Skip to main content

Abstract

This chapter is focused on the classification of bioceramics and their medical applications. Alumina, zirconia or alumina–zirconia-based composite bioinert ceramics are currently used as femoral heads, acetabular cups for hip replacement, and dental implants. Nano-structured bioinert ceramics with significantly improved toughness and stability are desirable for future clinical needs. Bioactive glass and calcium phosphates are being investigated as bone fillers, bone cements, coatings, and scaffolds for bone repair and regeneration. Cell-laden biodegradable bioceramic/biopolymer hybrid composites mimicking the bony hierarchical structure present the desired properties for bone substitution and tissue engineering and are creating a new generation of regeneration materials. Bioceramics for dental and cancer treatment are also introduced in this chapter. Further challenges in bioceramic scaffold fabrication for tissue engineering are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalita SJ, Bhardwaj A, Bhatt HA. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C 2007;27:441–49.

    CAS  Google Scholar 

  2. Chevalier J, Gremillard L. Ceramics for medical applications: A picture for the next 20 years. J Eur Ceram Soc 2009;29:1245–55.

    CAS  Google Scholar 

  3. Rieger W. Ceramics in orthopedics – 30 years of evolution and experience, in World tribology forum in arthroplasty, C Rieker, S Oberholzer and U Wyss, eds. Hans Huber Verlag, Bern, Suisse, 2001

    Google Scholar 

  4. Miller JA, Talton JD, Bhatia S. Total hip replacement: metal-on-metal systems. In Clinical performance of Skeletal Prostheses, LL Hench and J Wilson, eds. Chapman and Hall, London, 1996, pp. 41–56.

    Google Scholar 

  5. Hulbert S. The use of alumina and zirconia in surgical implants, in An introduction to bioceramics, LL Hench and Wilson J, eds. World Scientific, Singapore,1993, pp. 125–38

    Google Scholar 

  6. Schmalzried TP, Kwong LM, Jasty M, et al. The mechanism of loosening of cementedacetabular components in total hip artroplasty. Analysis of specimens retrieved at autopsy. Clin Orthop 1992;274:60–78.

    Google Scholar 

  7. Schmalzried TP, Guttmann D, Grecula M, Amstutz HC. The relationship between the design, position and articular wear of acetabular components inserted without cement and the development of pelvic osteolysis. J Bone Joint Surg 1994;76A:677–88.

    Google Scholar 

  8. Manley MT, Serekian P. Wear debris. Clin Orthop Related Res 1994;298:137–46.

    Google Scholar 

  9. Jahnke K, Plester D, Heimke G. Experiences with Al2O3-ceramic middle ear implants, Biomaterials 1983; 4:137–8.

    CAS  Google Scholar 

  10. Boutin P, Christel P, Dorlot J-M, Meunier A, de Roquancourt A, Blanquaert D, Herman S, Sedel L, Witvoet J. The use of dense alumina–alumina ceramic combination in total hip replacement. J Biomed Mater Res 1988;22:1203–32.

    CAS  Google Scholar 

  11. Campbell P, Doorn P, Dorey F, Amstutz H. Wear and morphology of ultra-high molecular weight polyethylene wear particles from total hip replacements. Proc Inst Mech Eng H 1996;210:167–74.

    CAS  Google Scholar 

  12. Goodman S, Aspenberg P, Song Y, Knoblich G, Huie P, Regula D, Lidgren L. Tissue ingrowth and differentiation in the boneharvest chamber in the presence of cobalt chromium alloy and high density polyethylene particles. J Bone Joint Surg 1995;77A:1025–35.

    Google Scholar 

  13. Howie DW, Vernon-Roberts B, Oakshott R, Manthey B. A rat model of resorption of bone at the cement–bone interface in the presence of polyethylene wear particles. J Bone Joint Surg 1988;70A:257–63.

    Google Scholar 

  14. Willert HG, Semlitsch M. Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res 1977;11:157–64.

    CAS  Google Scholar 

  15. Schmalzried TP, Jasty M, Harris WH. Periprosthetic bone loss in total hip arthroplasty: polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg 1992;74A: 849–63.

    Google Scholar 

  16. Amstutz HC, Campbell P, Kossovsky N, Clarke IC. Mechanism and clinical significance of wear debris-induced osteolysis. Clin Orthop 1992;276:7–18.

    Google Scholar 

  17. Murray DW, Rushton N. Macrophages stimulate bone resorption when they phagocytose particles. J Bone Joint Surg 1990;72B:988–92.

    Google Scholar 

  18. Jiranek WA, Machado M, Jasty M. Production of cytokines around loosened cemented acetabular components. Analysis with immunohistochemical techniques and in situ hybridization. J Bone Joint Surg 1993;75A:863–79.

