases on the regulation and expression of renal and hepatic drug-metabolizing enzymes: a review. Xenobiotica 34(1):1–29

    Article  CAS  PubMed  Google Scholar 

  35. Kostewicz ES, Wunderlich M, Brauns U, Becker R, Bock T, Dressman JB (2004) Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J Pharm Pharmacol 56(1):43–51

    Article  CAS  PubMed  Google Scholar 

  36. Lacroix I, Damase-Michel C, Lapeyre-Mestre M, Montastruc JL (2000) Prescription of drugs during pregnancy in France. Lancet 356(9243):1735–1736

    Article  CAS  PubMed  Google Scholar 

  37. Laganiere S, Davies RF, Carignan G, Foris K, Goernert L, Carrier K, Pereira C, McGilveray I (1996) Pharmacokinetic and pharmacodynamic interactions between diltiazem and quinidine. Clin Pharmacol Ther 60(3):255–264

    Article  CAS  PubMed  Google Scholar 

  38. Lalonde RL, Kowalski KG, Hutmacher MM, Ewy W, Nichols DJ, Milligan PA, Corrigan BW, Lockwood PA, Marshall SA, Benincosa LJ, Tensfeldt TG, Parivar K, Amantea M, Glue P, Koide H, Miller R (2007) Model-based drug development. Clin Pharmacol Ther 82(1):21–32

    Article  CAS  PubMed  Google Scholar 

  39. Lam YW, Banerji S, Hatfield C, Talbert RL (1997) Principles of drug administration in renal insufficiency. Clin Pharmacokinet 32(1):30–57

    Article  CAS  PubMed  Google Scholar 

  40. Levy G (1980) Effect of plasma protein binding on renal clearance of drugs. J Pharm Sci 69(4):482–483

    Article  CAS  PubMed  Google Scholar 

  41. Loebstein R, Lalkin A, Koren G (1997) Pharmacokinetic changes during pregnancy and their clinical relevance. Clin Pharmacokinet 33(5):328–343

    Article  CAS  PubMed  Google Scholar 

  42. Mattison DR, Blann E, Malek A (1991) Physiological alterations during pregnancy: impact on toxicokinetics. Fundam Appl Toxicol 16(2):215–218

    Article  CAS  PubMed  Google Scholar 

  43. McConnell EL, Fadda HM, Basit AW (2008) Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm 364(2):213–226

    Article  CAS  PubMed  Google Scholar 

  44. McNamara PJ, Alcorn J (2002) Protein binding predictions in infants. AAPS PharmSci 4(1):E4

    Article  PubMed  Google Scholar 

  45. Muirhead GJ, Wilner K, Colburn W, Haug-Pihale G, Rouviex B (2002) The effects of age and renal and hepatic impairment on the pharmacokinetics of sildenafil. Br J Clin Pharmacol 53 Suppl 1:21S-30S

    Article  CAS  PubMed  Google Scholar 

  46. Naesdal J, Andersson T, Bodemar G, Larsson R, Regardh CG, Skanberg I, Walan A (1986) Pharmacokinetics of [14C]omeprazole in patients with impaired renal function. Clin Pharmacol Ther 40(3):344–351

    Article  CAS  PubMed  Google Scholar 

  47. NHANES National Health and Nutrition Examination Survey 1999–2004.

    Google Scholar 

  48. Nolin TD, Frye RF, Matzke GR (2003) Hepatic drug metabolism and transport in patients with kidney disease. Am J Kidney Dis 42:906–925

    Article  CAS  PubMed  Google Scholar 

  49. O’Neil P (2010) Shedding the Pounds: Obesity Management, NICE guidance and bariatric surgery in England. London, Office of Health Economics

    Google Scholar 

  50. Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC (2006) The human intestinal cytochrome P450 “pie”. Drug Metab Dispos 34(5):880–886

    Article  CAS  PubMed  Google Scholar 

  51. Poulin P, Theil FP (2002) Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J Pharm Sci 91(1):129–156

    Google Scholar 

  52. Proctor NJ, Tucker GT, Rostami-Hodjegan A (2004) Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica 34(2):151–178

    Article  CAS  PubMed  Google Scholar 

  53. Rodgers T, Rowland M (2007) Mechanistic approaches to volume of distribution predictions: understanding the processes. Pharm Res 24(5):918–933