    Google Scholar 

  19. Hamadouche M, Boutin P, Daussange J, Bolander ME, Sedel L, Alumina-on-alumina total hip arthroplasty: a minimum 18.5-years follow-up study. J Bone Joint Surg Am 2002;84:69–77.

    Google Scholar 

  20. Yoo JJ, Kim YM, Yoon KS, Koo KH, Song WS, Kim HJ. Alumina-on-alumina total hip arthroplasty a five-year minimum follow-up study. J Bone Joint Surg Am 2005;87:530–5.

    Google Scholar 

  21. Dorlot JM. Long-term effects of alumina components in total hip prostheses. Clin Orthop Relat Res 1992;282:47–52.

    Google Scholar 

  22. Catelas I, Petit A, Marchand R, Zukor DJ, Yahia L, Huk OL. Cytotoxicity and macrophage cytokine release induced by ceramic and polyethylene particles in vitro. J Bone Joint Surg Br 1999; 81:516–21.

    CAS  Google Scholar 

  23. Villermaux F. Zirconia-alumina as the new generation of ceramic-ceramic THR: wear performance evaluation including extreme life conditions. Proceedings of 6th World Biomaterials Congress, Workshop on Zirconia Femoral Heads for Total Hip Prostheses, Kamuela, Hawaii, USA: Society for Biomaterials, 2000

    Google Scholar 

  24. Lawn B. Fracture of brittle solids, Cambridge solid state science series 2nd ed. UK: Cambridge university press, 1993:378

    Google Scholar 

  25. Campbell P, Shen FW, McKellop H. Biologic and tribologic considerations of alternative bearing surfaces. Clin Orthop 2004;418:98–111

    Google Scholar 

  26. Heros R, Willmann G. Ceramics in total hip arthroplasty: history, mechanical properties, clinical results and current manufacturing state of the art Semin Arthroplasty 1998; 9:114–22.

    Google Scholar 

  27. Yoon TR, Rowe SM, Jung ST, Seon KJ, Maloney WJ. Osteolysis in association with a total hip arthroplasty with ceramic bearing surfaces, J Bone Joint Surg 1998;80A:1459–68.

    Google Scholar 

  28. Mahoney OM, Dimon III JH. Unsatisfactory results with a ceramic total hip prosthesis. J Bone Joint Surg 1990;72A:663–671

    Google Scholar 

  29. Wirganowicz PZ, Thomas BJ. Massive osteolysis after ceramic on ceramic total hip arthroplasty. Clin Orthop Relat Res 1997;338:100–4.

    Google Scholar 

  30. Garcia-Cimbrelo E, Martinez-Sayanes JM, Minuesa A, Munuera L. Mittelmeier ceramic-on-ceramic hip prosthesis after 10 years. J Arthroplasty 1996;11:773–81.

    CAS  Google Scholar 

  31. Mittelmeier H, Heisel J. Sixteen-years’ experience with ceramic hip prostheses. Clin Orthop 1992;282:64–72.

    Google Scholar 

  32. Willmann G. Ceramic femoral head retrieval data, Clin Orthop 2000;379:173–7.

    Google Scholar 

  33. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial: a review. Biomaterials 1999;20:1–25.

    CAS  Google Scholar 

  34. Nasser S. Campbell PA, Kilgus D, Kossovsky N, Amstutz HC. Cementless total joint arthroplasty prostheses with titanium–alloy articular surfaces. A human retrieval analysis. Clin Orthop Relat Res 1990; 261:171–85.

    Google Scholar 

  35. Sabokbar A, Fujikawa Y, Murray DW, Athanasou NA. Bisphosphonates in bone cement inhibit PMMA particle induced bone resorption. Ann Rheum Dis 1998;57:614–8.

    CAS  Google Scholar 

  36. Ingham E, Green TR, Stone MH, Kowalski R, Watkins N, Fisher J. Production of TNF-alpha and bone resorbing activity by macrophages in response to different types of bone cement particles. Biomaterials 2000; 21: 1005–13.

    CAS  Google Scholar 

  37. Horowitz SM, Purdon MA. Mediator interactions in macrophage/particulate bone resorption. J Biomed Mater Res 1995;29:477–84.

    CAS  Google Scholar 

  38. Chevalier J. What future for zirconia as a biomaterial? Biomaterials 2006;27:535–43.

    CAS  Google Scholar 

  39. Gowen M, Wood DD, Ihrie EJ, McGuire MK, Russell RG. An interleukin 1 like factor stimulates bone resorption in vitro. Nature 1983;306:378–80.

    CAS  Google Scholar 

  40. Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumor necrosis factors. Nature 1986;319:516–18.

    CAS  Google Scholar 

  41. Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res 2007;37:1–32.

    CAS  Google Scholar 

  42. Schubert H, Frey F. Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations. J Eur Ceram Soc 2005;25:1597–602.

    CAS  Google Scholar 

  43. Affatato S, Goldoni M, Testoni M, Toni A. Mixed-oxides prosthetic ceramic ball heads Part 3: effect of the ZrO2 fraction on the wear of ceramic on ceramic hip joint prostheses. A long-term in vitro wear study. Biomaterials 2001; 22:717–23.

    CAS  Google Scholar 

  44. De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 2002; 23:937–45.

    Google Scholar 

  45. Fabris S, Paxton AT, Finnis MW. A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater 2002;50:5171–8.

    CAS  Google Scholar 

  46. Tsipas SA. Effect of dopants on the phase stability of zirconia-based plasma sprayed thermal barrier coatings. J Eur Ceramic Soc 2010;30:61–72.

    CAS  Google Scholar 

  47. Porter DL, Heuer AH. Mechanism of toughening partially stabilized zirconia PSZ. J Am Ceram Soc 1977; 60:183–4.

    CAS  Google Scholar 

  48. Virkar AV, Matsumoto RLK. Ferroelastic domain switching as a toughening mechanism in tetragonal zirconia. J Am Ceram Soc 1986;69:224–6.

    Google Scholar 

  49. Mehta K, Virkar AV. Fracture mechanisms in ferroelectric-ferroelastic lead zirconate titanate Zr:Ti = 054:046; Ceramics. J Am Ceram Soc 1990;73:567–74.

    CAS  Google Scholar 

  50. Nawa M, Nakamoto S, Sekino T, Niihara K. Tough and strong Ce-TZP/Alumina nanocomposites doped with titania. Ceram Int 1998;24:497–506

    CAS  Google Scholar 

  51. Fischer J, Stawarczyk B, Trottmann A, Hämmerle CHF. Impact of thermal properties of veneering ceramics on the fracture load of layered Ce-TZP/A nanocomposite frameworks. Dent Mater 2009;25:326–30.

    CAS  Google Scholar 

  52. Fischer J, Stawarczyk B. Compatibility of machined Ce-TZP/Al2O3 nanocomposite and a veneering ceramic. Dent Mater 2007;23:1500–5.

    CAS  Google Scholar 

  53. WU S, Brook RJ. Sintering additives for zirconia ceramics. Trans J Br Ceram Soc 1983;82:260–4.

    Google Scholar 

  54. Brito-Chaparro JA, Aguilar-Elguezabal A, Echeberria J, Bocanegra-Bernal MH. Using high-purity MgO nanopowder as a stabilizer in two different particle size monoclinic ZrO2: its influence on the fracture toughness. Mater Chem Phys 2009;114:407–14.

    CAS  Google Scholar 

  55. Yang Y, Liu Y, Park S, Kim H, Lee K, Koh J, Nanoscale bioactive surfaces and endosseous implantology, in Nanoscience in Biomedicine, D Shi, ed. Tsinghua University Press, Beijing and Springer-Verlag GmbH, Berlin, Heidelerg, 2009, pp. 428–50

    Google Scholar 

  56. Yang Y, Ran J, Zheng C. Preparation of DLC/stainless steel gradient film materials using magnetron sputtering plasma method, in 13th International symposium on plasma chemistry, symposium proceedings, C Wu, ed. Peking University Press, Beijing, China, III, 1997, pp. 1232–7.

    Google Scholar 

  57. Hench LL. Bioceramic. J Am Ceram Soc 1998;81:1705–28.

    CAS  Google Scholar 

  58. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc 1991;74:1487–510.

    CAS  Google Scholar 

  59. Bromer H, Deutscher K, Blencke B, Pfeil E, Strunz V. Properties of the bioactive implant materials ‘Ceravital’. Sci Ceram 1977;9:219–25.

    Google Scholar 

  60. Gross UM, Strunz V. The anchoring of glass ceramics of different solubility in the femur of the rat. J Biomed Mater Res 1980;14:607–18.

    CAS  Google Scholar 

  61. Kokubo T, Shigematsu M, Nagashima Y, Tashiro M, Nakamura T, Yamamuro T. Apatite- and wollastonite-containing glass-ceramics for prosthetic applications. Bull Inst Chem Res Kyoto Univ 1982;60:260–8.

    CAS  Google Scholar 

  62. Gil-Albarova J, Salinas A, Bueno-Lozano AL, Román J, Aldini-Nicolo N, García-Barea A, Giavaresi G, Fini M, Giardini R, Vallet-Regí M. The in vivo behaviour of a sol–gel glass and a glass-ceramic during critical diaphyseal bone defects healing. Biomaterials 2005;26:4374–82.