    Article  CAS  PubMed  Google Scholar 

  54. Rostami-Hodjegan A, Tucker GT (2002) The effects of portal shunts on intestinal cytochrome P450 3A activity. Hepatology 35(6):1549–1550, author reply 1550–1551

    Google Scholar 

  55. Rostami-Hodjegan A, Tucker GT (2007) Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov 6(2):140–148

    Article  CAS  PubMed  Google Scholar 

  56. Rostami-Hodjegan A, Jackson PR, Tucker GT (1994) Sensitivity of indirect metrics for assessing “rate” in bioequivalence studies–moving the “goalposts” or changing the “game”. J Pharm Sci 83(11):1554–1557

    Article  CAS  PubMed  Google Scholar 

  57. Rowland-Yeo K, Rostami-Hodjegan A, Tucker GT (2004) Abundance of cytochromes P450 in human liver: a meta-analysis. In: BPS Winter Meeting; 2003, Dec 16–18; GKT School of Biomedical Sciences, Guys Campus, Kings College London. Br J Clin Pharmacol 57:687–688

    Google Scholar 

  58. Rowland-Yeo K, Rostami-Hodjegan A, Tucker GT (2004) Abundance of cytochromes P450 in human liver: a meta-analysis. Br J Clin Pharmacol 57(5):687

    Google Scholar 

  59. Rowland-Yeo K, Aarabi M, Jamei M, Rostami-Hodjegan A (2011) Modeling and predicting drug pharmacokinetics in patients with renal impairment. Expert Rev Clin Pharmacol 4(2)

    Google Scholar 

  60. Rowland M, Peck C, Tucker G (2010), Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 51:45–73

    Article  Google Scholar 

  61. Rowland Yeo K, Jamei M, Yang J, Tucker GT, Rostami-Hodjegan A (2010) Physiologically based mechanistic modelling to predict complex drug-drug interactions involving simultaneous competitive and time-dependent enzyme inhibition by parent compound and its metabolite in both liver and gut - the effect of diltiazem on the time-course of exposure to triazolam. Eur J Pharm Sci 39(5):298–309

    Article  CAS  PubMed  Google Scholar 

  62. Song IS, Shin HJ, Shim EJ, Jung IS, Kim WY, Shon JH, Shin JG (2008) Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin Pharmacol Ther 84(5):559–562

    Article  CAS  PubMed  Google Scholar 

  63. Sugano K, Okazaki A, Sugimoto S, Tavornvipas S, Omura A, Mano T (2007) Solubility and dissolution profile assessment in drug discovery. Drug Metab Pharmacokinet 22(4):225–254

    Article  CAS  PubMed  Google Scholar 

  64. U.S. Department of Health and Human Services FDA (2004) Guidance for Industry, Pharmacokinetics in Pregnancy - Study Design, Data Analysis, and Impact on Dosing and Labeling. Department of Health and Human Services CfDEaRC, Clinical Pharmacology, p. 1–17

    Google Scholar 

  65. Varma MV, Feng B, Obach RS, Troutman MD, Chupka J, Miller HR, El-Kattan A (2009) Physicochemical determinants of human renal clearance. J Med Chem 52(15):4844–4852

    Article  CAS  PubMed  Google Scholar 

  66. Vicini P (2010) Multiscale modeling in drug discovery and development: future opportunities and present challenges. Clin Pharmacol Ther 88(1):126–129

    Article  CAS  PubMed  Google Scholar 

  67. Yu LX (1999) An integrated model for determining causes of poor oral drug absorption. Pharm Res 16(12):1883–1887

    Article  CAS  PubMed  Google Scholar 

  68. Zhao P, Zhang L, Grillo JA, Liu Q, Bullock JM, Moon YJ, Song P, Brar SS, Madabushi R, Wu TC, Booth BP, Rahman NA, Reynolds KS, Gil Berglund E, Lesko LJ, Huang SM (2011) Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther 89(2):259–267

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all colleagues at Simcyp Limited for useful comments and acknowledge assistance of Mr James Kay with preparation of the references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Rostami-Hodjegan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Jamei, M. et al. (2011). Physiologically-Based Pharmacokinetics. In: Mosekilde, E., Sosnovtseva, O., Rostami-Hodjegan, A. (eds) Biosimulation in Biomedical Research, Health Care and Drug Development. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0418-7_16

Download citation

Publish with us

Policies and ethics