    CAS  Google Scholar 

  63. Rehman I, Hench LL, Bonfield W, Smith R. Analysis of surface layers on bioactive glasses. Biomaterials 1994;15:865–70.

    CAS  Google Scholar 

  64. Gheysen G, Ducheyne P, Hench LL, de Meester P. Bioglass composites: a potential material for dental application. Biomaterials 1983;4:81-4.

    CAS  Google Scholar 

  65. Arcos D, del Real RP, Vallet-Regí M. A novel bioactive and magnetic biphasic material. Biomaterials 2002;23:2151–8.

    CAS  Google Scholar 

  66. Ruiz E, Serrano MC, Arcos D, Vallet-Regí M. Glass-glass ceramic thermoseeds for hyperthermic treatment of bone tumors. J Biomed Mater Res 2006;79A:533–43.

    Google Scholar 

  67. Jarcho M. Calcium phosphate as biomaterials Properties and applications. Dent Clin North Am 1986;30:25–48.

    CAS  Google Scholar 

  68. Kent JN, Quinn JH, Zide MF, Finge IM, Jarcho M, Rothstein SS. Correction of alveolar ridge deficiencies with nonresorbable hydroxylapatite. J Am Dent Assoc 1982;105:993–1001.

    CAS  Google Scholar 

  69. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetic. Clin Orthop 1981;157:259–60.

    CAS  Google Scholar 

  70. Wang JC, Ko CL, Hung CC, Tyan YC, Lai CH, Chen WC, Wang CK. Deriving fast setting properties of tetracalcium phosphate/dicalcium phosphate anhydrous bone cement with nanocrystallites on the reactant surfaces. J Dent 2010;38:158–65.

    Google Scholar 

  71. Tsai CH, Lin RM, Ju CP, Lin JHC. Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits. Biomaterials 2008;29:984–93.

    CAS  Google Scholar 

  72. Chow LC, Markovic M, Frukhtbeyn SA, Takagi S. Hydrolysis of tetracalcium phosphate under a near-constant-composition condition – effects of pH and particle size. Biomaterials 2005;26:393–401.

    CAS  Google Scholar 

  73. Guo DG, Xu KW, Han Y. Influence of cooling modes on purity of solid-state synthesized tetracalcium phosphate. Mater Sci Eng B 2005;116:175–81.

    Google Scholar 

  74. Blom EJ, Klein-Nulend J, Wolke JGC, Kurashina K, van Waas MAJ, Burger EH. Transforming growth factor-β1 incorporation in an α-tricalcium phosphate/dicalcium phosphate dihydrate/tetracalcium phosphate monoxide cement: release characteristics and physicochemical properties. Biomaterials 2002;23:1261–8.

    CAS  Google Scholar 

  75. Tami AE, Leitner MM, Baucke MG, Mueller TL, Harry van Lenthe G, Müller Rh, Ito K. Hydroxyapatite particles maintain peri-implant bone mantle during osseointegration in osteoporotic bone. Bone 2009; 45:1117–24.

    Google Scholar 

  76. Sanosh KP, Chu MC, Balakrishnan A, Lee YJ, Kim TN, Cho SJ. Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition. Curr Appl Phys 2009;9:1459–62.

    Google Scholar 

  77. Langhorst SE, O’Donnell JNR, Skrtic D. In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: Quantitative microradiographic study. Dent Mater 2009;25:884–91.

    CAS  Google Scholar 

  78. Beniash E, Metzler RA, Lam RSK, Gilbert PUPA. Transient amorphous calcium phosphate in forming enamel. J Struct Biol 2009;166:133–43.

    CAS  Google Scholar 

  79. Maciejewski M, Brunner TJ, Loher SF, Stark WJ, Baiker A. Phase transitions in amorphous calcium phosphates with different Ca/P ratios. Thermochim Acta 2008;468:75–80.

    CAS  Google Scholar 

  80. Sanosh KP, Chu M-C, Balakrishnan A, Kim TN, Cho S-J. Sol–gel synthesis of pure nano sized β-tricalcium phosphate crystalline powders. Curr Appl Phys 2010;10:68–71.

    Google Scholar 

  81. Bohner M, Luginbühl R, Reber C, Doebelin N, Baroud G, Conforto E. A physical approach to modify the hydraulic reactivity of α-tricalcium phosphate powder. Acta Biomater 2009;5:3524–35.

    CAS  Google Scholar 

  82. Le Huec JC, Clément D, Aunoble S, Tournier C, Harmand MF. A brief summary of 15 years of research on beta-tricalcium phosphates. SAS J 2009;3:112–3.

    Google Scholar 

  83. Park YM, Ryu SC, Yoon SY, Stevens R, Park HC. Preparation of whisker-shaped hydroxyapatite/β-tricalcium phosphate composite. Mater Chem Phys 2008;109:440–7.

    CAS  Google Scholar 

  84. Ishihara S, Matsumoto T, Onoki T, Sohmura T, Nakahira A. New concept bioceramics composed of octacalcium phosphate OCP; and dicarboxylic acid-intercalated OCP via hydrothermal hot-pressing. Mater Sci Eng C 2009;29:1885–8.

    CAS  Google Scholar 

  85. Arellano-Jiménez MJ, García-García R, Reyes-Gasga J. Synthesis and hydrolysis of octacalcium phosphate and its characterization by electron microscopy and X-ray diffraction. J Phys Chem Solids 2009;70:390–5.

    Google Scholar 

  86. Dekker RJ, de Bruijn JD, Stigter M, Barrere F, Layrolle P, van Blitterswijk CA. Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs. Biomaterials 2005;26:5231–9.

    CAS  Google Scholar 

  87. Oliveira C, Ferreira A, Rocha F. Dicalcium phosphate dihydrate precipitation: characterization and crystal growth. Chem Eng Res Des 2007;85:1655–61.

    CAS  Google Scholar 

  88. Xu JW, Butler IS, Gilson DFR. FT-Raman and high-pressure infrared spectroscopic studies of dicalcium phosphate dihydrate CaHPO4·2H2O; and anhydrous dicalcium phosphate CaHPO4. Spectrochim Acta A Mol Biomol Spectrosc 1999;55:2801–9.

    Google Scholar 

  89. El Kady AM, Mohamed KR, El-Bassyouni GT. Fabrication, characterization and bioactivity evaluation of calcium pyrophosphate/polymeric biocomposites. Ceram Int 2009;35:2933–42.

    CAS  Google Scholar 

  90. Nicholas BD, Smith II JL, Kellman RM. Calcium pyrophosphate deposition of the temporomandibular joint with massive bony erosion. J Oral Maxillofac Surg 2007;65:2086–9

    Google Scholar 

  91. Kasuga T. Bioactive calcium pyrophosphate glasses and glass-ceramics. Acta Biomater 2005;1:55–64.

    Google Scholar 

  92. Tudan C, Jackson JK, Higo TT, Hampong M, Pelech SL, Burt HM. Calcium pyrophosphate dihydrate crystal associated induction of neutrophil activation and repression of TNF-α-induced apoptosis is mediated by the p38 MAP kinase. Cell Signal 2004;16:211–21.

    CAS  Google Scholar 

  93. Vallet-Regí M, González-Calbet JM. Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 2004;32:1–31.

    Google Scholar 

  94. Schmitz JP, Hollinger JO, Milam SB. Reconstruction of bone using calcium phosphate bone cements: a critical review. J Oral Maxillofac Surg 1999;57:1122–6.

    CAS  Google Scholar 

  95. Xu JW, Gilson DFR, Butler IS. FT-Raman and high-pressure FT-infrared spectroscopic investigation of monocalcium phosphate monohydrate, CaH2PO4;2H2O. Spectrochim Acta A Mol Biomol Spectrosc 1998;54:1869–78.

    Google Scholar 

  96. Jinawath S, Pongkao D, Suchanek W, Yoshimura M. Hydrothermal synthesis of monetite and hydroxyapatite from monocalcium phosphate monohydrate. Int J Inorg Mater 2001;3:997–1001.

    CAS  Google Scholar 

  97. Huan ZG, Chang J. Novel bioactive composite bone cements based on the β-tricalcium phosphate–monocalcium phosphate monohydrate composite cement system. Acta Biomater 2009;5:1253–64.

    CAS  Google Scholar 

  98. Jung Y, Kim SS, Kim YH, Kim SH, Kim BS, Kim S, Choi CY, Kim SH. A polylactic acid/calcium metaphosphate composite for bone tissue engineering. Biomaterials 2005;26:6314–22

    CAS  Google Scholar 

  99. Driessens FCM. Formation and stability of calcium phosphate in relation to the phase composition of the mineral in calcified tissue, in Bioceramics of Calcium phosphate, K DeGroot, ed. KCRC Press, Boca Raton, Florida, 1983

    Google Scholar 

  100. Liu DM, Troczynski T, Seng WJT. Water-based sol–gel synthesis of hydroxyapatite: process development. Biomaterials 2001;22:1721–30.

    CAS  Google Scholar 

  101. De Groot K, Klein CPAT, Wolke JGC, Blieck-Hogervorst JMA. Chemistry of calcium phosphate bioceramics, CRC Handbook of Bioactive Ceramics, Calcium Phosphate and Hydroxylapatite Ceramics, vol II. CRC press, Boca Raton, FL, 1990

    Google Scholar 

  102. Bow JS, Liou SC, Chen SY. Structural characterization of room-temperature synthesized nano-sized β-tricalcium phosphate. Biomaterials 2004;25:3155–61.

    CAS  Google Scholar 

  103. Liu HS, Chin TS, Lai LS, Chiu SY, Chung KH, Chang CS, Liu MT. Hydroxyapatite synthesized by a simplified hydrothermal method. Ceram Int 1997;23:19–25.

    Google Scholar 

  104. Lim GK, Wang J, Ng SC, Chew CH, Gan LM. Processing of hydroxyapatite via microemulsion and emulsion routes. Biomaterials 1997;18:1433–9.

    CAS  Google Scholar 

  105. Suchanek WL, Shuk P, Byrappa K, Riman RE, TenHuisen KS, Janas VF, Mechanochemical–hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials 2002;23:699–710.

    CAS  Google Scholar 

  106. Wang F, Li MS, Lu YP, Qi YX. A simple sol–gel technique for preparing hydroxyapatite nanopowders. Mater Lett 2005;59:916–9.

    CAS  Google Scholar 

  107. Shih W, Chen YF, Wang MC, Hon MH. Crystal growth and morphology of the nano-sized hydroxyapatite powders synthesized from CaHPO42H2O and CaCO3 by hydrolysis method. J Cryst Growth 2004;270:211–8.

    CAS  Google Scholar 

  108. Guo GS, Sun YX, Wang ZH, Guo HY. Preparation of hydroxyapatite nanoparticles by reverse microemulsion. Ceram Int 2005;31:869–72.

    CAS  Google Scholar 

  109. Gibson IR, Rehman I, Best SM, Bonfield W. Characterization of the transformation from calcium-deficient apatite to beta-tricalcium phosphate. J Mater Sci Mater Med 2000;12:799–804.

    Google Scholar 

  110. Oonishi H, Kushitani S, Iwaki H. Comparative bone formation in several kinds of bioceramic granules, in Eighth international symposium on ceramics in medicine, J Wilson, LL Hench, D Greenspan eds. Tokyo, Japan: Elsevier Science Ltd, 1995, pp. 137–144.

    Google Scholar 

  111. Kivrak N, Tas AC. Synthesis of calcium hydroxyapatite-tricalcium phosphate composite bioceramic powders and their sintering behavior. J Am Ceram Soc 1998;81:2245–52.

    CAS  Google Scholar 

  112. Okazaki M, Sato M. Computer graphics of hydroxyapatite and β-tricalcium phosphate. Biomaterials 1990;11:573–78.

    CAS  Google Scholar 

  113. Sanosh KP, Min-Cheol Chu, Balakrishnan A, Kim TN, Cho SJ. Sol–gel synthesis of pure nano sized b-tricalcium phosphate crystalline powders. Curr Appl Phys 2010;10:68–71.

    Google Scholar 

  114. Lin K, Chang J, Lu J, Wu W, Zeng Y. Properties of β-Ca3PO4;2 bioceramics prepared using nano-size powders. Ceram Int 2007;33:979–85.

    Google Scholar 

  115. Dean-Mo L, Troczynski T, Tseng WJ. Water-based sol–gel synthesis of hydroxyapatite: process development. Biomaterials 2001;22:1721–30.

    Google Scholar 

  116. Pan Y, Huang JL, Shao CY, Preparation of b-TCP with high thermal stability by solid reaction routs. J Mater Sci 2003;38:1049–56.

    CAS  Google Scholar 

  117. Liou SC, Chen SY. Transformation mechanism of different chemically precipitated apatitic precursors into b-tricalcium phosphate upon calcinations. Biomaterials 2002;23:4541–7.

    CAS  Google Scholar 

  118. Ishikawa K, Matsuya S, Bioceramics. Compr Struct Integr 2007;9:169–214.

    Google Scholar 

  119. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med 2003;14:201–9.

    CAS  Google Scholar 

  120. Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials 1997;18:1037–41.

    CAS  Google Scholar 

  121. Ruseska G, Fidanceska E, Bossert J. Mechanical and thermalexpansion characteristics of Ca10PO4;6OH;2-Ca3PO4;2. Sci Sintering 38 2006;245–54.

    CAS  Google Scholar 

  122. Guha AK, Singh S, Kumaresan R, Nayar S, Sinha A. Mesenchymal cell response to nanosized biphasic calcium phosphate composites. Colloids Surf B Biointerfaces 2009;73:146–51.

    CAS  Google Scholar 

  123. Rameshbabu N, Prasad Rao K. Microwave synthesis, characterization and in-vitro evaluation of nanostructured biphasic calcium phosphates. Curr Appl Phys 2009;9:S29–S31.

    Google Scholar 

  124. Yamada S, Heymann D, Bouler JM, Duculsi G. Osteoclastic resorption of biphasic calcium phosphate ceramic in vitro. J Biomed Mater Res 1997;37:346–52.

    CAS  Google Scholar 

  125. Bouler JM, LeGeros RZ, Duculsi G. Biphasic calcium phosphates: influence of three synthesis parameters on the HA/β-TCP ratio. J Biomed Mater Res 2000;51:680–84.

    CAS  Google Scholar 

  126. Monma H, Ueno S, Kanazawa TT. Properties of hydroxyapatite prepared by the hydrolysis of tricalcium phosphate. J Chem Tech Biotechnol 1981;31:15–24.

    CAS  Google Scholar 

  127. Takagi S, Chow LC, Ishikawa K. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 1998;19:1593–9.

    CAS  Google Scholar 

  128. Bohner M. Calcium phosphatem ceramic. Injury 2000;1:S-D37–47.

    Google Scholar 

  129. Ueyama Y, Ishikawa K, Mano T, Koyama T, MatsumuraT, Suzuki K. Initial tissue response to anti-washout apatite cement in the rat palatal region: comparison with conventional apatite cement. J Biomed Mater Res 2001;55:652–60.

    CAS  Google Scholar 

  130. Yuasa T, Miyamoto Y, Ishikawa K, Takechi M, Nagayama M, Suzuki K. In vitro resorption of three apatite cements with osteoclasts. J Biomed Mater Res 2001;54:344–50.

    CAS  Google Scholar 

  131. Hench LL, Spinter RJ, Allen WC, Greenlee JTK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971;2:117–41.

    Google Scholar 

  132. Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920–26.

    CAS  Google Scholar 

  133. Saiz E, Gremillard L, Menendez G, Miranda P, Gryn K, Tomsia AP. Preparation of porous hydroxyapatite scaffolds. Mat Sci Eng C Bio 2007;S27:546–50.

    Google Scholar 

  134. Bohner M, Hvan Lenthe G, Grunenfelder S, Hirsiger W, Evison R, Muller R. Synthesis and characterization of porous beta-tricalcium phosphate blocks. Biomaterials 2005;26:6099–105.

    CAS  Google Scholar 

  135. Deville S, Saiz E, Tomsia AP. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 2006;27:5480–9.

    CAS  Google Scholar 

  136. Franco J, Hunger P, Launey ME, Tomsia AP, Saiz E. Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. Acta Biomater 2010;6:218–28.

    CAS  Google Scholar 

  137. Liu YX, Kim JH, Young D, Kim SW, Nishimoto SK, Yang YZ. Novel template-casting technique for fabricating β-tricalcium phosphate scaffolds with high interconnectivity and mechanical strength and in vitro cell responses. J Biomed Mater Res A 2010;92A:997–1006.

    CAS  Google Scholar 

  138. An YH, Friedman RJ. Animal models of bone defect repair. Boca Raton, FL: CRC Press LLC, 1999, pp. 241–60.

    Google Scholar 

  139. Guicheux J, Gauthier O, Aguado E, Heymann D, Pilet P, Couillard S, Faivre A, Daculsi G. Growth hormone-loaded macroporous calcium phosphate ceramic: in vitro biopharmaceutical characterization and preliminary in vivo study. J Biomed Mater Res 1998;40:560–6.

    CAS  Google Scholar 

  140. Navarro M, Ginebra MP, Planell JA, Zeppetelli S, Ambrosio L. Development and cell response of a new biodegradable composite scaffold for guided bone regeneration. J Mater Sci Mater Med 2004;15:419–22.

    CAS  Google Scholar 

  141. Zhang R, Ma PX. Polyα-hydroxyl acids;/hydroxyapatite porous composites for bone–tissue engineering I Preparation and morphology. J Biomed Mater Res 1999;44:446–55.

    CAS  Google Scholar 

  142. Ambrosio AMA, Sahota JS, Khan Y, Laurencin CT. A novel amorphous calcium phosphate polymer ceramic for bone repair: I synthesis and characterization. J Biomed Mater Res B Appl Biomater 2001;58:295–301.

    CAS  Google Scholar 

  143. Lee YM, Park YJ, Lee SJ, Ku Y, Han SB, Choi SM, Klokkevold PR, Chung CP. Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. J Periodontol 2000;71:410–17.

    CAS  Google Scholar 

  144. Leach JK, Kaigler D, Wang Z, Krebsbach PH, Mooney DJ. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials 2006;27:3249–55.

    CAS  Google Scholar 

  145. Kim HW, Knowles JC, Kim HE. Hydroxyapatite/polyε-caprolactone; composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 2004;25:1279–87.

    CAS  Google Scholar 

  146. Wu H, Zheng O, Du J, Yan Y, Liu C. New drug delivery system ciprofloxacine/tricalcium phosphate delivery capsule CTDC; and its in vitro drug release pattern. J Tongji Med Univ 1997;17:160–4.

    CAS  Google Scholar 

  147. Yamashita Y, Uchida A, Yamakawa T, Shinto Y, Araki N, Kato K. Treatment of chronic osteomyelitis using calcium hydroxyapatite ceramic implants impregnated with antibiotic. Int Orthop 1998;22:247–51.

    CAS  Google Scholar 

  148. Erbe EM, Day DE.Chemical durability of Y2O3–Al2O3–SiO2 glasses for the in vivo delivery of beta radiation. J Biomed Mater Res 1987;27:1301–8.

    Google Scholar 

  149. Ruiz-Hernández E, Serrano MC, Arcos D, Vallet-Regí M. Glass-glass ceramic thermoseeds for hyperthermic treatment of bone tumors. J Biomed Mater Res A 2006; 79:533–43.

    Google Scholar 

  150. SSaqlain A, Hashmi MU, Alam S, Shamim A. Magnetic and bioactivity evaluation of ferrimagnetic ZnFe2O4 containing glass ceramics for the hyperthermia treatment of cancer. J Magnet and Magnetic Mater 2010;322:375-81.

    Google Scholar 

  151. Yu HY, Cai ZB, Ren PD, Zhu MH, Zhou ZR. Friction and wear behavior of dental feldspathic porcelain. Wear 2006;261:611–21.

    CAS  Google Scholar 

  152. Kelly JR. Dental ceramics: current thinking and trends. Dent Clin North Am 2004;48:513–30.

    Google Scholar 

  153. JBlaker J, Maquet V, Jérôme R, Boccaccini AR, Nazhat SN. Mechanical properties of highly porous PDLLA/Bioglass® composite foams as scaffolds for bone tissue engineering. Acta Biomater 2005;1:643–52.

    Google Scholar 

  154. Hasegawa S, Tamura J, Neo M, Goto K, Shikinami Y, Saito M, Kita M, Nakamura T. In vivo evaluation of a porous hydroxyapatite/poly-dl-lactide composite for use as a bone substitute. J Biomed Mater Res 2005;75A:567–79.

    CAS  Google Scholar 

  155. Niemelä T, Niiranen H, Kellomäki M, Törmälä P. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents Part I Initial mechanical properties and bioactivity. Acta Biomater 2005;1:235–42.

    Google Scholar 

  156. Abdala AA, Milius DL, Adamson DH, Aksay IAA, Prud’homme RK. Inspired by abalone shell: strengthening of porous ceramics with polymers. Polym Mater Sci Eng 2004;90:384–5.

    CAS  Google Scholar 

  157. Peroglio M, Gremillard L, Chevalier J, Chazeau L, Gauthier C, Hamaide T. Toughening of bio-ceramics scaffolds by polymer coating. J Eur Ceram Soc 2007;27:2679–85.

    CAS  Google Scholar 

  158. Cui FZ, Li Y, Ge J. Self-assembly of mineralized collagen composites. Mater Sci Eng R 2007;R57:1–27.

    CAS  Google Scholar 

  159. Chen QZ, Boccaccini AR. Poly(d,l-lactic acid) coated 45S5 Bioglass®-based scaffolds: processing and characterization. J Biomed Mater Res A 2006;77A:445–57.

    CAS  Google Scholar 

  160. Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO. Tough, bio-inspired hybrid materials. Science 2008;322:1516–20.

    CAS  Google Scholar 

  161. Vallet-Regí M. Evolution of bioceramics within the field of biomaterials. C R Chimie 2010;13:174–85.

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the grant support from the Wallace H. Coulter Foundation, the March of Dimes Birth Defect Foundation, the Airlift Research Foundation, DOD W81XWH-10-1-0966, and NIH R01AR057837.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunzhi Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Yang, Y., Kang, Y., Sen, M., Park, S. (2011). Bioceramics in Tissue Engineering. In: Burdick, J.A., Mauck, R.L. (eds) Biomaterials for Tissue Engineering Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0385-2_7

Download citation

Publish with us

Policies and ethics